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Abstract
In 1973 Fraenkel discovered interesting sequences, dubbed the rat sequences (rat
for rational numbers), that partition the positive integers. These sequences became
famous, because of a related unsolved conjecture. Here we construct nim-type
combinatorial games, called the rat games, for which these sequences constitute the
losing positions for the current player. We define a notion of playability for classes
of heap games and show that the rat games are playable. Moreover, we find new
definitions of the rat sequences, including a variation of the classical mex-rule.

1. Introduction

In this paper we study so-called rational Beatty sequences, also known as rat se-
quences,1 which partition the positive integers, and we build game rules for which
these sequences constitute the losing positions (also known as P-positions) in perfect
play. The games are acyclic 2-player impartial combinatorial games, with alternat-
ing play. They have perfect information, and we use the normal play convention: a
player unable to move, loses [8, 11, 47]. It is thus well known that one can partition
the game positions into previous player winning positions (P-positions) and next
player winning positions (N-positions), and they can be computed recursively, start-
ing with the terminal positions that are P-positions; see also Definition 2, where we
define these notions in our setting.2

1A historical tour of these popular sequences is included in Section 13.
2For introductions to basic combinatorial game notions see [8], [1]. An entirely new fresh

direction was initiated by Conway [11], beautifully popularized and illustrated by Knuth [35]. The
authoritative graduate textbook by Siegel [47] fuses classical combinatorial game theory with the
latest developments.
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For an integer d > 2, we play vector subtraction games [29] on ordered d-
tuples of nonnegative integers x = (x1, . . . , xd). The moves are certain vectors
s = (s1, . . . , sd) and the move options are vector subtractions of the form x� s =
(x1 � s1, . . . , xd � sd) > 0. We give more details in Section 4 and later.

A standard question in combinatorial game theory is whether there is an e�cient
winning strategy for a set of game rules, and usually this boils down to two problems.
Decide if a position is a P-position in polynomial time (in succinct input size). If
not a P-position, then find a winning move in polynomial time. If we can do this,
we claim to know a solution for the given game. More often, the answer is unknown,
the best known algorithms being exponential.

On the other hand, famous sequences of vectors of non-negative integers (of
course with already known complexity) can sometimes have interesting game rules
associated with them, and such that the sequence constitutes the set of P-positions
[37], [22]; see also, e.g., [13, 40, 39, 42, 17, 30, 25]. The problem is formalized
in [12]. This reverse problem is the topic of this study; similar topics in
classical game theory are called “Mechanism Design”, so this study should fit under
an umbrella of a kind of Mechanism Design for Combinatorial Games (MDCG).3

Trivial game rules can always be found, by letting each candidate N-position
define a move to a terminal position, and forbid moves from all candidate P-positions
(thus making them terminal P-positions). Such game rules are not very interesting;
this motivated the introduction of so-called invariant rules [13], of which vector
subtraction games [29] is an instance. The classical complexity problem for impartial
games, becomes varied and interesting when we seek the rules of games, given a
candidate set of solutions. See also Observation 1, where we show that invariant
rules are not always possible to achieve.

MDCG is not just a computational problem, because we propose that humans
be able to play these type of games (without computational aid). Although this is
usually not a strict requirement, one typically assumes some recreational value of a
combinatorial game/ruleset.

The early connection between Wytho↵ Nim [56, 14] and complementary se-
quences of modulus the golden ratio and its square respectively, recently led to
research in finding game rules for any complementary pair of homogenous Beatty
sequences of irrational modulus [5] (generalizing Wytho↵’s sequences) [13]. The
solution [40] is appealing in a mathematical sense of the word (it introduced a new
operator to combinatorial game theory) but unfortunately it is not known whether
the rules of game even can be understood in polynomial time (in succinct input
size), which should be minimal requirement for any notion of ‘playability’.

We arrive at a motivation for this paper: rulesets for combinatorial games should
be compact, playable, enjoyable and/or “suitable” [8]. Many games in the literature

3This was thankfully pointed out to the second author, by Prof. Rann Smorodinsky, at a
Play-Time seminar at the Technion-Israel Institute of Tecnology in 2018.
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have this property. To this end, in Section 4, we will define a concept of playability
which fits any multi-pile heap game similar to the ones in this work.

The rat sequences have been studied before as candidate sets of P-positions [24],
but only for small number of heaps, and where, even for the instance of games on
three (unordered) heaps, the rules of games, although impressive in their statement,
can be argued intractable for a human player. In this study we improve those rules.
Here, we study the rat sequences as sequences of ordered d-tuples (integer vectors).
See also a short discussion in the final paragraph of Section 13.

We will define two classes of games, grandiose rules and (playable) compact
rules. Both settings are conveniently expressed via what the players cannot do, i.e.
forbidden moves or shortcuts, and, as a main result, we will prove that the rules are
the same although their expessions di↵er in complexity. Here is some more detailed
overview:

• The class of sequences of interest are the rat-vectors (“rat” for rational modu-
lus), and they are defined in Section 2. We show arithmetic periodicity along
their ‘columns’.

• Section 3 exemplifies the grandiose rules, as vector subtraction games via a
certain matrix representation (revisited in later sections).

• Section 4 provides a general framework for maximal rulesets, defined via the
notion of shortcuts, of which the grandiose rules is an instance.

• Section 5 uses this framework to show that the P-positions for the grandiose
games (defined here) are the rat-vectors (Theorem 6).

• Section 6 defines the compact rules and the concept of playability, and we
show that the compact rules are playable.

• Section 7 defines the notion of ternary recurrence, which will help to under-
stand the shortcuts in the setting of rat vectors. Moreover it is the tool to
demonstrate equivalence of grandiose rules with compact rules; Theorem 10
verifies that the games in Sections 5 and 6 are the same.

• As a prerequisite for rats’ matrix representations, in Section 8 we revisit the
arithmetic periodic behavior of the rat vectors.

• Section 9 provides the matrix representation for the rat-vectors, and we exploit
their connections with the standard binary counting system.

• Section 10 studies a ‘mex-rule’ of the rat-vectors, using also the matrix rep-
resentation.

• Section 11 builds matrices for the rats’ shortcuts (that connect the pairs of
rat-vectors via subtraction).
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• In Section 12, we find rats’ Sprague-Grundy values, and we show that, in a
specific sense, the rat games are close to the game of nim.

• We provide a historical rat tour in Section 13.

2. Fraenkel’s Popular Rat Sequences

Let N = {1, 2, . . .} and N0 = N [ {0} denote the positive- and non-negative inte-
gers, respectively. The rat sequences consist of vectors of the form (

⌅
3n
2

⇧
, 3n� 1),

(
⌅

7n
4

⇧
,
⌅

7n
2

⇧
�1, 7n�3), (

⌅
15n
8

⇧
,
⌅

15n
4

⇧
�1,

⌅
15n
2

⇧
�3, 15n�7), and so on, for n 2 N.

Thus, for each dimension d > 2, we code the vectors by r(n) = (r1(n), . . . , rd(n)),
n 2 N, where

ri(n) =
�

(2d � 1)n
2d�i

⌫
� 2i�1 + 1, (1)

i 2 {1, . . . , d}. This representation will be referred to as the standard form, and, for
each dimension d > 1, we can think of it as an infinite row-matrix on d columns,
with rows (or columns) partitioning the positive integers (see Theorem 21 below).
Note that for d = 1, the representation is simply N, so henceforth we let d > 2.
Moreover, for a given d, we let R(d) = {r(n) | n 2 N}. See Table 1 for some initial
examples, and observe that in this study, the d-tuples are ordered (vectors).

Note that, for all dimensions d, for all rows n,

rd(n) ⌘ 2d�1 (mod 2d � 1). (2)

A sequence x = (xn) is arithmetic periodic with saltus s and period p if, for all
n 2 N, xn+p = xn + s.4 Suppose, for example that x1 = 1, x2 = 3, p = 2, and
s = 3. This defines the arithmetic periodic sequence x = (1, 3, 4, 6, . . .), which is
the meagre rat’s (d = 2, see below) first column. In Table 1, we give the first few
rows of the rat sequences for d = 2, 3, 4.

We call matrices such as in Table 1 infinite rat matrices. Let us make some initial
observations about the columns of the infinite rat matrices.

Lemma 1. Consider a number of heaps d > 2.

• For each column i, for all t 2 N, ri(n) ⌘ ri(n + t2d�i) (mod 2d � 1).

• Each rat column i is arithmetic periodic with period 2d�i and saltus 2d � 1.
That is, for each column i, for all n, ri(n + 2d�i) = ri(n) + 2d � 1.

4The notions “arithmetic periodic” and “saltus” in this context are due, to the best of our
knowledge, to Winning Ways.
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n\d 2 3 4
1 1 2 1 2 4 1 2 4 8
2 3 5 3 6 11 3 6 12 23
3 4 8 5 9 18 5 10 19 38
4 6 11 7 13 25 7 14 27 53
5 7 14 8 16 32 9 17 34 68
6 9 17 10 20 39 11 21 42 83
7 10 20 12 23 46 13 25 49 98

Table 1: The first few rows of the rat sequences for d = 2, 3, 4.

Proof. We begin to show the first item. For all rows n, for all columns i,

ri(n + 2d�i)� ri(n) =
�

(2d � 1)n + (2d � 1)2d�i

2d�i

⌫
�
�

(2d � 1)n
2d�i

⌫

= 2d � 1.

The second item is now obvious.

3. Grandiose Rat Rules on Two and Three Heaps

Let us begin by exemplifying the grandiose rules in dimensions 2 and 3 (they will
be defined in Definition 5 in Section 5). Motivated by Lemma 1, we will introduce a
finite matrix representation (that will be defined in Section 9) for the rat sequences,
and thus study games and sequences in suitable finite representations (compare
with Section 2 where sequences have infinite representations).

3.1. The Meagre Rat

Beginning with d = 2, recall the standard form for the rat sequences r(n) =�⌅
3n
2

⇧
, 3n� 1

�
, for n 2 N. The two heap rat-matrix is:

R2 =
✓

3t + 1 6t + 2
3t + 3 6t + 5

◆

for any t 2 N0. The interpretation is that, for d = 2, any given rat vector is a row,
for some t. For example, n = 3 gives r(3) = (4, 8), and it is the first row with t = 1.

The meagre rat’s shortcut-matrix consists of all (unordered) vector di↵erences of
the rows in R2, with nonnegative entries, and it is:

F 2 =

0

@
3t 6t

3t + 1 6t + 3
3t + 2 6t + 3

,

1

A
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for any t 2 N0. For example (11, 21) is a shortcut (row 3 and t = 3). In R2 it is
represented as the di↵erence (3 · 3 + 3, 6 · 3 + 5)� (1, 2), where we used row 2 with
t = 3 and row 1 with t = 0.

3.2. The Not So Meagre Rat

The standard form for d = 3 is
�⌅

7n
4

⇧
,
⌅

7n
2

⇧
� 1, 7n� 3

�
, for n 2 N, and, for t 2 N0,

the not so meagre rat-matrix is

R3 =

0

BB@

7t + 1 14t + 2 28t + 4
7t + 3 14t + 6 28t + 11
7t + 5 14t + 9 28t + 18
7t + 7 14t + 13 28t + 25

,

1

CCA

and the interpretation is that, for d = 3, any given rat vector is a row, for some t.
Its shortcut-matrix, for t 2 N0, is

F 3 =

0

BBBBBBBBBBBB@

7t 14t 28t
7t + 1 14t + 3 28t + 7
7t + 2 14t + 3 28t + 7
7t + 2 14t + 4 28t + 7
7t + 3 14t + 7 28t + 14
7t + 4 14t + 7 28t + 14
7t + 5 14t + 10 28t + 21
7t + 5 14t + 11 28t + 21
7t + 6 14t + 11 28t + 21

1

CCCCCCCCCCCCA

.

The not so meagre rat’s shortcut-matrix F 3 consists of all (unordered) vector
di↵erences of the rows in R3.

Together R3 and F 3 form the 3-dimensional forbidden move matrices. Any 3-
tuple, which is not a row in R3 of F 3 can be a move in the 3-dimensional rat-game.
Intuitively, the current player can choose any vector which is not a forbidden move,
and subtract it from the given position, provided that each coordinate remains non-
negative. Such rules will be generalized in Section 4 and in the special case of arising
from rat sequences, they will be called the grandiose rules, defined in Section 5. See
also Example 3, for the case d = 4.

The shortcut-matrices grow very quickly, as the number of heaps grow, and may
appear intractable at a first sight; see also Figure 1 of linear fractals which encodes
the matrix for d = 10. One of our main results (Theorem 10) states that the compact
rules described in Section 6 are equivalent with the grandiose rules.
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4. A Maximal Ruleset Lemma

The first advantage of the maximal ruleset construction is that one of the directions,
namely ‘P 6! P’, is obvious. Another advantage is that not all candidate N-
positions have to be checked, namely each N-position that is not a shortcut has
already a move to the terminal 0-position. We state this basic observation as a
‘maximal ruleset condition’, Lemma 2 below, in a quite general setting. Intuitively
this lemma is more e�cient/useful for sparse candidate sets of P-positions such as
the rat sequences (see Theorem 6).

Consider (S,+), a partially ordered semigroup S (closed under addition) with a
unique smallest element zero, 0 (in particular every descending sequence of elements
has a smallest element).

Definition 1 (Subtraction game). Let M ✓ S denote a ruleset of an S-
subtraction game G(M), where G(M) is an impartial normal play game defined
as follows: there is a move from x 2 S to y 2 S, if x� y 2M.

Definition 2 (P-position). The set P ✓ S is the set of P-positions of the game
G(M), with M ✓ S \ {0}, if

1. 8x 62 P 9m 2M : x�m 2 P

2. 8p 2 P 8m 2M : p�m 62 P

In this case, we write P = P(M). Note that item 2 implies 0 2 P. If a position is
not a P-position, then it is an N-position.

Definition 3 (Shortcut). For given X ✓ S, let

FX = X � X := {p� q | p, q 2 X ,p > q}

denote the set of shortcuts, with respect to X .

Note that, if X 6= ;, then 0 2 FX , and if 0 2 X , then X ✓ F .

Definition 4 (Maximal ruleset). The set M = S \ FX , of all elements except
the shortcuts, is the maximal ruleset, with respect to the subset X ✓ S.

Observation 1. Observe that it is not always the case that a maximal ruleset
gives back the candidate set as a set of P-positions. Take for example a sequence of
non-negative integers C that starts with the three numbers {0, 1, 3} ⇢ C. In fact, it
is impossible to find a subtraction game S ⇢ N0 such that P (S) = C. Namely, the
move from the position 2 62 C has to go to either 0 or 1, but 1 is forbidden (because
both 0 and 1 are in C), so 2 has to be a move. But this shortcuts 3 with 1.
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Lemma 2 (Maximal ruleset condition). Consider a set X ✓ S, with 0 2 X .
If, for all f 2 FX \ X , there exists an x 2 X such that

f � x 2 S \ FX ,

then X = P(M) is the set of P-positions of the game G(M) with maximal ruleset
M with respect to X , i.e. M = S \ FX .

Proof. Notice that 0 2 FX \X and X ✓ FX , with equality if and only if X = {0}.
Item 2 in the definition of a P-position holds because for x,y 2 X , by definition of
FX and maximal ruleset, x� y 62M.

Hence it su�ces to study item 1 in Definition 2, so assume f 62 X . If f 62 FX ,
then by definition of M, there is a move to 0 2 P, so assume f 2 FX \ X . Since,
by assumption, there exists an x 2 X such that f � x 2 S \ FX = M, there is an
m 2M such that f �m = x. (Note that x 6= 0, by the assumption.)

5. The Grandiose Rat Games

Let us define the grandiose games. In this section, and for the rest of the document,
S = Nd

0 for some d 2 N, d > 2.

Definition 5. [Rats’ grandiose game] The grandiose game G(M) on d heaps is
given by the maximal ruleset M = Nd

0 \ F with respect to the forbidden moves
F = FR(d).

Next, we show that the rat sequences satisfy the condition of Lemma 2, and we
study first the penultimate situations. We begin by showing that when we shift a
divisor 2 inside the floor function, then the deviation is small.

Lemma 3. For any number y,

0 6 byc /2�
jy

2

k
6

1
2
. (3)

Proof. Since y > 2by
2 c, for any y, then byc � 2by

2 c > (y � 1) � y = �1. Since the
expression is an integer, by the strict inequality, the lower bound holds. The upper
inequality follows by decompositioning into fractional parts. Put byc � 2by

2 c =
y � (y � byc)� 2(y

2 � (y
2 � by

2 c)) = (y � byc)� 2(y
2 + by

2 c)) 6 1.

The rat vectors define a total order, and the enumeration is given. The shortcut
vectors are in general only partially ordered (for d 6 3 they have a total order),
but a natural ordering can be obtained by using a lexicographic ordering, with the
first coordinate the smallest ‘digit’. In particular one can prove that, for each d, we
have a minimal vector, and it is of the form (1, 3 . . . , 2d � 1).
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Lemma 4. Consider the rat sequences and their shortcuts.

(a) If f 2 FR \ R, then there exists an r 2 R \ {0}, such that f > r.

(b) If r 2 R \ {0, r(1)}, then there exists an f 2 F \ R, such that r > f .

Proof. We prove (a), and (b) is similar. It su�ces to demonstrate that r(1) <
r(m) � r(n), for any couple n < m, and so it su�ces to show that the inequality
holds for m = n + 1. Note that rd(1) = 2d�1 < 2d � 1 = rd(n + 1)� rd(n), for any
n > 1. Note rd�1(1) = 2d�2. And, by Lemma 3,

2d�1 � 1 = (2d � 1)/2� 1/2 (4)
6 rd�1(n + 1)� rd�1(n). (5)

Similarly, for all i, rd�i(1) = 2d�1�i 6 2d�i�1 6 rd�i(n+1)�rd�i(n). In particular,
by applying Lemma 3 d � 1 times, for i = d � 1, we get r1(1) = 20 = 21 � 1 6
r1(n + 1)� r1(n).

We use the part (a) of the next lemma here, and part (b) later (for playability).
Note in particular that part (a) is the condition in Lemma 2.

Lemma 5. Consider the rat sequences and their shortcuts.

(a) For all f 2 FR \ R, there exists an r 2 R such that f � r 2 N d
0 \ FR.

(b) For all r 2 R \ {0, r(1)}, there exists an f 2 F such that r � f 2 N d
0 \ FR.

Proof. For (a), Lemma 4 shows that if f 2 FR \ R, then there exists an r 2
R \ {0}, such that f > r. This will be necessary for the remaining proof. We
divide the rest of the proof into two cases: (i) We show f � r 62 R. (ii) We show
f � r 62 FR \ R. For (i), suppose for a contradiction that there exists an f 2 FR
such that, for all m, there is an n, such that f � r(m) = r(n). But, for all i, j,
rd(i)+rd(j) ⌘ 1 (mod 2d�1) and for all i, j, rd(i)�rd(j) ⌘ 0 (mod 2d�1). Hence,
fd 6= rd(n)+ rd(m), for any combination of f , n,m so (i) cannot hold. Similarly (ii)
cannot hold, because if f�r = g, for some g 2 F\R, then fd�rd ⌘ gd (mod 2d�1),
so rd ⌘ 0 (mod 2d � 1), which is not true, because rd ⌘ 2d�1 (mod 2d � 1) and
both fd and gd are congruent to 0 modulo 2d � 1. Since both (i) and (ii) hold, we
are done.

The proof of (b) is in analogy with that of (a). By using the same notation, note
in particular that fd + gd 6⌘ rd (mod 2d � 1).

Theorem 6. For any given number of heaps d > 2, let G(M) be the grandiose
rat rules, i.e. M = Nd

0 \ FR is the maximal ruleset on the rat sequences. Then
P (M) = R.
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Proof. We combine Lemma 2 with Lemma 5 (a). Namely let R = P. Then the
result follows.

Although the idea of the forbidden move matrices is intuitive and Theorem 6
is satisfactory, the Grandiose games do not appear a-priori playable. However, we
will show that the rules are equivalent with playable compact rules, the topic of
Section 6 and onwards.

6. Rats’ Compact Rules

The rules of our compact games are as follows. Let d > 2 be an integer. We play
on ordered d-tuples (vectors) of non-negative integers x = (x1, . . . , xd).

The move options are vector subtractions, and any vector subtraction x � s =
(x1 � s1, . . . , xd � sd) > 0 is allowed, with s = (s1, . . . , sd), except if it satisfies
either of the following two properties, a or b :

a(i) sd ⌘ 2d�1 (mod 2d � 1) AND

a(ii) for all i 2 {2, . . . , d}, si � 1 6 2si�1 6 si,

OR

b(i) sd ⌘ 0 (mod 2d � 1) AND

b(ii) for all i 2 {2, . . . , d}, si � 1 6 2si�1 6 si + 1.

For x 2 N, let '(x) =
⌃

x
2

⌥
. Note that, coded in binary digits, then '(x) is the

right shift of x + 1, where the least significant digit is dropped. For example with
x+1 = 8 = 1000, then '(x) = 4 = 100, and x+1 = 9 = 1001, then '(x) = 5 = 101.

Lemma 7. If s is a rat vector, then item a is satisfied with, for all i, '(si) = si�1.
If s is a shortcut vector, then item b is satisfied with '(si) 2 {si�1 � 1, si�1}

Example 1. Consider d = 3 with the starting position (1, 3, 7). There is no move
to 0, since condition b is satisfied by s3 = 7 = 23 � 1 and since 2si�1 + 1 = si, for
i = 2, 3; 2 ⇥ 1 + 1 = 3 and 2 ⇥ 3 + 1 = 7. However, there is a move to (1, 2, 4),
since (0, 1, 3) satisfies neither a nor b. But r1 = (1, 2, 4) is the smallest (using
lexicographic order) position of the forms a or b, which implies that the next move
will be a losing move. Hence position (1, 3, 7) is an N-position, a winning position
for the current player.

A nice property for a ruleset defined on any number of heaps is that the de-
scription on how to move does not increase too fast when the number of heaps
grows. Since the modulus is rational, our winning strategies and games are arith-
metic periodic, and we will use matrix representations to hightlight this fact. For
each dimension d, and all n 2 N, we have that



INTEGERS: 19 (2019) 11

• the number of rat-vectors with coordinates less than or equal to 2d�1(2d�1)n
is 2d�1n,

• the number of proper shortcuts with coordinates less than or equal to 2d�1(2d�
1)n is (3d�1)n < 2

�2d�1

2

�
n (many get canceled, and we show this in Section 11).

So, by arithmetic periodicity, if we give the job to the previous player to refute
any suggested vector not in M, then, by exhaustive search the number 3d�1 +2d�1

is an upper bound. This number is constant in the heap sizes, but still exponential
in the number of heaps. By this alone, the grandiose games do not appear playable
for a large number of heaps. Here, we prove that there is a much faster way to refute
a move, namely, by the compact rules—a linear procedure in the number of heaps
(Theorem 8). And, in Section 7 we show that the two rulesets are the same, so the
compact rules make the grandiose games playable (Definition 7), for any number of
heaps.

Note that, the quintessence of impartial combinatorial games, Nim, has a linear
time procedure in the number of heaps to decide whether a given vector is a move5

(if heap sizes are bounded) and so does of course Moore’s Nim (but some other
variations are slightly more complex, such as Fraenkel’s multi-pile generalization
of Wytho↵ Nim [21], with accompanying conjecture). Not all game rules are de-
fined over an arbitrarily finite number of heaps, but for those classes, where it is
applicable, we suggest the following terminology.

Definition 6 (Linear test). Consider a, b, c, p, q 2 Q. An (a, b, c; p, q)�linear test
on an ordered d-tuple of integers x = (x1, . . . , xd) is a double inequality of the form,
for all i 2 {2, . . . , d}, xi + a 6 bxi�1 6 xi + c, together with a congruence xd ⌘ p
(mod q).6 The linear test accepts if all conditions hold.

For example, the compact rules item a, for d = 4, is a (�1, 2, 0; 8, 15)-linear test.
In given contexts we say simply linear test.

Definition 7 (Playability). The rules of a heap game are playable if

• (for bounded heap sizes) they depend on a finite number of linear tests on the
heaps, where accept means that a vector is a move;

• (for a bounded number of heaps) they are described by at most a log-linear
procedure in the heap sizes;7

5Of course, for Nim we must disallow any vector subtraction if more than one coordinate is
positive (or if a positive coordinate is larger than the corresponding heap size).

6One could consider a variety of linear test conditions apart from the ones we choose here, as
long as the linear check across the vector satisfies reasonable simple conditions in the sense of the
notion of playability in Definition 7.

7This is trivially required since, for example, we must check that move coordinates are not
larger than heap sizes. Apart from this requirement, we will see that, in our case, the complexity
of the rules is constant in the size of the heaps.
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• there is a constant c > 1 that does not depend on the number of heaps, such
that, for all but c non-terminal P-positions, there is a move to an N-position
that does not have a terminal position as an option.8

We begin by proving that the compact games are playable.

Theorem 8. The compact rules are playable.

Proof. The first part of playability is immediate by Definitions 6 and 7. For the
second part, for any d > 2, Lemma 5 (b) shows that all but the penultimate
P-position has a move to a forbidden move position (so we may take c = 1 in
Definition 7).

7. Ternary Recurrence, Proper Shortcuts and the Main Playability
Result

In this section, we connect the Grandiose rules with the Compact rules, and thus
show that the maximal move-set construction gives playable rat games.

Definition 8. A d-tuple x = (x1, . . . , xd) has a ternary recurrence if it satisfies
xd ⌘ 0 (mod 2d � 1), and, for all i 2 {2, . . . , d}, xi�1 2

�⌅
xi
2

⇧
,
⌃

xi
2

⌥ 
.

The word ternary reflects that, for given xi�1, there are exactly three possibilities
of xis for which membership is satisfied. Note the similarity with the compact game
rules. The “if” part of the the following result depends on Theorem 17 in Section 11;
however, the “only if” direction is independent of later results and, as we will see in
Theorem 10, it implies the connection between the compact rules and the grandiose
games.

Lemma 9. A vector x is a proper shortcut if and only if it has a ternary recurrence.

Proof. By definition, the vector x is a shortcut, if, for all i, for some k > 0, xi =
ri(n + k) � ri(n), with ri defined as in (1). This gives xd = k(2d � 1), so the
congruence part holds.

Next, we prove that 0 6 xi�1 �
⌅

xi
2

⇧
6 1, for all i, if x is a shortcut. Let

' = xi�1 �
⌅

xi
2

⇧
.

If x is a shortcut, then

' = ri�1(n + k)� ri�1(n)�
�

ri(n + k)� ri(n)
2

⌫
.

How much does the second term di↵er from the first? Note that, if we shift the
divisor in the second term inside the inner floor functions, then we get ri�1(n +

8Of course penultimate P-positions do not satisfy this condition, which motivates the lower
bound on c.
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k)� ri�1(n)�bri�1(n + k)� ri�1(n)c = 0, because r is an integer valued function.
Hence, by applying Lemma 3 in shifting back the divisor 2 outside the inner most
nested floor functions, we get �1 6 ' 6 1.

Since the expression is an integer, it su�ces to exclude the case ' = �1, so, let
us assume, for a contradiction, that

1 + ri�1(n + k)� ri�1(n) =
�

ri(n + k)� ri(n)
2

⌫
.

Again, by using Lemma 3, the expression inside the right-hand side floor func-
tion has increased at most a half, by moving the divisor 2 outside the inner floor
functions. Since the expression was an integer before this operation, the possible
increase of a half will be canceled by the outer floor function. Thus the left-hand
side is too large.

We have proved that, if x is not of the form in the second part of the theorem,
then x is a move.

For the other direction, suppose that

xd ⌘ 0 (mod 2d � 1)

and, for all i 2 {2, . . . , d},

xi�1 2
njxi

2

k
,
lxi

2

mo
.

We have to demonstrate that there exist n and k such that x = r(n + k)� r(n).
We use the shortcut-matrix defined in Section 11. Since each ternary vector defines
uniquely each row, and starting with xd, the existence is clear.

We have the following main result on playability, implied by Lemma 9.

Theorem 10 (Playability). For a fixed d > 2, the compact game (from Section 6)
is the grandiose game M. That is, the compact game rules su�ce to play the
grandiose game. Hence, for both games there is a constant time (in the heap sizes)
and linear time (in the number of heaps) procedure to decide whether a given d-tuple
is a move.

Proof. This follows from Lemma 9, since the compact rules have ternary recurrence.

Therefore both games have the rat sequences as its set of P-positions. Let us
give another play example, here with d = 4.

Example 2. Let x = (4, 7, 15, 29). Then x4 6⌘ 0 (mod 24�1). So x is a move. Let
x = (4, 7, 15, 30). Then x4 ⌘ 0 (mod 24 � 1). In addition 30/2 = 15, b15/2c = 7
and d7/2e = 4, so x 2 R�R is a shortcut.
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How do you move from (3, 6, 12, 23) + (4, 7, 15, 30) = (7, 13, 27, 53)? The first
vector is a P-position, but the second is a shortcut. Is there any other attainable P-
position? We must find a move of the form (7�

⌅
15n
8

⇧
, 14�

⌅
15n
4

⇧
, 30�

⌅
15n
2

⇧
, 60�

15n). The forth coordinate is correct, so we proceed by dividing by 2 and applying
the floor function, and thus verify the third coordinate (for n = 1, 2, 3). For the
second coordinate: is there an n such that

14�
�

15n
4

⌫
2
($

30�
⌅

15n
2

⇧

2

%

,

$
30�

⌅
15n
2

⇧

2

%

+ 1

)

?

It turns out that n = 1 also gives a shortcut, but for n = 3, the move (2, 3, 8, 15)
takes you to the P-position (5, 10, 19, 38).

8. The Rats’ Binary Wheel

This section expands on the matrix representation examples in Section 3. We have
a general observation on the floor function.

Lemma 11. For any x, y 2 N,
j

x
y

k
�
j

x�1
y

k
= 1 if x ⌘ 0 (mod y), and otherwise

j
x
y

k
�
j

x�1
y

k
= 0.

Proof. Write x = ↵y + �, with 0 6 � < y. This gives
j

x
y

k
�
j

x�1
y

k
=
j

↵y+�
y

k
�

j
↵y+��1

y

k
=
j

�
y

k
�
j

��1
y

k
= 1 if and only if � = 0.

Notation 1. For each column j 2 {1, . . . , d}, the gap between the rows n > 2 and
n� 1 is �j(n) := rj(n)� rj(n� 1).

Lemma 12 (Rat wheel). For all n, j, �j(n) = 2j, unless n ⌘ 0 (mod 2d�j), in
which case �j(n) = 2j � 1.

Proof. For all n, j, �j(n) =
j

(2d�1)n
2d�j

k
�
j

(2d�1)(n�1)
2d�j

k
= 2j +

⌅
n�1
2d�j

⇧
�
⌅

n
2d�j

⇧
. The

result follows by Lemma 11.

We have the following identity between consecutive rows in the infinite rat matrix.
Note how it relates the binary counting system with the rat vectors, to be exploited
next in Section 9.

Lemma 13 (A rat-gap identity). For any d > 2, and any n > 2,
X

j2{2,...,d}

2d�j+1�j�1(n)� 2d�j�j(n) = 1. (6)
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Proof. For each row n > 2, there is a smallest indexed column �, such that n ⌘ 0
(mod 2)d�j , and so, by Lemma 12, ��(n) = 2� � 1 (note, for all rows, �d(n) =
2d � 1). It follows that �⇢(n) = 2⇢ � 1, for all ⇢ > �. By Lemma 12, in the
expression (6), the powers of 2 will get cancelled, so we are only concerned with
the part �2d��(�1) + 2d��(�1)� 2d���1(�1) + 2d���1(�1)� 2d���2(�1) + . . . +
2d�d+1(�1)� 2d�d(�1) = 1.

9. The Anatomy of Rats: Matrix Representations

The standard form is not too convenient to work with, mainly because of the floor
function. We extend the examples in Section 3 by reviewing the idea of the matrix
representation for d = 4.

Example 3. The case d = 4 was dubbed ‘fat rat’ [24]. Recall the standard form
of the P -positions without 0, n > 1,

r(n) =
✓�

15
8

n

⌫
,

�
15
4

n

⌫
� 1,

�
15
2

n

⌫
� 3, 15n� 7

◆
. (7)

Let us list the first 11 expansions of the standard form, and using t = b(n�1)/8c > 0,
with n > 1,

n r1(n) r2(n) r3(n) r4(n)
1 15t + 1 30t + 2 60t + 4 120t + 8
2 15t + 3 30t + 6 60t + 12 120t + 23
3 15t + 5 30t + 10 60t + 19 120t + 38
4 15t + 7 30t + 14 60t + 27 120t + 53
5 15t + 9 30t + 17 60t + 34 120t + 68
6 15t + 11 30t + 21 60t + 42 120t + 83
7 15t + 13 30t + 25 60t + 49 120t + 98
8 15t + 15 30t + 29 60t + 57 120t + 113
9 15t + 1 30t + 2 60t + 4 120t + 8
10 15t + 3 30t + 6 60t + 12 120t + 23
11 15t + 5 30t + 10 60t + 19 120t + 38.

Notice the periodicity after the first 8 rows, modulus 15j, j = 1, 2, 3, 4 in the
respective columns.9

By the column-wise arithmetic periodic behavior of the rat sequences, for any
given number of heaps, it is convenient to represent them in matrix notation. When
we code them modulo 2d� 1, and given the first column, there is a simple bijection

9The reader is encouraged to check that the values of r(n), as n ranges from 1 to 11, are
identical to the 11 rows of the matrix. For example, for n = 6, the value of (7) is (11, 21, 42, 83),
the same as the line n = 6, t = b6/8c = 0 of R4. For n = 9, (7 yields (16, 32, 64, 128), same as row
9 of R4 with t = b9/8c = 1.
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with the binary numeration system, which is proved in Theorem 14, in this section.
This can be seen for any dimension d by studying the saltus and period of the
system, as observed in Section 2. Here, we give a proof of independent interest,
using Lemma 13.

Definition 9 (Binary matrices). We denote the entry in the ith row and the
jth column of the rat-matrix by Ri,j(t), where t 2 N is a variable (see Example 3).
Denote the ith row, i 2 {0, . . . , 2d�1 � 1}, of the rat-matrix by Ri(t), n 2 N0. Let
Ri,1(t) = (2d � 1)t + 2i + 1, and for j 2 {2, . . . , d}, Ri,j(t) = 2Ri,j�1(t) � bi,d�j ,
where bi = bi,d�2 · · · bi,0 is the number i represented in binary.

Note that, by using the binary representation, it is natural to index the rows of
the rat-matrix by i 2 {0, . . . , 2d�1 � 1} (but in the standard form, we follow the
tradition, and start the indexing of rows with n = 1, 2, . . .).

The following result gives the translation between rats’ standard form and the
(binary) matrix representation. Moreover it will be used in Section 10 to show that
the rats’ mex-rule is equivalent with the rat-vectors.

Theorem 14 (Rats are binary). Let d > 2. For all n 2 N,

r(n) = Rn�1 (mod 2d�1)

✓�
n� 1
2d�1

⌫◆
.

Proof. For each n 2 N, we must verify that, with t =
⌅

n�1
2d�1

⇧
, row n � 1 in the

rat-matrix corresponds with row n in the standard form: recall, for all columns j,

rj(n) =
�

(2d � 1)n
2d�j

⌫
� 2j�1 + 1.

We study the gaps of the entries in the columns of the respective forms. First
we show that they correspond within a rat-matrix, and then we demonstrate that
the glueing of matrices gives back the infinite form. Recall that �j(n) = rj(n) �
rj(n� 1).

Let us begin by showing that row 0 in the rat-matrix corresponds to the first
row in the standard form. Since R0,1(t) = (2d � 1)t + 1 and, by b0 = 0, then, for
all j 2 {1, . . . , d}, R0,j(0) = 2j�1. Also

rj(1) =
�

2d � 1
2d�j

⌫
� 2j�1 + 1 (8)

=
�

2d

2d�j

⌫
+
�
�1

2d�j

⌫
� 2j�1 + 1 (9)

=
2d

2d�j
� 1� 2j�1 + 1 (10)

= 2j�1, (11)
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for all j.
We want to show that for any row n, r(n) = Ri(

⌅
n�1
2d�1

⇧
), with n�1 = ↵2d�1 + i,

for some non-negative integer ↵, and where

0 6 i < 2d�1. (12)

We begin by showing that the first entries correspond, and note that the last equality
in both simplifications follow by (12):

r1(n) =
�

(2d � 1)n
2d�1

⌫

=
�

(2d � 1)(↵2d�1 + i + 1)
2d�1

⌫

= ↵(2d � 1) +
�

(2d � 1)(i + 1)
2d�1

⌫

= ↵(2d � 1) + 2i + 2 +
�
�i� 1
2d�1

⌫

= ↵(2d � 1) + 2i + 2� 1;

Ri,1

✓�
t� 1
2d�1

⌫◆
= (2d � 1)

�
t� 1
2d�1

⌫
+ 2i + 1

= (2d � 1)
�

↵2d�1 + i

2d�1

⌫
+ 2i + 1

= (2d � 1)
✓

↵ +
�

i

2d�1

⌫◆
+ 2i + 1

= ↵(2d � 1) +
�

i

2d�1

⌫
(2d � 1) + 2i + 1

= ↵(2d � 1) + 2i + 1.

Next, for all j 2 {2, . . . , d}, we show that

bi,d�j = 2Ri,j�1(t)�Ri,j(t) = 2rj�1(n + 1)� rj(n + 1).

Of course
bi � bi�1 =

X
2d�jbi,d�j �

X
2d�jbi�1,d�j = 1.

Hence, it su�ces to show that
X

2d�j(2rj�1(n + 1)� rj(n + 1)� (2rj�1(n)� rj(n))) = 1,

that is, that
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X
2d�j+1(rj�1(n + 1)� rj�1(n)) + 2d�j(rj(n)� rj(n + 1)) = 1,

that is, that X
2d�j+1�j�1(n + 1)� 2d�j�j(n + 1) = 1.

This follows by Lemma 13.

10. A Mex-binary Rule Interpretation

Let Bd�1 = (bi,j) denote the matrix of numbers in binary where the rows i represent
the numbers from 0 to 2d�1 � 1. For example,

B3 =

2

66666666664

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

3

77777777775

We index this matrix in a natural way with respect to the binary representations
of the numbers, from right to left, starting with 0 and ending with d� 1. Thus, for
example, b3 = 011, b3,0 = b3,1 = 1 and b3,2 = 0. In contrast, the columns of the rat
matrices are indexed from 1 to d, left to right.

Let d > 3 be a fixed integer. For n > 1, i 2 {2, . . . , d}, let ⌅i,i�1(n) := ri(n) �
2ri�1(n).

Lemma 15. (i) Let s be a positive odd integer, x a real number, 0 < x 6 1/2.
Then 2b(s/2)� xc = s� 1.

(ii) For all n 2 N,⌅i,i�1(n) =
⇢

0, if 9k 2 N0 : k2d�i+1 < n 6 k2d�i+1 + 2d�i,
�1, otherwise.

Proof. (i) Write s = 2v � 1, where v is a positive integer. Then 2b(s/2) � xc =
2b(2v � 1)/2� xc = 2v + 2b(�1/2)� xc = 2v � 2 = s� 1.

(ii) For the o↵set di↵erences, (�2i�1 + 1)� 2(�2i�2 + 1) = �1 for all n.
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Let k > 0 be fixed. Let n = k2d�i+1 + t, 0 < t 6 2d�i. Then

⌅i,i�1(n) =
�

(2d � 1)(k2d�i+1 + t)
2d�i

⌫
� 2

�
(2d � 1)(k2d�i+1 + t)

2d�i+1

⌫
� 1

=
�

(2d � 1)t
2d�i

⌫
� 2

�
(2d � 1)t
2d�i+1

⌫
� 1

=
�
�t

2d�i

⌫
� 2

�
�t

2d�i+1

⌫
� 1 = �1 + 2� 1 = 0.

Now let n = k2d�i+1 + 2d�i + t, 0 < t 6 2d�i. Then

⌅i,i�1(n) =
�

(2d � 1)(k2d�i+1 + 2d�i + t)
2d�i

⌫
� 2

�
(2d � 1)(k2d�i+1 + 2d�i + t)

2d�i+1

⌫
� 1

= 2d � 1 + 2it� 2
�

(2d � 1)2d�i + (2d � 1)t)
2d�i+1

⌫
� 2

= 2d � 1� 2
�

(2d � 1)
2

� t

2d�i+1

⌫
� 2

= (2d � 1)� (2d � 2)� 2 (by part (i))
= �1.

Definition 10. For X ⇢ N, let mexX = min(N \X), the smallest positive integer
not in X.

In particular, mex of the empty set is 1. We represent the rat vectors via the
mex-rule as follows.

Definition 11 (Rats’ mex rule). For n > 1, let

un,1 = mex{um,1, . . . , um,d : 1 6 m < n},
un,i = 2un,i�1 � bn�1,d�i, 2 6 i 6 d.

For n > 1, i 2 {2, . . . , d}, let �i,i�1(n) := un,i � 2un,i�1.

Theorem 16. For all n 2 N, and all i 2 {1, . . . , d}, un,i = ri(n).

Proof. For every fixed d > 2, we use induction on n. Notice that u1,1 = r1(1) =
1. Moreover, it follows by the definitions that �i,i�1(1) = ⌅i,i�1(1) = 0, for all
i 2 {2, . . . , d}. This implies that, for all i, u1,i = ri(1). Assume that for some
n > 1, um,i = ri(m) for all 1 6 m < n. Let a be the smallest positive integer
not in ri(m) for any i 2 {1, . . . , d}, m < n. It must appear somewhere, since the
rat sequences are complementary. Therefore r1(n) = a. Indeed, every ri(n) is an
increasing sequence, so a could not appear in r1(m) for any m > n. Moreover,
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ri(n) < ri+1(n) for all i, n, so a cannot appear in ri(m) for any i > 1, m > n. Now
a is also the smallest positive integer not in um,i for any i 2 {1, . . . , d}, m < n
by the induction hypothesis. Then by the mex property, un,1 = a. The binary
representation in Theorem 14, or equivalently Lemma 15 (ii), implies un,i = ri(n)
for all i, completing the induction.

11. The Rats’ Ternary Shortcuts

Similar to R, which, for each d, is a finite matrix, we define the (proper) shortcut-
matrix F (F for forbidden subtractions), which will also be finite, with d columns.
We will prove that it contains 3d�1 rows, using the natural ternary representations,
obtained as a consequence of the binary representation of the rat-matrix.10

A d-dimensional vector t is ternary if, for all 0 6 j 6 d� 1, tj 2 {0, 1, 2}.

Definition 12. Index the vectors in the set {r � r0 62 R | r, r0 2 R} in increasing
right-to-left lexicographic order11, and let F denote the shortcut-matrix where f i

is the ith row from the top, and starting with row 0.

The following example is relevant to the proof of Theorem 17.

Example 4. Let d = 3. See Section 3. The vectors of F 3 gives the 32 = 9
ternary pairs starting with top row: 11, 22, 02, 10, 21, 01, 12, 20, 00. (Column-wise,
divide by two, subtract with previous column and finally shift result by 1.) This
representation gives rise to pictures such as Figure 1, explained in the appendix of
a previous version of this paper [27].)

Theorem 17. The shortcut-matrix F contains exactly 3d�1 distinct rows.

Proof. We show that each (d� 1)-dimensional ternary vector t, describes precisely
one row in the matrix (see also Example 4), and then the result follows. For all
i, k 2 {1, . . . , 2d�1} and j 2 {1, . . . , d}, we have that

Ri+1,j �Rk+1,j = 2(rj(i)�Rk,j) + bi,j � bk,j , (13)

where tj := bi,j � bk,j +1 2 {0, 1, 2}. Hence, for each pair of rows i, k, we define the
ternary vector t = bi � bk + 1. Not that, given any ternary vector t, it is easy to
find two binary vectors such that their di↵erence +1 is t. Now, for each t, there is
an equivalence class of pairs of binary vectors, and it is given by 2u, where u is the

10Thus the proof gives a bit more information than the statement, and we use our understanding
of the structure to find the natural order of the rows in F . In this section, we abuse notation and
say ‘shortcut-matrix’ instead of the somewhat lengthy ‘proper shortcut-matrix’.

11Row fi is before row fj if column k is the rightmost column where they di↵er, and then
fi,k < fj,k
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number of 1s in t. Suppose now that we produce the same ternary vector t in two
di↵erent ways, say by finding rows such that

t = bi � bj = bk � b`. (14)

We must show that the two ways to obtain t results in the same row in F , and to this
purpose it su�ces to show that the last entries Ri+1,d�Rj+1,d and Rk+1,d�R`+1,d,
in the two representations will be the same. Observe that i � j > 0 if and only if
k � ` > 0. This gives that the respective di↵erences in the first colums will be the
same. Then, because of (14), then by (13), we get the claim for the last column.
Thus, the definition of t gives a unique row vector in the shortcut-matrix, and so
the number of rows is correct.

We note that the construction in Lemma 9 suggests a similar definition of the
shortcut-matrix. We will not use the following definition and observation in this
paper, but we include it for completeness.

Definition 13. Let d > 2. For each i 2 {1, . . . , 2d�1}, j 2 {1, . . . , d}, we construct
a tree-structure of depth d, where the root has label (j, x) = (d, i(2d � 1)). If x is
even, then the node (j, x) has one child, labeled (j � 1, x/2), and otherwise it has
two children labeled (j � 1, (x � 1)/2) (to the left) and (j � 1, (x + 1)/2) (to the
right). Let T d denote the family of all such trees, and let T d(n) denote the same
family, but where each label (j, x) has been replaced with 2j�1(2d � 1)n + x.

Observation 2. Each path in T d(n), from a leaf to the root, represents a unique
row in the shortcut-matrix. We obtain the lexicographic order of the rows in the
shortcut-matrix by reading the paths left to right and starting with i = 1, etc.

The last column of the shortcut-matrix appears to satisfy a regular behavior, for
increasing dimensions d.

Conjecture 18. Consider the shortcut-matrix for a given d. The number of entries
of k(2d � 1), for k 2 N, is represented by a sequence of vectors (�d)d>2 of lengths
2d�2:

(2), (3, 2), (4, 3, 5, 2), (5, 4, 7, 3, 8, 5, 7, 2),

(6, 5, 9, 4, 11, 7, 10, 3, 11, 8, 13, 5, 12, 7, 9, 2), . . .

The entries of �d are defined recursively by �2
1 = 2 and, for d > 2,

�d
1 = �d�1

1 + 1.

For all 1 6 j 6 2d,
�d+1

2j = �d
j ,

and for all 1 6 j < 2d,
�d+1

2j+1 = �d
j + �d

j+1.



INTEGERS: 19 (2019) 22

In an online extension of this manuscript [27, Appendix], using figures, data, and
conjectures, we show that the structures of the shortcut matrices, for increasing d,
satisfy interesting Cantor-like line fractals, with apparent complex behavior; exem-
plified here in Figure 1. Disregarding this apparent complexity, we have here proved
that the compact games are the same as the grandiose games.

Figure 1: Line fractals code the shortcut-matrix for d = 10 heaps. See [27, Ap-
pendix] for an explanation of the patterns.

12. Rat Games are Approximately Nim

The game of nim is probably the most famous impartial combinatorial game. It
has the property that every normal play impartial game G is equivalent to a heap
of nim; the size of the nim heap is its nim value (a.k.a Sprague-Grundy value). We
say that an impartial heap game � (on d heaps) is almost nim if the total number
of objects in the heaps is almost always its nim value. Precisely, let �(n) denote the
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number of game positions with a total number of n objects, for which the nim-value
of � is not n. Then � is almost-nim-heap if

lim
n!1

�(n)
n

= 0.

Moreover, if the nim value 0 is the only nim value which di↵ers from the total
number of objects in the d heaps, then we call � an approximate-nim-heap.

In Table 2, we give as example the Sprague-Grundy values of the rat game on 2
heaps. By the following result, the Sprague-Grundy functions of the rat-games are
completely understood.

Theorem 19. The grandiose rat games are almost-nim-heaps. In fact, they are
approximate-nim-heaps. Their Sprague-Grundy values are given by the total number
of tokens in the heaps, except for the rat vectors, which have Sprague-Grundy value
0.

Proof. By construction, the rat vectors have nim value 0. Study an arbitrary posi-
tion x, and assume that all smaller positions have the prescribed Sprague-Grundy
values. Now, if x is a rat vector, then previous results give the value 0, so consider
x not a rat vector. If x is not a forbidden move, then there is a move to the terminal
0. If x is a forbidden move vector, then there is a move to the smallest non-zero
rat vector, because xd � rd ⌘ 2d�1 � 1 (mod 23 � 1), so x� r is not a shortcut.

For all the other Sprague-Grundy values, observe that if y < x has a desired
total heap size but the S-G value is not available because y is a rat vector, then by
shifting the move vector in two coordinates by subtracting 1 from one and adding
1 to the other, say to exchange y for z, z cannot be a rat vector. If x � z is a
shortcut, then increase one coordinate and decrease another to violate the ternary
recurrence.

0 1 2 3 4 5 6
1 2 3 4 5 6 7
2 0 4 5 6 7 8
3 4 5 6 7 8 9
4 5 6 7 8 9 10
5 6 7 0 9 10 11
6 7 8 9 10 11 12
7 8 9 10 11 12 13
8 9 10 11 0 13 14

Table 2: The Sprague-Grundy values for the rat game on 2 heaps. The North-West
corner is the terminal position (0, 0).

That is, if you play a grandiose rat game in disjunctive sum with another game,
then you can play approximately as if the game were nim, just keep in mind the
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exception that the rat vectors have value zero.12 This result obviously also holds
for the compact rat games, since we proved that the moves are the same.

Example 5. Let G = (1, 4, 5)nim be a game of nim, and let H = (1, 4, 5)rat be
a rat-game. In the game G + H, a winning move is to G + (1, 2, 4)rat, since the
nim-value of each component game is 0, and since H�(1, 2, 4)rat = (0, 2, 1)rat 62 R.

Let G = (1, 2, 5, 8)nim be a game of nim, and let H = (3, 4, 5, 6)rat be a rat-game.
In the game G +H, a winning move is to G + (3, 0, 5, 6)rat, since the nim-value of
each component game is 14.

Let G = (1, 2, 5, 8)nim be a game of nim, and let H = (11, 21, 42, 83)rat be a rat-
game. In the game G + H, a winning move is to (1, 2, 5, 6)nim + (11, 21, 42, 83)rat,
since the nim-value of each component game is 0. Indeed, 83 ⌘ 23 (mod 24 � 1),
and the recursive word is binary, namely b5 = 101.

13. Rat History

Let us include some material to show the historical and mathematical value of the
rat-vectors. This history provides some motivation for this paper.

So-called Beatty sequences [5, 6] are normally associated with irrational moduli
↵, �. Recent studies deal with rational moduli ↵, �. Clearly if a/b 6= g/h are
rational, then the sequences {bna/bc} and {bng/hc} cannot be complementary, since
kbg⇥ a/b = kha⇥ g/h = kag for all k > 1. Also the former sequence is missing the
integers ka�1 and the latter kg�1, so both are missing the integers kag�1 for all
k > 1. However, complementarity can be maintained for the nonhomogeneous case:
in [18, 46], necessary and su�cient conditions on ↵, �, �, � are given so that the
sequences {bn↵+�c} and {bn�+�c} are complementary—for both irrational moduli
and rational moduli. We are not aware of any previous work in this direction, except
that in Bang [3], necessary and su�cient conditions are given for {bn↵c} ◆ {bn�c}
to hold, both for the case ↵, � irrational and the case ↵, � rational. Results of this
sort also appear in Niven [45], for the homogeneous case only. In Skolem [52] and
Skolem [53] the homogeneous and nonhomogeneous cases are studied, but only for
↵ and � irrational. Fraenkel formulated the following conjecture for two or more
sequences:13

Conjecture 20. If the vectors (bn↵i + �ic)d
i=1, n 2 N split the positive integers

12Note that Singmaster’s result [51], that almost no positions in an impartial game are P-
positions, implies that any approximate nim-heap is also almost-heap.

13Erdős and Graham mention the conjecture in [16] (p. 19), as well as Graham et. al. in [34]. It is
also a research problem in ‘Concrete Mathematics’ by Graham, Knuth, Patashnik [32] (ch. 3), and
is mentioned by Tijdeman [54], [55]. In [19] a weaker conjecture, implied by the full conjecture, is
formulated and proved for special cases: If d > 3, then there are always two distinct moduli with
integral ratio. Simpson proved it when one of the moduli (and hence the only one) is 6 2 [49].



INTEGERS: 19 (2019) 25

with d > 3 and ↵1 < ↵2 < . . . < ↵d, then

↵i = (2d � 1)/2d�i, i = 1, . . . , d. (15)

Fraenkel [19] proved that this system of vectors splits (i.e. partitions) the positive
integers with explicit values for �i = �2i�1 + 1 as in (1).

Theorem 21 (Fraenkel 1973). For any dimension d > 2, the rat vectors r(n)
(as in Section 2 partition the positive integers.

It is well-known that if all the ↵i in Conjecture 20 are integers with d > 2
and ↵1 6 ↵2 6 . . . 6 ↵d, then ↵d�1 = ↵d. A generating function proof using a
primitive root of unity was given by Mirsky, Newman, Davenport and Rado; see
Erdős [15]. A first elementary proof was given independently in [7] and by Simpson
[48]. Graham [31] showed that if one of the d moduli is irrational then all are
irrational, and if d > 3, then two moduli are equal. Thus distinct integer moduli or
distinct irrational moduli cannot exist for d > 2 or d > 3 respectively in a splitting
system. For irrational ↵ with 1/↵+1/� = 1, {bn↵c}, {bn�c} is a splitting system.
Now the multiplier n can be split into two or more splitting systems—for example
{bn↵c} = {b2n↵c} [ {b(2n + 1)↵c}. Graham [31] proved that the splitting of the
multipliers n is the only way an irrational splitting system can exist, and hence
d > 3. Notice that usually, if at all, the rationals stick with the integers and the
irrationals are “orphans”. Here the irrationals stick with the integers, and the
rationals seem to be stubborn “orphans” according to the Fraenkel conjecture.

The conjecture was proved for d = 3 by Morikawa [43], d = 4 by Altman et al.
[2], for all 3 6 d 6 6 by Tijdeman [55] and for d = 7 by Barát and Varjú [4] and
was generalized by Graham and O’Bryant [33]. Other partial results were given by
Morikawa [44] and Simpson [50]. Many others have contributed partial results – see
Tijdeman [54] for a detailed history. The conjecture has some applications in job
scheduling and related industrial engineering areas, in particular: ‘Just-In-Time’
systems, see, e.g., Altman et al. [2], Brauner and Jost [10], Brauner and Crama [9].
However, the conjecture itself has not been settled. So this is a problem that has
been solved for the integers, has been solved for the irrationals, and is wide open
for the rationals!

At last, we mention some recent rat history related to games. The conjecture,
with accompanying Theorem 21, induced the “rat game” and its associates the
“mouse game” [24] (rat – rational), played on 3 and 2 piles of tokens respectively,
whose P-positions are the cases d = 2, 3 of definition (1) respectively, together with
0. Those games were defined on unordered tuples of integers. However, the rules are
lengthy and for the case d = 3, already quite complicated (we omit a presentation
here); arguably they are only intended for players with a degree in mathematics
or computer science, and they cannot be described as vector subtraction games—a
natural notion, which includes many classical games, introduced by Golomb [29]
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(extended in, e.g., [41]). Apart from the ending condition, the moves of a vector
subtraction game are independent of the sizes of the heaps; and this property was
generalized to the notion of “invariant moves” by Duchêne and Rigo in [13]. In
response to the heap size dependency of the mouse game, a vector subtraction
game on two heaps, dubbed the mouse trap [36] was developed, using the so-called
?-operator [40]. Indeed, the inaccessibility of those rules, and the di�culty of a
generalization, further motivates our approach. By the complexity of unordered
d-tuples (the number of permutations is d!), when d increases, we have devoted this
work to a compact game solution in the case of ordered d-tuples (vectors).
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[12] E. Duchêne, A. Parreau, and M. Rigo, Deciding game invariance, Information and Compu-
tation 253 (1) (2017), 127–142.
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