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Abstract

We analyze a natural generalization, W, of the infinite Fibonacci
word over the alphabet Σ = {a, b}. We provide tools to represent
explicitly the set {s ∈ Z≥0 : W(s) = b, W(s + x) = a} for any fixed
positive integer x. We show how this representation can be used to
analyze the preservation of P -positions of any game whose P -positions
are a pair of complementary Beatty sequences, in particular a certain
generalization of Wythoff Nim [13], [8].

Keywords: generalized Fibonacci word, Wythoff Nim, P -positions,
Invariance

1 Introduction

1.1 The generalized Fibonacci word

Consider the alphabet Σ = {a, b}. Starting with the letter a, and iteratively
replacing a with ab and b with a (a → ab → aba → abaab → · · · ), one
obtains the well known infinite Fibonacci word, F = F(0)F(1)F(2) · · · =
abaababaabaab · · · . See, for example, [19, ch. 1].

It is known that the positions of the a’s are given by {bαnc − 1 : n ≥
1} and the positions of the b’s are given by the complementary sequence
{bβnc − 1 : n ≥ 1}, where here α is the golden ratio and β = α + 1.
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The infinite Fibonacci word can be generalized to any irrational α > 1:
The two sequences {bαnc − 1 : n ≥ 1} and {bβnc − 1 : n ≥ 1}, where
1/α + 1/β = 1, are a pair of complementary Beatty sequences (see [2], [8],
[10]). Thus, there is a unique infinite word, W = W [α], for which the
positions of the a’s are given by the first sequence and the positions of the
b’s are given by the second. Throughout the paper, α and β will always be
positive and irrational, and will satisfy the equality 1/α + 1/β = 1.

In this paper we consider simple patterns that appear inW . For example,
consider the set, Sx, of indices s such that W(s) = b and W(s + x) = a for
some fixed x. We present tools that enable us to write explicit formulas for
such sets, and specifically use them to study Sx.

Below we introduce an infinite number of combinatorial games, which we
dub Beatty games, which constitute the motivation to study the set Sx.

1.2 Beatty games

In his paper from 1907 (see [21]), Wythoff describes a two-player game played
on two piles of tokens, based on the well known game Nim: In each turn, a
player is allowed to remove any positive amount of tokens from a single pile
(Nim move) or the same amount of tokens from both piles (diagonal move).
The player making the last move wins. For the uninitiated, we point to the
following three papers, from among the extensive literature on Wythoff Nim:
[5], [8], [22].

In [13] and in [8] the authors suggest a natural generalization of this game,
called k-Wythoff Nim: A player is allowed, in addition to the Nim moves, to
remove x tokens from one pile and y tokens from the other, provided that
|x− y| < k, where k ∈ Z≥1 is a parameter of the game.

A well known result of Combinatorial Game Theory1 states that in every
finite game, every position is either an N -position – a position from which
the Next player can win, no matter what the opponent does, or a P -position
– a position from which the Previous player can win. The set of P -positions
is denoted P .

The two papers [13] and [8] show that for k-Wythoff Nim, the set of P -
positions is given by {(bαnc, bβnc) : n ∈ Z≥0}, where α = (2−k+

√
k2 + 4)/2

and β = 1 + 1/(α− 1) = α + k.

1For general references on Combinatorial Game Theory see, for example, [4], [3], [1]
and [20].
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A game in which every move can be played from any position (as long
as the number of tokens is never negative) is called an invariant game. k-
Wythoff Nim is an example of such a game. In [7] it was conjectured that for
all irrationals 1 < α < 2 < β such that 1/α+1/β = 1, there exists an invari-
ant game for which the set of P -positions is given by P = {(bαnc, bβnc) : n ∈
Z≥0}. The conjecture was proven in [16] using the ?-operator: This operator
takes an invariant game to the invariant game in which the moves are the
P -positions of the original game (except for (0, 0)). The authors prove that
applying the ?-operator to a game whose moves are {(bαnc, bβnc) : n ∈ Z≥1}
results in the desired invariant game. For more information about the ?-
operator, see [15]. So here is an infinity of games whose P -positions are
known, but their rulesets are not given by a simple explicit formula! We
dub all games whose set of P -position is of this form Beatty games. Note
that from the previous paragraph, it follows that k-Wythoff Nim is a Beatty
game.

The question of preservation of P under the operation of adding invariant
moves to Wythoff Nim (k = 1) was introduced in [6]. The authors provided
an efficient algorithm which determines whether adding a specific move of
the form: take x tokens from one pile and y from the other, to the game
changes P .

The present study generalizes this question to all Beatty games. We will
see in Section 7 that we can use the analysis of the set Sx to obtain formulas
for the pattern of those subtractions that are “forbidden” because adding
them changes P . In fact, the main advance of this paper over [6] is twofold:
(i) Extension from the special case of the golden ratio to any irrational in
(1, 2). (ii) Given integers x, y, [6] provided a polynomial algorithm to decide
whether (x, y) can be added as an invariant move to Wythoff Nim. In the
present paper, the pattern of all y’s for a fixed x is determined polynomially
as shown in Section 6.3.

1.3 Outline

The paper is structured as follows:
Section 2 gives two different definitions ofW [α]: the first is the definition

that appears at the beginning of this introduction, and the second is based
on morphisms of words. We prove their equivalence, and then list basic
properties of W [α].

In order to derive an explicit formula for Sx, we will need to define some
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tools useful for the analysis of W [α] – this will be done in Section 3. Specif-
ically, consider the partition of the natural numbers, based on the positions
of a and b in W [α]. We will see that, in some sense, not all the a’s and not
all the b’s are “the same”. This will lead to another partition, finer than the
previous one. In fact, we will get an infinite sequence of partitions, each finer
than its predecessor. Proposition 3 will give an explicit formula for the sets
in each of these partitions.

Sections 4-6 show how to write Sx as a finite union of sets from these
partitions. Together with the explicit formula for these sets, we obtain an
explicit formula for Sx, and an efficient algorithm (Section 6.3), that given
x, outputs this formula. In fact, Sx will turn out to be

·
⋃

k
i=1{Aibγinc+Bin+ Ci : n ∈ Z≥1} (1)

for some k ∈ Z≥1, Ai, Bi, Ci ∈ Z and γi ∈ R (the algorithm will output
these values for any given x), where ∪· denotes disjoint union. To attain this
representation, we employ four steps:

1. Solve a simpler problem for specific values of x (Section 4.1).

2. Generalize to an arbitrary x (Section 4.2).

3. Find a formula for Sx, similar to (1), except for the fact that the disjoint
union is replaced by a symmetric difference (Section 5).

4. Finally, convert the symmetric difference to a disjoint union (Section 6).

Sections 7-8 contain an application of the study of Sx, to the preservation
of P -positions in Beatty games under the operation of adding moves.

1.4 Notation

For a set A ⊆ Z and fixed integer x, let A − x = {a − x : a ∈ A} and
A · x = (A− x) ∩ Z≥0.

Let Ai be a finite family of sets. The symmetric difference 4 iAi is the
set of all elements which are in an odd number of sets Ai. The disjoint union
∪· iAi is defined if and only if the sets Ai are pairwise disjoint, in which case
it equals the union of the sets. Write A1 4 A2 and A1 ∪· A2 for the case of
two sets.
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Let y ∈ R. Denote its integer part by byc and its fractional part by {y},
so y = byc+ {y}, byc ∈ Z and {y} ∈ [0, 1).

Every continued fraction alluded to in the sequel is a simple continued
fraction (with numerators 1, denominators positive integers): [a0; a1, a2, . . .] =
a0 + 1/(a1 + 1/(a2 + · · · )). See [12, ch. 10].

Let Σ be a finite alphabet of letters. Then, Σ∗ is the free monoid over Σ
and its elements are the finite words over Σ. Let ε ∈ Σ∗ denote the empty
word. For w ∈ Σ∗, let |w| denote the length of w, counting multiplicities,
and let |w|σ denote the number of occurrences of the letter σ ∈ Σ in w. We
refer to the i-th letter of w by w(i) and we use the index 0 for the first letter.
In other words, w = w(0)w(1) · · ·w(|w| − 1). We say that ϕ : Σ∗ → Σ∗ is a
morphism of words if and only if ϕ(xy) = ϕ(x)ϕ(y) for all x, y ∈ Σ∗. General
references about words and morphisms of words are [18], [19].

2 A generalization of the Fibonacci word

Start by considering the following natural generalization of the infinite Fi-
bonacci word to any irrational α > 1:

Definition 1. For α ∈ (1,∞) \Q, W [α] is the infinite word over {a, b}, for
which the positions of the a’s are given by bαnc − 1 (n ∈ Z≥1), and the
positions of the b’s are given by bβnc − 1 (n ∈ Z≥1), where 1/α + 1/β = 1.

Notice that the two sequences: {bαnc − 1 : n ∈ Z≥1} and {bβnc −
1 : n ∈ Z≥1} are a pair of complementary Beatty sequences (see [2]) and
therefore partition Z≥0, and so W [α] is well-defined. Also, this is indeed a
generalization of the infinite Fibonacci word, as F =W [(1 +

√
5)/2].

Example 1.

W [[1; 1, 1, 1, . . .]] =abaababaabaababaababaabaababaabaababaaba · · · = F ,
W [[1; 1, 2, 3, . . .]] =ababaababaababaabababaababaababaabababaa · · · .

The latter word can be computed by determining the first few convergents
of α = [1; 1, 2, 3, . . .], specifically, α ≈ p5/q5 = 382/225 ≈ 1.6977778 which
gives α with an error < 1/2252 = 1/50, 625. Another method of computation
is indicated in a remark following Proposition 1.

The following two definitions enable us to characterize W [α] based on
morphisms of words.

5



Definition 2. Let t ∈ Z≥1. The morphism ϕt : {a, b}∗ → {a, b}∗ is defined
by:

ϕt(a) = atb, ϕt(b) = a.

Definition 3. Let τ1, τ2, . . . be an infinite sequence of morphisms such that
for each i, τi(a) begins with an a. Define their infinite product τ1τ2 · · · (a) to
be the word:

lim
n→∞

τ1τ2 · · · τn(a).

Note that since τ1 · · · τn(a) is a prefix of τ1 · · · τn+1(a), the limit in the
previous definition is well-defined. If τi(σ) 6= ε and |τi(a)| > 1 for every i and
σ, then τ1τ2 · · · (a) is an infinite word.

The following theorem demonstrates an interesting connection between
W [α], the continued fraction of α and the morphism defined in Definition 2.

Theorem 1. If α = [1; t1, t2, t3, . . .] then W [α] = ϕt1ϕt2ϕt3 · · · (a).

To prove this theorem we will need the following lemma:

Lemma 1. Let α ∈ (1,∞) \Q and t ∈ Z≥1. Then,

ϕt(W [α]) =W [1 + 1/(α− 1 + t)].

Proof. Define two morphisms: let µ be the morphism that sends a 7→ b and
b 7→ a and let νt be the morphism that sends a 7→ bta and b 7→ b.

We show that

µ(W [α]) =W [1 + 1/(α− 1)], νt(W [α]) =W [α + t].

Let β = 1+1/(α−1) so that 1/α+1/β = 1. The sequences {bnαc−1}∞n=1,
{bnβc − 1}∞n=1 partition the set Z≥0. The elements of {bnαc − 1}∞n=1 are the
positions of the a’s of W [α]. Therefore, the elements of {bnβc − 1}∞n=1 are
the positions of the a’s of µ(W [α]), and thus µ(W [α]) =W [β].

For νt, notice that the positions of the a’s of W [α + t] are given by
b(α+ t)nc − 1 = bαnc − 1 + nt. So in order to go from W [α] to W [α+ t] we
have to insert bt to the left of each a. This is exactly the morphism νt.

As ϕt = µνt, we obtain,

ϕt(W [α]) = µνt(W [α]) = µ(W [α + t]) =W [1 + 1/(α− 1 + t)].
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Notation. Let α = [1; t1, t2, t3, . . .]. For n ∈ Z≥0, define

αn = [1; tn+1, tn+2, . . .]. (2)

Note that α0 = α.

Proof of Theorem 1. It is easy to see that αn−1 = 1 + 1/(αn − 1 + tn) for
n ≥ 1. Together with the previous lemma, it follows that

ϕtn(W [αn]) =W [αn−1],

and therefore, by induction on n,

W [α] =W [α0] = ϕt1ϕt2 · · ·ϕtn(W [αn]).

Since a is a prefix of W [αn], ϕt1ϕt2 · · ·ϕtn(a) is a prefix of W [α]. Letting
n→∞, we get the desired result.

Note that substituting αn in Theorem 1 gives: W [αn] = ϕtn+1ϕtn+2 · · · (a).
Throughout the remainder of this paper, fix an irrational 1 < α =

[1; t1, t2, . . .] < 2, and denote W :=W [α]. Define a sequence of finite words:
W−1 := b, W0 := a and Wn := ϕt1 · · ·ϕtn(a) for n ≥ 1. Notice that for every
n ≥ 1, Wn is a prefix of W and thus

W = lim
n→∞

Wn.

The following proposition describes the basic properties of the sequence
Wn. These are the natural generalizations of known properties of the (finite)
Fibonacci words. For formulating the proposition, we will introduce the
following:

Notation. For any finite word w of length ≥ 2, write w = w(0)w(1) where
|w(1)| = 2.

Proposition 1.

(a). For n ≥ 0, Wn+1 = (Wn)tn+1Wn−1.

(b). |Wn| = pn, |Wn|a = qn where pn/qn are the convergents of the continued
fraction of α.

(c). p−1 = 1, p0 = 1, pn+1 = tn+1pn + pn−1 (for n ≥ 0).
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(d). q−1 = 0, q0 = 1, qn+1 = tn+1qn + qn−1 (for n ≥ 0).

(e). For n ≥ −1, (WnWn+1)(0) = (Wn+1Wn)(0).

(f). For n ≥ 1, if 2 | n, then (Wn)(1) = ba and if 2 - n then (Wn)(1) = ab.

(g). (Wn)(0) is a palindrome for n ≥ 1.

Proof. Items (a) and (b) follow from the definition of Wn, items (c) and (d)
are known results on the convergents of continued fractions (see [12, ch. 10]).
Item (e) is proven by induction. For n = −1, we have (W−1W0)(0) = ba(0) =
ε = ab(0) = (W0W−1)(0). For n ≥ 0:

(WnWn+1)(0) = (Wn(Wn)tn+1Wn−1)(0) = ((Wn)tn+1WnWn−1)(0) =

= (Wn)tn+1(WnWn−1)(0) = (Wn)tn+1(Wn−1Wn)(0) =

= ((Wn)tn+1Wn−1Wn)(0) = (Wn+1Wn)(0).

Item (f) follows from the fact that Wn−1 is a suffix of Wn+1. It is easy to see
that (g) holds for W1 and W2 as (W1)(0) = at1−1 and (W2)(0) = (at1b)t2−1at1 .
For n > 2, let X = Wn−1 and Y = Wn−2. We have:

(Wn)(0) = X tnY (0) = X tn−1(XY )(0) = X tn−1(Y X)(0) =

=
(
X tn−1Y (0)

)
Y (1)X(0) =

(
X tn−2Y (0)

) (
Y (1)X(0)

)2
= · · · =

= Y (0)(Y (1)X(0))tn .

Note that X(0) and Y (0) are palindromes by the induction hypothesis and the
reverse of Y (1) is X(1) by (f). Thus taking the reverse of the last expression

we obtain: (X(0)X(1))tnY (0) = W
(0)
n . Hence W

(0)
n is indeed a palindrome.

Remark. Notice the analogy between finite words and continued fraction
convergents, such as (a)-(d). Proposition 1(a) implies, in particular, W1 =
at1b, W2 = (at1b)t2a, W3 = ((at1b)t2a)t3at1b, etc. This is the way Example 1
and others can be constructed.

3 The recursive structure of W [α]

3.1 Motivation

Recall that α is fixed and W = W [α]. We begin by analyzing the set Sx =
{s ∈ Z≥0 : W(s) = b and W(s + x) = a}, x ∈ Z≥1. For example, consider
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the case α = [1; 1, 2, 3, . . .], x = 2. We have (see Example 1),

S2 = {s ∈ Z≥0 :W(s) = b} ∩ {s ∈ Z≥0 :W(s+ 2) = a} =

= {1, 3, 6, 8, 11, 13, 16, 18, 20, . . .} ∩ {0, 2, 3, 5, 7, 8, 10, 12, 13, 15, . . .} =

= {3, 8, 13, 20, 25, 30, 37, . . .}.

In the following word, the positions of S2 are shown as B:

W [α] = abaBaabaBaabaBaababaBaabaBaabaBaababaBaa · · · .

Theorem 1 implies that W = ϕ1ϕ2(W [α2]), where α2 = [1; 3, 4, . . .] (see (2)).
Thus, W consists of the blocks ϕ1ϕ2(a) = ababa, ϕ1ϕ2(b) = ab and the order
of the blocks is determined by W [α2] = aaabaaaba · · · . Notice that the B’s
above are exactly the second b’s of each block ababa.

In order to distinguish between B and b, we would like to consider “higher
resolutions” ofW [α]. These resolutions will be represented using the setsAmi ,
Bmi . We start by constructing some tools that will help us to define these
sets.

3.2 Partitions and morphisms

Let w be an infinite word over some finite alphabet Σ such that all the letters
of Σ appear in w. For every σ ∈ Σ, consider the set Pw(σ) := {y ∈ Z≥0 :
w(y) = σ}. Observe that the sets Pw(σ) for σ ∈ Σ form a partition of Z≥0.

Definition 4. The partition induced by w is Pw := {Pw(σ) : σ ∈ Σ}.

Remark. In this paper, we do not allow partitions that contain the empty
set. Therefore, we defined Pw only when all the letters of Σ appear in w.

In the next definition, we take a morphism τ : Σ∗ → Σ∗ and construct
from it another morphism, Iτ , taking Σ∗ to a new alphabet, with the property
that |Iτ (σ)| = |τ(σ)| for every σ ∈ Σ and each letter in Iτ (σ) is unique.

Definition 5. Let Σ be some finite alphabet and let τ : Σ∗ → Σ∗ be a
morphism. Consider the new alphabet Στ := {σi : σ ∈ Σ, 0 ≤ i < |τ(σ)|},
where σi is a formal symbol. The indicator morphism of τ is the morphism
Iτ : Σ∗ → Σ∗τ where Iτ (σ) = σ0σ1 · · ·σ|τ(σ)|−1 for every σ ∈ Σ.
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Example 2. Consider the example in the “Motivation” section (Section 3.1).
For τ = ϕ1ϕ2, we have τ(a) = ababa, τ(b) = ab, Στ = {a0, a1, a2, a3, a4, b0, b1},
where a

Iτ7−→ a0a1a2a3a4, b
Iτ7−→ b0b1. Note that while τ maps a to ababa and

there is no way to distinguish between the two b’s, Iτ maps a to 5 different let-
ters, so in a way it ”separates” these two b’s. Observe that if w = Iτ (W [α2])
then Pw(a3) is the set of the positions of the B’s, and therefore Pw(a3) = S2.

Consider an infinite word w. The information in Iτ (w) is larger than the
information in τ(w) in the sense that if we know the letter of Iτ (w) in some
position, then we also know the letter of τ(w) in the same position. This is
because the letters in Iτ (w) are indexed. It is stated formally in the following
definition and proposition, using the notion of the induced partition.

Definition 6. Let A and B be two partitions of a set C. We say that A
is a refinement of B, and we write A ≤ B, if for every set A ∈ A , there
exists a set B ∈ B such that A ⊆ B.

It is easy to see that the relation “refinement of” is a partial order over
the set of partitions of C.

Proposition 2. Let w be an infinite word and let τ : Σ∗ → Σ∗ be a morphism.
Then PIτ (w) ≤Pτ(w).

Proof. This follows from the fact that τ(w) and Iτ (w) consist of blocks of
the same lengths, in the same order, and in Iτ each letter appears once.

3.3 Definition of Am
i and Bm

i

We now generalize and formalize the construction described in Example 2.
Fix m ∈ Z≥0. The morphism Φm := ϕt1ϕt2 · · ·ϕtm satisfies: |Φm(a)| =

|Wm| = pm, |Φm(b)| = |Wm−1| = pm−1 (see Proposition 1(b)). Therefore,

the indicator morphism of Φm, ηm := IΦm , maps: a
ηm7−→ a0a1 · · · apm−1 and

b
ηm7−→ b0b1 · · · bpm−1−1.
Let Hm = ηm(W [αm]) and denote the elements of the partition induced

by Hm by: Am0 ,Am1 , · · · ,Ampm−1,Bm0 ,Bm1 , · · · ,Bmpm−1−1 respectively. Formally,
Ami = PHm(ai) and Bmi = PHm(bi).

Observe that A0
0 (B0

0) is the set of positions of the a’s (b’s) of W , and
thus Sx = B0

0 ∩ (A0
0
· x).

Example 3. Consider again Example 2. We have Φ2 = ϕt1ϕt2 = ϕ1ϕ2 = τ .
By definition of ηm and Hm, η2 = Iτ and H2 = w. Thus S2 = Pw(a3) = A2

3.
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3.4 Properties

The following proposition gives a formula for the sets Ami :

Proposition 3. For m ∈ Z≥0 and 0 ≤ i < pm, we have:

Ami = {bαmncpm−1 + n(pm − pm−1)− pm + i : n ∈ Z≥1}.

Proof. Observe that the n-th ai of Hm = ηm(W [αm]) is generated by the
n-th a of W [αm]. The position of this a is bαmnc − 1. The first bαmnc − 1
letters of W [αm] contain (n− 1) a’s and (bαmnc − n) b’s. Each a generates
pm letters, and each b generates pm−1 letters. The claim follows.

Example 4. In Example 3 we saw that S2 = A2
3. Proposition 3 provides

an explicit formula: S2 = {bα2ncp1 + n(p2 − p1) − p2 + 3 : n ∈ Z≥1} =
{2bα2nc + 3n − 2 : n ∈ Z≥1}, where α2 = [1; 3, 4, 5, . . .] ≈ 1.30879, p1 = 2,
p2 = 5.

Observation 1. Let m ∈ Z≥0, 0 ≤ j ≤ i < pm. Then, Ami − j = Ami · j =
Ami−j.

Proposition 4. PH0 ≥PH1 ≥PH2 ≥ · · · .

Proof. Fix m ∈ Z≥0. We have to show that PHm ≥PHm+1 .
Let τ = ϕtm+1 . Notice that |Φm(w)| = |ηm(w)| for any word w ∈ {a, b}∗.

In particular, |Φm+1(σ)| = |ηm(τ(σ))| for σ ∈ {a, b}. This implies that
Iηmτ = IΦm+1 = ηm+1, and so Hm+1 = Iηmτ (W [αm+1]). Using Proposition 2,
we obtain that PHm+1 = PIηmτ (W[αm+1]) ≤ Pηmτ(W[αm+1]) = Pηm(W[αm]) =
PHm .

Observation 2. If m > 0 and y ∈ Ami or y ∈ Bmi , then W(y) =W(i).

Proof. If y ∈ Ami , the claim follows directly from the fact that PHm ≤
PH0 = {A0

0,B0
0} and the fact that y, i ∈ Ami . For y ∈ Bmi , notice that

both W tm+1
m Wm−1 and Wm−1 are prefixes of W . Therefore, as i < pm−1,

W(i) =W(i+ tm+1pm) and the claim follows since i+ tm+1pm ∈ Bmi .

4 Shifts in W
Before analyzing Sx = B0

0 ∩ (A0
0
· x), we begin with a simpler task: ex-

amining the set A0
0 4 (A0

0
· x), where 4 denotes symmetric difference (see
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Section 1.4). This is the set of y’s for which W(y) 6=W(y + x). This task is
indeed easier due to the fact that A0

0 4 (A0
0
· x) can be written using sets

of the same form with smaller values of x. Namely, if x = x1 + x2, then

A0
0 4 (A0

0
· x) =

(
A0

0 4 (A0
0
· x1)

)
4
(
(A0

0
· x1) 4 (A0

0
· x)

)
=

=
(
A0

0 4 (A0
0
· x1)

)
4
((
A0

0 4 (A0
0
· x2)

) · x1

)
.

Notice that B0
0 ∩ (A0

0
· x) = B0

0 ∩ (A0
0 4 (A0

0
· x)).

Our goal is to represent A0
0 4 (A0

0
· x) using the basic sets Ami (for these

sets we already have an explicit formula – Proposition 3).
We start with x = pk for k ∈ Z≥0 and then we generalize to an arbitrary

x ∈ Z≥1.

4.1 Shifts by pk, k ∈ Z≥0

Lemma 2. Let k ∈ Z≥0. If 0 ≤ i < pk+1 − 2, then W(i) = W(i + pk). On
the other hand, if pk+1 − 2 ≤ i < pk+1, then W(i) 6=W(i+ pk).

Proof. Notice thatWk+1Wk is a prefix ofW . By Proposition 1(e), (WkWk+1)(0)

is also a prefix. This implies the first part. The second part follows from
Proposition 1(f).

The following proposition describes the set A0
0 4 (A0

0
· pk). It follows

from Lemma 2, Observation 2 and the fact that Hk+1 consists of the blocks
a0a1 · · · apk+1−1, b0b1 · · · bpk−1.

Recall that ∪· denotes disjoint union (see Section 1.4).

Proposition 5. For k ∈ Z≥0, A0
0 4 (A0

0
· pk) = Ak+1

pk+1−1 ∪· Ak+1
pk+1−2.

4.2 Arbitrary x ∈ Z≥1

To answer the question for an arbitrary x, we will use the following idea: A
generalization of the Zeckendorf numeration system (see [23], [8], [9]) can be
used to represent x as a sum of elements from the set Π := {p0, p1, p2, . . .}.
Then, we use Proposition 5 for each of the summands.

Apply the following algorithm on x: While x 6= 0, find the largest k such
that pk ≤ x and subtract pk from x. Formally, define two sequences:

x0 := x,

ki := max{k ∈ Z≥0 : pk ≤ xi−1} (i ≥ 1),

xi := xi−1 − pki (i ≥ 1).

12



Notice that if xi = 0 for some i, then the two sequences kj, xj are not
defined for j > i. Denote this i by n. Observe that we get a representation
of x as a sum of elements from Π: x = pk1 + pk2 + · · ·+ pkn .

Example 5. Consider the case α = [1; 1, 2, 3, . . .], Π = {1, 2, 5, 17, 73, . . .},
x = 12 = 5 + 5 + 2. Here the algorithm yields:

i 0 1 2 3
xi 12 7 2 0
ki 2 2 1
pki 5 5 2

Let 1 ≤ i ≤ n. Denote Xi := (A0
0
· xi−1) 4 (A0

0
· xi) and observe that

A0
0 4 (A0

0
· x) = X1 4 X2 4 · · · 4 Xn. Proposition 5 implies that

Xi = (A0
0 4 (A0

0
· pki)) · xi = (Aki+1

pki+1−1 ∪· A
ki+1
pki+1−2) · xi.

The fact that xi = xi−1− pki ≤ pki+1− 1− pki ≤ pki+1− 2 and Observation 1
imply that Xi = Aki+1

pki+1−xi−1 ∪· A
ki+1
pki+1−xi−2. Therefore,

A0
0 4 (A0

0
· x) =

n

4
i=1

(Aki+1
pki+1−xi−1 ∪· A

ki+1
pki+1−xi−2).

Example 6. For the case in the previous example, we get:

A0
0 4 (A0

0
· 12) = (A3

9 ∪· A3
8) 4 (A3

14 ∪· A3
13) 4 (A2

4 ∪· A2
3).

5 The set Sx

For x = 1, since each b of W is followed by an a, B0
0 ⊆ (A0

0
· 1) and so

S1 = B0
0 ∩ (A0

0
· 1) = B0

0 = A1
t1

.
We now assume x > 1. Notice that B0

0∩(A0
0
· x) = B0

0∩
[
A0

0 4 (A0
0
· x)

]
.

Continue with the notation of the previous section. We have:

Sx = B0
0 ∩ (A0

0
· x) =

n

4
i=1

[
(B0

0 ∩ A
ki+1
pki+1−xi−1) ∪ (B0

0 ∩ A
ki+1
pki+1−xi−2)

]
.

Observation 2 implies that B0
0 ∩ Ami is Ami if W(i) = b and ∅ otherwise. We

now investigate W(pki+1 − xi − z) for z ∈ {1, 2}.

13



Observation 3. If xi− z′ ≥ 0 for z′ ∈ {1, 2}, then W(xi− z′) =W(x− z′).

Proof. By induction on i:
The claim holds trivially for i = 0.
For i > 0, if xi − z′ ≥ 0 then also xi−1 − z′ ≥ 0. Notice that xi−1 − z′ =

(xi − z′) + pki and xi − z′ ≤ xi − 1 ≤ xi−1 − 2 < pki+1 − 2. By Lemma 2 and
the induction hypothesis, W(xi − z′) =W(xi−1 − z′) =W(x− z′).
Observation 4. If xi + z ≥ 3 for z ∈ {1, 2}, then W(pki+1 − xi − z) =
W(x+ z − 3).

Proof. Proposition 1(g) implies that W(pki+1 − xi − z) = W(xi + z − 3)
and by the last observation (for z′ = 3 − z), we get: W(pki+1 − xi − z) =
W(x+ z − 3).

We now consider three cases: (1) W(x − 1) = b, (2) W(x − 2) = b and
(3) W(x− 1) =W(x− 2) = a.

Consider the first case: For 1 ≤ i < n we have xi ≥ 1 and by Observa-
tion 4,

W(pki+1 − xi − 2) =W(x− 1) = b.

Notice that b =W(x−1) =W(xn−1−1) =W(pkn−1). This means that
2 - kn (see Proposition 1(f)). Therefore,W(pkn+1−xn−2) =W(pkn+1−2) =
b.

Hence, for 1 ≤ i ≤ n, W(pki+1 − xi − 2) = b. Since W does not contain
bb as a factor, we get that W(pki+1 − xi − 1) = a. This implies

B0
0 ∩ (A0

0
· x) =

n

4
i=1

Aki+1
pki+1−xi−2.

The other cases are analyzed similarly. Formulas for the x’s of each
case can be obtained by considering the blocks of H1. The following table
summarizes the three cases.

Case W(x− 2),W(x− 1) x− 2 ∈ Sx = B0
0 ∩ (A0

0
· x)

1 a, b A1
t1−1 4n

i=1
Aki+1
pki+1−xi−2

2 b, a A1
t1

= B0
0 4n

i=1
Aki+1
pki+1−xi−1

3 a, a A1
i (i < t1 − 1), A1

t1
= B0

0

B1
0 = A2

(t1+1)t2

Example 7. For the case described in Example 6, we have W(12 − 1) = b
and therefore this is Case 1. This implies S12 = {3, 20, 37, 54, 71, . . .} =
A3

8 4 A3
13 4 A2

3.
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6 Sx as a disjoint union of basic sets

Our goal now is to represent Sx as a disjoint union of sets of the form Ami ,
instead of taking their symmetric difference as we did in Section 5. Such a
representation seems to be much better. However, in order to attain this, we
will have to develop a better understanding of the structure formed by the
sets Ami , Bmi .

6.1 The structure of Am
i , Bm

i

Notice that Hm = ηm(W [αm]) = ηmϕtm+1(W [αm+1]), so both Hm, Hm+1

consist of blocks of lengths pm+1, pm in an order determined by W [αm+1].
By considering these blocks we obtain:

Ami = Am+1
i ∪· Am+1

i+pm
∪· · · · ∪· Am+1

i+(tm+1−1)pm
∪· Bm+1

i , Bmi = Am+1
i+tm+1pm

.

Therefore,

Ami = Am+1
i ∪· Am+1

i+pm
∪· · · · ∪· Am+1

i+(tm+1−1)pm
∪· Am+2

i+tm+2pm+1
. (3)

Definition 7. A partition tree of a set C 6= ∅ is a tree, in which every node
is a subset of C, the root is C, and for every node A, which is not a leaf, the
set of children of A forms a partition of A.

Consider the tree of all the sets Ami ⊆ B0
0, where there is an edge from

Ami to each of the sets in the right-hand side of (3). We denote this tree by
Tα. Notice that the root of the tree is A1

t1
= B0

0. Let prA denote the parent
of a set A in the tree. If A is the root, we define prA := A. Notice that Tα

is a partition tree.

Example 8. Figure 1 shows the tree Tα for α = [1; 1, 2, 3, . . .]. For example,
prA3

16 = A1
1 and prA3

1 = A2
1.

Corollary 1. Consider the node Ami in Tα, where Ami is not the root. We
have

prAmi = Ami mod pm−1
, where m =

{
m− 1, i < pm−1 · tm
m− 2, i ≥ pm−1 · tm

.

Proof. This follows directly from (3).
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Figure 1: Tα for α = [1; 1, 2, 3, . . .]

6.2 The chain proposition

Notice that for Case 3 (see table on page 14) we have Sx = A1
t1

. So we focus
on the first two cases. Let Z = 2 for Case 1, and Z = 1 for Case 2. Denote
ri := pki+1 − xi − Z. Then, Sx =4n

i=1
Aki+1
ri

.

Proposition 6. For 1 ≤ i < n, prAki+1
ri
⊆ prAki+1+1

ri+1 .

Note that this means that the parents of the sets Aki+1
ri

are on one branch
of Tα.

In order to prove Proposition 6, we first prove the following two lemmas:

Lemma 3. Let 1 ≤ k ≤ m, m ≡ k (mod 2), 1 ≤ i ≤ pk. Then, Ampm−i ⊆
Akpk−i.

Proof. By Equation (3), we have that Akpk−i ⊇ A
k+2
pk+1·tk+2+(pk−i) = Ak+2

pk+2−i.

Similarly, Ak+2
pk+2−i ⊇ A

k+4
pk+4−i and we get the following sequence:

Akpk−i ⊇ A
k+2
pk+2−i ⊇ A

k+4
pk+4−i ⊇ · · · .

Clearly Ampm−i is one of the elements of this sequence and so Ampm−i ⊆ A
k
pk−i.

Lemma 4. Let k ≥ 2, 0 ≤ i < pk − pk−1. If both Aki , Aki+pk−1
are nodes of

Tα, then prAki ⊆ prAki+pk−1
.

Proof. Corollary 1 implies that prAki = Ak1j , prAki+pk−1
= Ak2j for some j,

where k1, k2 ∈ {k − 1, k − 2}. Since i < i+ pk−1, we have k2 ≤ k1.
If k1 = k2, then the claim holds. Otherwise, k1 = k− 1, k2 = k− 2. This

implies j < pk−2, and so prAki = Ak−1
j ⊆ prAk−1

j = Ak−2
j = prAki+pk−1

.
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Proof of Proposition 6. We use the following notation:

a := xi + Z, k := ki + 1,
b := xi+1 + Z, ` := ki+1 + 1.

In this notation, we have to show: prAkpk−a ⊆ prA`p`−b.
We have p`−1 < a ≤ p` + 1 and p` − b = p` + p`−1 − a. Note that all the

sets that are mentioned in the proof are subsets of B0
0 and therefore they are

nodes in Tα.
Consider the following 4 cases: (a) ` = 1, (b) k ≡ `+1 (mod 2), (c) a ≤ p`

and k ≡ ` (mod 2), (d) a = p` + 1 and k ≡ ` (mod 2).
(a) is trivial. We show here the proof of (c). (b), (d) are proven similarly

using applications of Lemma 3, Lemma 4 and Corollary 1.
Suppose that a ≤ p` and k ≡ ` (mod 2). Lemma 3 implies that Akpk−a ⊆

A`p`−a. Therefore, prAkpk−a ⊆ prA`p`−a. Lemma 4 implies that

prAkpk−a ⊆ prA`p`−a ⊆ prA`p`−1+p`−a = prA`p`−b.

6.3 A disjoint union

Proposition 6 implies that the sets that participate in the symmetric differ-
ence satisfy the following property:

prAk1+1
r1
⊆ prAk2+1

r2
⊆ prAk3+1

r3
⊆ · · · ⊆ prAkn+1

rn . (4)

Theorem 2. The set Sx can be written as a disjoint union of O(Σk1+1
i=1 ti)

sets of the form Ami .

Notice that if ti < T for all i ∈ Z≥1, then the number of sets is O(T log x).

Proof. Define a partition subtree to be a subtree which is also a partition
tree. In other words, every node of the subtree which is not a leaf, should
have the same set of children as the same node in the original partition tree.

Consider the minimal partition subtree of Tα that contains the node
Ak1+1
r1

. Denote it by Tx. This tree consists of the nodes priAk1+1
r1

(i ∈ Z≥1)
and their children. Notice that (4) guarantees that all the sets Aki+1

ri
are

nodes in the tree. The tree has at most k1 + 1 layers, so the number of nodes
is at most

∑k1+1
i=1 (ti + 1). It is easy to see that in every finite partition tree,

each element of the algebra (of sets) generated by the nodes, is a disjoint
union of leaves.
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Notice that Theorem 2 can be used to write an algorithm that given x
outputs a list of sets Ami , whose disjoint union is Sx: Compute the tree Tx
and mark the sets Aki+1

ri
in it. Visit the nodes of the tree, starting from the

root, and if an internal node is marked, replace its mark with its children.
Then, output the marked leaves.

The complexity of this algorithm is O(Σk1+1
i=1 ti) (k1 = O(log x)). In the

common case where ti is bounded by T , the complexity is O(T log x). How-
ever, if ti goes to infinity fast enough, the complexity might exceed O(x)2.
For these rare cases, one can revise the algorithm to work with Tx implicitly
(and thus work with ranges of the form Ami ∪ Ami+pm−1

∪ · · · ∪ Ami+bpm−1
) and

then the output will take a shorter but somewhat more complicated form.

Example 9. Consider the sets that appear in Example 7. The minimal
partition subtree that contains A3

8 is shown in Figure 2. We have S12 =
A3

8 4 A3
13 4 A2

3 = A3
3 ∪· A4

71.
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!!!!
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%
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e
e
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13
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71

H
HH
A3

16

Figure 2: T12

7 Applications – Beatty games

As explained in the introduction, the set Sx plays an important role when
considering the question of preservation of P -positions in Beatty games. Be-
fore diving into the details on this question and its relationship with Sx, we
first lay the formal settings in which we can formulate the question.

An invariant subtraction game (also known as an invariant take-away
game), played on two piles of tokens, is a game in which every move is of
the form: take x tokens from one pile and y tokens from the other, provided
only that every pile retains a nonnegative number of tokens after the move.

2For example, if ti = 23
i

then there is an infinite sequence of x’s for which the com-
plexity is Θ(x2).
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Invariant subtraction games were defined in [11]. The game positions are
encoded in the form (X, Y ), where X and Y are the sizes of the piles and
X ≤ Y . We restrict attention to symmetric invariant subtraction games.
Symmetric means that whenever a move from (X, Y ) to (X − x, Y − y) is
permitted, then a move to (X − y, Y − x) is permitted too, provided the
resulting position remains nonnegative. Thus, moves can be encoded in the
form (x, y) with x ≤ y. The set of moves (x, y) is called the ruleset of the
game. References on invariant subtraction games are, for example, [11], [7],
[16], [15] and [17].

In [6] the authors consider the following problem: what subtractions (x, y)
can we add to the game Wythoff Nim, such that the set of P -positions will
remain unchanged? A similar question, regarding the addition of new moves
to Wythoff Nim, and its effect on the set of P -positions was studied in [14].

Consider the following reformulation of this question: What is the unique
maximal set (with respect to ⊆) of moves for which the set of P -positions
is {(bαnc, bβnc) : n ∈ Z≥0}? The fact that this question is well-defined, for
any irrational 1 < α < 2, follows from the existence of an invariant game
with these P -positions (which was proven in [16]). In fact, this set consists
exactly of all subtractions that do not connect one P -position to another.
The advantage of this reformulation is that it involves only the set of P -
positions of the game, rather than the “original” ruleset (which we do not
generally know). As such, it can be generalized to any irrational 1 < α < 2.

In the rest of this section we will see the relationship between this question
and the set Sx.

7.1 The set Ex

Let M denote the set of all subtractions that would connect one P -position to
another. As stated above, the complement of M is exactly the set answering
our main question. M can be written as M1 ∪M2 where:

1. M1 = {(bαnc − bαmc, bβnc − bβmc) : n ≥ m}.

2. M2 = {(bαnc − bβmc, bβnc − bαmc) : bαnc > bβmc, m > 0}.

Figure 3 shows a matrix (axy) where axy = 1 if (x, y) ∈ M1, axy = 2 if
(x, y) ∈ M2, axy = 3 if (x, y) ∈ M1 ∩M2 and axy = 0 otherwise, for the
case α = [1; 1, 2, 3, . . .] = 1.6977746..., β = 2.4331274.... As an example,
consider (x, y) = (1, 3). Note that taking n = 7 and m = 6 gives (1, 3) =
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HH
Hx y 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

1 0 1 3 2 0 0 2 2 0 0 2 0 0 0 2 2 0 0 0 2 0 0 2 2 0 0
2 1 1 0 0 2 0 0 0 0 2 0 0 2 0 0 0 0 2 0 0 0 2 0 0 2
3 0 1 1 2 0 0 2 0 0 0 2 0 0 0 0 2 0 0 0 2 0 0 0 2
4 1 1 0 0 2 2 0 0 2 2 0 0 2 0 0 0 0 2 0 0 0 2 0
5 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0
6 0 1 1 1 1 2 0 0 2 2 0 0 2 2 0 0 0 2 0 0 0
7 0 0 1 1 0 0 0 2 0 0 0 2 0 0 0 0 0 0 0 2
8 0 0 0 0 1 3 0 0 2 0 0 0 0 2 0 0 0 2 0
9 0 0 0 1 1 0 0 2 0 0 2 2 0 0 0 2 0 0
10 0 0 0 0 1 1 0 0 0 0 0 0 0 2 0 0 0
11 0 0 0 1 1 0 1 3 0 0 2 0 2 0 0 2
12 0 0 0 0 0 1 1 0 0 2 0 0 0 0 0

n 1 2 3 4 5 6 7 8 9 10 11 12 13
bαnc 1 3 5 6 8 10 11 13 15 16 18 20 22
bβnc 2 4 7 9 12 14 17 19 21 24 26 29 31

Figure 3: The sets M1,M2 for α = [1; 1, 2, 3, . . .]

(11, 17)− (10, 14) and thus (1, 3) ∈M1. Similarly, taking n = 2 and m = 1
gives (1, 3) = (3, 4)− (2, 1) and thus (1, 3) ∈M2.

Checking whether a specific subtraction (x, y) is in M is polynomial in
the input size (log(x) + log(y)): For M2, (x, y) ∈ M2 implies that (x, y) =
(αn − βm, βn − αm) + (ε1, ε2) where −1 < ε1, ε2 < 1. By inverting this
linear transformation, we obtain an approximation for n and m. Therefore,
by checking the O(1) many potential pairs (n,m), we can determine whether
(x, y) ∈ M2. Polynomiality holds also for M1, but the explanation of this
fact is more complicated.

In this paper we analyze the pattern of a given row in this matrix. Con-
sider the set {y ≥ x : (x, y) ∈ M } for some fixed x. To understand the
contribution of M1 to this set, note that

bαnc − bαmc ∈ {bα(n−m)c, bα(n−m)c+ 1}.

Hence the equation x = bαnc − bαmc for fixed x, implies that n − m can
take one of two values. This implies that y = bβnc − bβmc can take one of
four values. It follows that M1 may contribute no more than 4 elements. It
remains, therefore, to analyze the set

Ex := {y ≥ x : (x, y) ∈M2}.
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Let g(n) = bαnc, h(n) = bβnc. Notice that the inverse functions are
g−1(m) = dm/αe (where m = bαnc ∈ Im g), h−1(m) = dm/βe (where
m = bβnc ∈ Imh).

The following proposition describes the relationship between Ex and Sx.
Notice that [6] describes a simpler relationship for the case α = [1; 1, 1, . . .].
A similar relationship can be given also for t-Wythoff Nim (α = [1; t, t, . . .],
t ∈ Z≥1. See Section 8.2), but the case of an arbitrary α is more complicated.

Proposition 7. Let x ∈ Z≥1. Then,

Ex = {hg−1(s+ x+ 1)− gh−1(s+ 1) : s ∈ Sx}.

Proof. Suppose that y ∈ Ex. Then, y = h(n)− g(m) and x = g(n)− h(m).
Choose s = h(m) − 1. Then s ∈ B0

0, s + x ∈ A0
0, so s ∈ B0

0 ∩ (A0
0
· x).

Moreover, y = h(n) − g(m) = hg−1g(n) − gh−1h(m) = hg−1(s + x + 1) −
gh−1(s+ 1).

The other direction is similar.

8 Explicit representation of the set Ex

We saw that Sx = ·⋃ n′
j=1A

mj
ij

for some n′, i1,m1, . . . , in′ ,mn′ . Proposition 7

implies that Ex =
⋃n′

j=1 F [Amjij ] where F (s) = hg−1(s+ x+ 1)− gh−1(s+ 1).
In this section we give a more explicit representation of Ex.

8.1 The general case

We start by computing h−1(s + 1) for s ∈ Ami ⊆ B0
0. Suppose that s is the

n-th element of Ami . It is generated (when applying Φm, see Section 3.3) by
the n-th a of W [αm]. Let j = h−1(i + 1) be the number of b’s in the first
i + 1 letters of Φm(a). Since the n-th a of W [αm] is in position bαmnc − 1,
there are (n − 1) a’s and (bαmnc − n) b’s before this a. Each a contributes
(when applying Φm) (pm − qm) b’s and each b contributes (pm−1 − qm−1) b’s.
This implies:

h−1(s+ 1) = (pm − qm) · (n− 1) + (pm−1 − qm−1) · (bαmnc − n) + j.

In other words, there are constants A,B,C ∈ Z such that h−1(s + 1) =
Abαmnc+Bn+ C.
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In order to compute g−1(s+x+1) we will need the following generalization
of a proposition that appears in [6] (it is proven there for the case α =
[1; 1, 1, . . .]):

Proposition 8. If bua is a factor of W where n = |u| then |u|a = |w|a and
|u|b = |w|b where w is the prefix of W of length n.

Proof. It suffices to prove that |u|b = |w|b as |u| = |w|. Denote by j the
index of the first b of the bua factor.

Let X = {iβ : i ∈ Z}. Notice that (z + 1, z + 2) ∩ X 6= ∅ if and only if
W(z) = b. Let f : R → Z, f(x) = |(x, x+ n) ∩X|. In other words, f(x) is
the number of points from X in the interval (x, x+ n). It is easy to see that
f is periodic with period β and that f is increasing on the interval [0, β).

Notice that |u|b = f(j + 2) and |w|b = f(1). Since we have an a after the
u it implies that f(j + 3) ≤ f(j + 2). We also know that there is a b before
the u and therefore there is r ∈ Z such that j + 1 < βr < j + 2. Hence

βr < j + 2 < βr + 1 < j + 3 < β(r + 1).

But f is increasing in the interval [βr, β(r + 1)) and so

f(j + 2) ≤ f(βr + 1) ≤ f(j + 3) ≤ f(j + 2).

We conclude that |w|b = f(1) = f(βr + 1) = f(j + 2) = |u|b.

Notice thatW(s−1) = a. Using the same arguments we used for h−1(s+
1), we may infer a similar formula for g−1(s). Let w be the prefix of length
x−1. By the last proposition, we have g−1(s+x+1) = g−1(s)+|w|a+1 and so
we obtain a formula for g−1(s+x+1) that has the form A′bαmnc+B′n+C ′.

We obtain the following theorem:

Theorem 3. The set Ex can be written as a union of sets of the form

{h (A′bαmnc+B′n+ C ′)− g (Abαmnc+Bn+ C) : n ∈ Z≥1} ,

where A,B,C,A′, B′, C ′ ∈ Z and m ∈ Z≥1 are effectively computable con-
stants that depend only on x.

Example 10. For α = [1; 1, 2, 3, . . .] we have E12 = {21, 33, 45, 58, 71, . . .} =
F [A3

3] ∪ F [A4
71] and

F [A3
3] = {h(3bα3nc+ 7n)− g(2bα3nc+ 5n− 5) : n ∈ Z≥1},

F [A4
71] = {h(10bα4nc+ 33n+ 7)− g(7bα4nc+ 23n) : n ∈ Z≥1},

α3 = [1; 4, 5, 6, . . .] ≈ 1.23845, α4 = [1; 5, 6, 7, . . .] ≈ 1.19369.
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8.2 The case α = [1; t, t, t, . . .]

In turns out that in the case α = [1; t, t, t, . . .], there is a simpler relationship
between Ex and Sx:

Proposition 9. Let x ∈ Z≥1. There exists C ∈ Z such that F (s) = ts + C
for any s ∈ Sx.

Proof. Let s ∈ Sx = B0
0 ∩ (A0

0
· x). Notice that β = α + t and so h(y) =

g(y)+yt. Therefore, h(g−1(s+x+1)) = g−1(s+x+1)t+s+x+1 and g(h−1(s+
1)) = s+1−h−1(s+1)t. We also have h−1(s+1)+g−1(s) = s+1. This implies,
F (s) = hg−1(s+x+1)−gh−1(s+1) = x+[g−1(s+ x+ 1)− g−1(s) + s+ 1] t.
Proposition 8 implies that g−1(s+ x+ 1)− g−1(s) does not depend on s and
this completes the proof.

9 Wrap-up

This study began with the analysis of the set Sx = {s ∈ Z≥0 : W(s) =
b and W(s + x) = a}, where W = W [α] is a generalization of the infinite
Fibonacci word in which the golden ratio is replaced by any irrational 1 <
α < 2. In order to give an explicit formula for Sx, we defined the sets Ami ,
Bmi , which form refinements of the trivial partition {i : W(i) = a} ∪· {i :
W(i) = b}.

Let [1; t1, t2, t3, . . .] be the continued fraction representation of α and let
pi/qi be its convergents. Section 4.2 describes a simple algorithm to write x
as a sum of pi’s and in the process, two sequences are obtained: x = x0 >
x1 > . . . > xn = 0 and k1 ≥ k2 ≥ . . . ≥ kn, such that

∑n
j=i+1 pkj = xi. It

turns out that there are 3 different cases:

1. When W(x− 1) = b, we have Sx =4n

i=1
Aki+1
pki+1−xi−2.

2. When W(x− 2) = b, we have Sx =4n

i=1
Aki+1
pki+1−xi−1.

3. When W(x− 1) =W(x− 2) = a, we have Sx = B0
0 = A1

t1
.

For the first two cases, there exists a polynomial time algorithm that
converts the symmetric difference to a disjoint union of sets of the form Ami
(page 18).
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As an application, we considered the maximal set of moves that defines
a game with P -positions (bαnc, bβnc) for an arbitrary irrational 1 < α < 2
and β such that 1/α + 1/β = 1. This set consists of all moves except for
a set of forbidden subtractions given by M1 ∪M2. We represented this set
by a matrix (axy) where axy indicates whether (x, y) ∈ M1 and whether
(x, y) ∈M2.

We examined the structure of any fixed row, x, of this matrix. The set
M1 may contribute at most 4 elements to each row. We defined Ex = {y ≥
x : (x, y) ∈ M2}, and we saw that Ex is related to W [α] in the following
manner: Ex = F [Sx] where F (s) = hg−1(s+x+1)−gh−1(s+1), g(n) = bαnc
and h(n) = bβnc.

It turns out that this representation can be simplified even further: The-
orem 3 shows that Ex is a finite union of sets of the form

{h (A′bαmnc+B′n+ C ′)− g (Abαmnc+Bn+ C) : n ∈ Z≥1} .

Examples 5, 6, 7, 9, 10 show the process for the case α = [1; 1, 2, 3, . . .]
and x = 12.
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