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a b s t r a c t

We prove a recent conjecture of Duchêne and Rigo, stating that every complementary
pair of homogeneous Beatty sequences represents the solution to an invariant impartial
game. Here invariance means that each available move in a game can be played anywhere
inside the game board. In fact, we establish such a result for a wider class of pairs of
complementary sequences, and in the process generalize the notion of a subtraction game.
Given a pair of complementary sequences (an) and (bn) of positive integers, we define a
game G by setting {{an, bn}} as invariant moves. We then introduce the invariant game G⋆,
whose moves are all non-zero P-positions of G. Provided the set of non-zero P-positions of
G⋆ equals {{an, bn}}, this is the desired invariant game.We give sufficient conditions on the
initial pair of sequences for this ‘duality’ to hold.

© 2010 Elsevier B.V. All rights reserved.

1. Notation, terminology and statement of results

This note concerns two-person, impartial games (see [1]) played under normal (as against misère) rules. Let N, N0 denote
the positive and the non-negative integers respectively. For k ∈ N, letB = B(k) := (Nk

0, ⊕, ≼) denote the partially ordered
semigroup consisting of all ordered k-tuples of non-negative integers,where for elements x = (x1, . . . , xk), y = (y1, . . . , yk)
of B one defines

x ⊕ y := (x1 + y1, . . . , xk + yk)

and

x ≼ y ⇔ xi ≤ yi, i = 1, . . . , k.

Hence x ≺ y if x ≼ y and xi < yi for some i. For y ≼ x we define

x ⊖ y := (x1 − y1, . . . , xk − yk).

We callB the game board. Let G = G(F , B) denote a game, where for all x ∈ B, F(x) ⊂ B defines the set of options of x in
the sense that y ∈ F(x) if and only if there is a move from x to y. Formally, themove from x to y is the ordered pair (x, y). In
this paper, the phrase ‘x → y is an option’ will often be used synonymously with ‘y ∈ F(x)’, in order to avoid cumbersome
notation.

Given this setting, the two players only need to (randomly) pick a starting position x ∈ B and decide who plays first.
Then they play by alternating in choosing options from F(·) (and moving accordingly). Although we have announced that
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the last player to move wins (normal play), without some additional assumptions there is no guarantee that the game will
terminate.

By a k-pile subtraction game1 wemean a game played on B such that, for each x ∈ B, the set F(x) ⊂ B has the property
that y ∈ F(x) ⇒ y ≺ x. In the setting of invariant games (to be defined below), it will be convenient to abuse notation
and also refer to the k-tuple x ⊖ y ≻ 0 as a move. Observe that both options and moves are then elements of B, but with
different meanings.

In this paper, whenever we refer to a (subtraction) game we intend a k-pile subtraction game. Let G be a game. Then
T = T (G) := {x | F(x) = ∅} denotes the set of terminal positions. Clearly 0 := (0, . . . , 0) ∈ T and 0 is unique. It is natural
to require that T be a lower ideal in the poset, that is, if x ∈ T and y ≺ x, then y ∈ T . Clearly, in this setting, any gamemust
terminate within a finite number of moves and thewinner is the player whomakes the last move. The opponent is the loser.

Recently, Duchêne and Rigo [3] introduced the notion of an invariant game.
A k-pile invariant subtraction game G is defined by a setM(G) ⊆ B \{0} of (invariant) moves, where, for every r ∈ M(G)

and every x ≽ r , x → (x ⊖ r) is an option (and these are all the options).2 If a game is not invariant it is variant.
A position (a game) is P if all of its options are N . Otherwise it is N . This means that the first player to move wins if and

only if the game is N . As usual, we shall denote by P (G) (resp. N (G)) the collection of P- (resp. N-) positions of G.
Finally, if G is a (not necessarily invariant) game, then we can define an invariant game G⋆ on the same game board by

setting

M(G⋆) := P (G)\{0}. (1.1)

Example 1. Define G by M(G) = ∅. Then P (G) = B and so M(G⋆) = B \ {0}. This gives P (G⋆) = {0}, so that in fact N (G⋆)
= M(G⋆). This latter equality does not hold in general. For example, let G rather denote 2-pile Nim. Then3 M(G) = {{0, x} |

x ∈ N} and P (G) = {{x, x} | x ∈ N0}. By (1.1), this gives M(G⋆) = {{x, x} | x ∈ N}. Then it is easy to see that P (G⋆) =

{{0, x} | x ∈ N0}. Hence, for the two games in this example we have that (G⋆)⋆ = G. Neither does this equality hold in
general. (See also Example 2.)

From now onwards we let k = 2.
A pair of sequences (xn)n∈N and (yn)n∈N of positive integers is said to be complementary if {xn} ∪ {yn} = N and {xn}

∩ {yn} = ∅.
Let α < β be positive irrational numbers satisfying 1/α + 1/β = 1. Hence 1 < α < 2 < β . We call (α, β) an (ordered)

Beatty pair. It is well known [2] that the sequences (⌊nα⌋)n∈N and (⌊nβ⌋)n∈N are complementary.
Our purpose is to prove the following conjecture [3]:

Conjecture 1.1 (Duchêne–Rigo). Let (α, β) be a Beatty pair. Then there exists an invariant game G such that P (G) =

{{⌊nα⌋, ⌊nβ⌋} | n ∈ N0}.

Let t ∈ N. We say that a sequence (Xn)n∈N0 of non-negative integers is t-superadditive if, for allm, n ∈ N0,

Xm + Xn ≤ Xm+n < Xm + Xn + t. (1.2)

Note that the left-hand inequality of (1.2) is the usual definition of superadditivity.
Let a = (an)n∈N and b = (bn)n∈N be sequences of positive integers and define a0 = b0 = 0. We say that the set {(an, bn) |

n ∈ N0} of ordered pairs is t-superadditive-complementary, abbreviated t-SAC, if the following criteria are satisfied:

• a1 = 1,
• a and b are complementary sequences,
• a is increasing,
• b is t-superadditive.

We can now state the main result of this paper:

Theorem 1.2. Suppose that the set {(an, bn) | n ∈ N0} of ordered pairs is b1-SAC. Define G by settingM(G) := {{an, bn} | n ∈ N}.
Then

P (G⋆) = M(G) ∪ {0} (1.3)

and

(G⋆)⋆ = G. (1.4)

1 Our subtraction games are generalizations of the Nim-type subtraction games defined in [1]. There are some alternative names for our games that can
be found in the literature, such as Take-away games, Removal games. By our choice we emphasize the natural additive structure on B.
2 This notation and terminology is consistent with that employed in [3].
3 A subset R of B = N0 × N0 is symmetric if (x, y) ∈ R ⇔ (y, x) ∈ R. (We dispense with the obvious generalisation to k > 2 piles.) If the sets M(G) and

T (G) are symmetric subsets of B, then so are the sets N (G) and P (G). In this case the game Gwill be called symmetric. Sometimes it will be convenient to
denote moves and positions of a symmetric game by unordered pairs {r, s}. Hence, whenever we write ‘{r, s} ∈ M(G)’ for example, what we mean is that
{(r, s), (s, r)} ⊆ M(G).
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Fig. 1. The set {{i, j} ∈ P (WN⋆) | 0 ≤ i, j ≤ x} = {(0, 0)} ∪ {{i, j} ∈ M((WN⋆)⋆) | 0 ≤ i, j ≤ x}, for x = 100, 400 respectively.

An immediate consequence of this result is

Corollary 1.3. Suppose that {(an, bn) | n ∈ N0} is b1-SAC. Then there is an invariant game I such that P (I) = {{an, bn} | n ∈

N0}.

Proof of Corollary. Take I = G⋆ in Theorem 1.2. �

It is well known and easy to check that if a and b are a pair of complementary homogeneous Beatty sequences, then the
set {(an, bn) | n ∈ N0} is 2-SAC, hence b1-SAC. Therefore, Corollary 1.3 implies Conjecture 1.1.

Because of (1.4), it is natural to refer to the game G⋆ defined by (1.1) as the dual of G, when G satisfies the hypotheses of
Theorem 1.2. It is important to note, however, that the ‘duality relation’ (1.4) does not always hold for games G not satisfying
these hypotheses.

Example 2. As a simple but instructive example, take G = WN, the ordinary Wythoff Nim game [12], so that M(WN) =

{{0, i}, (i, i) | i ∈ N}. This set obviously does not satisfy the hypotheses of Theorem 1.2, whereas M(WN⋆) does so. Indeed,
according to (1.1), we have

M(WN⋆) = P (WN)\{0} = {{⌊nφ⌋, ⌊nφ2
⌋} | n ∈ N}, φ =

1 +
√
5

2
. (1.5)

It is easy to see that {{0, x} | x ∈ N0} ⊂ P (WN⋆). Otherwise it is easy to check that the P-positions of WN⋆ begin

(1, 1), (3, 3), (3, 4), (4, 4), (6, 6), (8, 8), (8, 9), (8, 12), (9, 9), (9, 12), . . .

(see Fig. 1 and [10] for further results) and hence

(WN⋆)⋆ ≠ WN.

But if we go one step further, it follows from (1.5) and Theorem 1.2 that

((WN⋆)⋆)⋆ = WN⋆.

In particular, the games WN and (WN⋆)⋆ do have the same P-positions.

Numerous generalizations and variations ofWythoff Nim can be found in the literature. In fact, this game can be credited
with opening up the territory of the games we are exploring in this paper. However, we have not been able to find any
literature on the game (WN⋆)⋆.

The rest of the paper is organised as follows. In Section 2, we will prove Theorem 1.2. In Section 3, we explore the
problem of describing necessary and sufficient conditions on a pair (an), (bn) of complementary sequences for there to
exist an invariant game Gwith P (G) = {{an, bn}}∪ {0}. We are unable to solve this problem definitively, though we discuss
several pertinent examples. One of these concerns an application of Theorem 1.2 to defining an invariant game with the
same solution as the variant game ‘theMouse game’ [6]. In another example, we study the set of P-positions of the invariant
game G = (1, 2)GDWN [9]. Here, the b-sequence is not increasing and we show that P ((G⋆)⋆) ≠ P (G).

2. Proof of Theorem 1.2

Let us begin by proving some basic facts about any sequence of b1-SAC pairs.
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Proposition 2.1. Suppose that {(an, bn) | n ∈ N0} is b1-SAC. Then, for all n ∈ N0,

(i) bn+1 − bn ≥ b1 ≥ 2,
(ii) an+1 − an ∈ {1, 2},
(iii) an < bn and the sequence (bn − an) is non-decreasing,
(iv) for all m, n ∈ N0,

am + an − 1 ≤ am+n ≤ am + an + 1. (2.1)

Proof. Part (i): By definition a1 = 1. Then, by complementarity, b1 ≥ 2. The first inequality follows by superadditivity.
Part (ii): Let dn := an+1 − an. Since a is increasing we have dn ≥ 1 for all n. Suppose that there exists an n such that dn ≥ 3.
Then, by complementarity, there exists an i such that bi = an + 1 and bi+1 = an + 2. But then bi+1 − bi = 1, contradicting
(i).
Part (iii): We have b1 > a1 by definition, and it follows from parts (i) and (ii) that the sequence (bn − an) is non-decreasing.
Part (iv): Note that, since the sequences (ai) and (bi) are increasing and complementary, we have for any i > 0 that

bai−i < ai < bai−i+1. (2.2)

The inequalities in (2.1) are trivial if eitherm or n equals zero, so wemay suppose thatm, n > 0. Fixm and n. Let the integers
r, s be defined by

br < am < br+1, bs < an < bs+1. (2.3)

Then, by (2.2), it follows that am = m + r and an = n + s, hence that am + an =

(m + n) + (r + s). First of all, consider the right-hand inequalities in (2.3). Superadditivity of b implies that

br+s+2 ≥ br+1 + bs+1 ≥ am + an + 2 = (m + n) + (r + s + 2).

Then, by (2.2) again we must have

am+n ≤ (m + n) + (r + s + 1) = am + an + 1,

which proves the right-hand inequality of (2.1).
Secondly, the fact that the sequence b is b1-superadditive implies that

br+s−1 ≤ br−1 + bs + (b1 − 1) ≤ (br − b1) + bs + (b1 − 1) = br + bs − 1.

This, together with the left-hand inequalities in (2.3), imply that

br+s−1 ≤ (am − 1) + (an − 1) − 1 = (m + n) + (r + s − 3).

By complementarity, it follows that

am+n−2 ≥ (m + n) + (r + s − 3).

Then, the fact that a is increasing implies that

am+n ≥ am+n−2 + 2 ≥ (m + n) + (r + s − 1) = am + an − 1,

which proves the left-hand inequality of (2.1). This completes the proof of Proposition 2.1. �

Remark 1. In the above proof, superadditivity of b sufficed, except for the left-hand inequality in (2.1). Only the latter
required b1-superadditivity. Interestingly enough, b1-superadditivity is needed for the proof of Theorem 1.2, but the left-
hand inequality in (2.1) is not.

For our particular setting, the next lemma is a special case of part (iii) of the one to follow. But it is nice to first state it in
a more general form.

Lemma 2.2. (A P-position is never an invariant move). Let G be an invariant subtraction game. Then M(G) ∩ P (G) = ∅.

Proof. Suppose that there was a move r ∈ P (G). Then, in particular, 0 = r − r ∈ F(r). But 0 ∈ P (G), so then r ∈ N (G), a
contradiction. �

The hypothesis of the next lemma is satisfied, in particular, by any game G for which M(G)∪{(0)}, viewed as an ordered
set, is b1-SAC. The items (i) and (ii) characterize precisely the lower ideal T (G).

Lemma 2.3. Let (an)n∈N and (bn)n∈N be any pair of increasing sequences of positive integers, and suppose that G is an invariant
subtraction game with M(G) = {{an, bn}}. Then

(i) {0, k} ∈ P (G), for all k ∈ N0,
(ii) {k, l} ∈ P (G) if k, l ∈ {1, 2, . . . , b1 − 1},
(iii) If k, l > 0 then {k, l} ∈ N (G) if, for some n > 0,
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(a) k = an and l ≥ bn, or
(b) k = bn and l ≥ an, or
(c) an−1 ≤ k < an−1 + b1 and bn−1 ≤ l < bn−1 + b1.

Proof. Parts (i), (ii): By the definition of M(G), it is clear that F({k, l}) = ∅ if either min{k, l} = 0 or max{k, l} < b1.
Part (iii): If (a) holds, then

(k, l) → (k, l) ⊖ (an, bn) = (0, l − bn),

is an option in G. Since (0, l − bn) ∈ P (G) by (i), it follows that (k, l) ∈ N (G). Similarly, if (b) holds then one considers the
option

(k, l) → (k, l) ⊖ (bn, an) = (0, l − an) ∈ P (G).

Finally, if (c) holds, then we have the option

(k, l) → (k, l) ⊖ (an−1, bn−1) = (k − an−1, l − bn−1).

Since k− an−1 < b1 and l− bn−1 < b1, we have (k− an−1, l− bn−1) ∈ P (G) by (ii), and hence (k, l) ∈ N (G) once more. �

Proof of Theorem 1.2. Clearly, (1.4) follows from (1.3) so it remains to prove the latter. Recall that the moves in the game
G⋆ are given by M(G⋆) := P (G) \ {0} and where M(G) := {{an, bn} | n ∈ N0} \ {0}. We want to show that

P (G⋆) = {{an, bn} | n ∈ N0}. (2.4)

By the definition of P , this corresponds to showing that, for all (α, β) ∈ B,

∃ n such that either (α, β) → (an, bn) or (α, β) → (bn, an) is an option in G⋆ (2.5)

if and only if {α, β} ≠ {ai, bi} for all i ∈ N0.

‘‘N→ P’’: Suppose that {α, β} ≠ {ai, bi} for any i ∈ N0. If (α, β) ∈ P (G) then (α, β) → 0 = (a0, b0) is an option in G⋆, thus
satisfying (2.5). If (α, β) ∈ N (G), then there exists (x, y) ∈ P (G) such that (α, β) → (x, y) is an option in G. By definition
of M(G), there exists j ∈ N such that either (α, β)⊖ (aj, bj) = (x, y) or (α, β)⊖ (bj, aj) = (x, y). Note that our assumptions
thus imply that (x, y) ≠ 0. Hence (x, y) ∈ P (G)\{0} = M(G⋆). Since (α, β) ⊖ (x, y) ∈ {(aj, bj), (bj, aj)}, we see that once
again (2.5) is satisfied.

‘‘P→ N’’: Suppose that {α, β} = {ai, bi} for some i ∈ N0 and that (2.5) holds. By symmetry, it suffices to consider the
following two cases: there existsm, n ∈ N0 such thatm > 0 and either (am+n, bm+n) → (an, bn) or (am+n, bm+n) → (bn, an)
is an option in G⋆.

First suppose the latter. Let

(x, y) := (am+n, bm+n) ⊖ (bn, an).

By definition of G⋆, we must have (x, y) ∈ P (G)\{0}. By Lemma 2.2, we may assume that n > 0. Then x = am+n − bn <
am+n − an ≤ am + 1, by parts (iii) and (iv) of Proposition 2.1. Hence x ≤ am. By complementarity, there exists p ≤ m such
that x ∈ {ap, bp}. On the other hand, y = bm+n − an > bm+n − bn ≥ bm, by superadditivity of b. In particular, y > x. But then
(x, y) ∈ N (G), by parts (a), (b) of Lemma 2.3(iii), a contradiction.

Second, suppose that (am+n, bm+n) → (an, bn) is an option in G⋆. Let

(x, y) := (am+n, bm+n) ⊖ (an, bn). (2.6)

As before, we must prove the contradiction that (x, y) ∈ N (G). By the b1-superadditivity of b, we have

bm ≤ y < bm + b1. (2.7)

If x ≤ am then we can appeal to parts (a), (b) of Lemma 2.3(iii) again. By the right-hand inequality of (2.1), the only other
possibility is that x = am + 1. Since m > 0 and y ≥ bm, we have y ≥ x. If x = bi for some i, then part (b) of Lemma 2.3(iii)
gives a contradiction. This leaves the possibility that x = am+1 = am + 1. But then, because of (2.7), we get a contradiction
from part (c) of Lemma 2.3(iii). �

3. Discussion

In this section we provide four examples and suggest some future work.

Example 3. Let a and b be any complementary, though not necessarily increasing, sequences beginning as in Table 1 below.
As usual, set a0 = b0 := 0. Note that the set of pairs {(an, bn) | n ∈ N0} cannot be b1-SAC, since b3 = b2+1 = b2 +b1 +b1.

Suppose therewere an invariant game GwithP (G) = {{an, bn} | n ∈ N0}. Then (2, 6) ∈ N (G). But (2, 6) = (4, 13)⊖(2, 7),
a contradiction.
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Table 1
The b-sequence does not satisfy the right-hand
inequality in (1.2).

bn 3 7 13
an 1 2 4

n 1 2 3

Table 2
The b-sequence does not satisfy superaddi-
tivity, the left-hand inequality in (1.2).

bn 4 7
an 1 2

n 1 2

Nevertheless, if the sequences a and b are increasing, a1 = 1 and the b-sequence grows at only a slightly faster rate than
that allowed by (1.2), then Theorem 1.2 will hold again. Indeed, suppose that

b2 ≥ 2b1 and bm+n ≥ bm+1 + bn for allm ≥ 1, n ≥ 2. (3.1)

We can still use Lemma 2.3 and one may check that the proof of Theorem 1.2 goes through. Consider (2.6), for example. We
still have x ≤ am + 1 ≤ am+1, since for the right-hand inequality of (2.1) we only required b to be superadditive. If n ≥ 2,
then (3.1) implies that y ≥ bm+1. Then from Lemma 2.3(iii), parts (a) and (b), it follows that (x, y) ∈ N (G). We can obtain
the same conclusion evenwhen n = 1, since thenwe still have y ≥ bm and now x = am+1−1 < am+1, with strict inequality.

Example 4. (A similar example to this one appears in [3]). Let a and b be any complementary sequences beginning as in
Table 2.

Put a0 = b0 := 0. The set of pairs {(an, bn) | n ∈ N0} cannot be b1-SAC since b2 = b1+1 = b1+b1−1. Suppose therewere
an invariant game Gwith P (G) = {{an, bn} | n ∈ N0}. Then (1, 3) ∈ N (G). But (1, 3) = (2, 7) ⊖ (1, 4), a contradiction.

This example also arises from a pair of complementary, but inhomogeneous Beatty sequences. Let (α, β) be a Beatty pair.
Let γ , δ ∈ R. For each n ∈ N, let

an := ⌊nα + γ ⌋, bn := ⌊nβ + δ⌋. (3.2)

Fraenkel [4] proved that the sequences (an) and (bn) are complementary if and only if nβ + δ ∉ Z for any n ≥ 1, and

γ

α
+

δ

β
= 0. (3.3)

Choose a pair of (small) irrational numbers ϵ1, ϵ2 > 0. Let α :=
7
5 + ϵ1, β :=

7
2 − ϵ2. Choose δ ∉ Q(β) satisfying

1
2

+ ϵ2 ≤ δ < 1 − 2ϵ2. (3.4)

It is not hard to check that, for an appropriate choice of ϵ1, ϵ2, δ, the number γ < 0 defined by (3.3) will satisfy

−
2
5

− ϵ1 ≤ γ <
1
5

− 2ϵ1. (3.5)

From (3.4) and (3.5), one may then verify in turn that the sequences (an) and (bn) defined by (3.2) begin as in Table 2.

Example 5. For each n ∈ N, let an := ⌊
3n
2 ⌋ and bn := 3n− 1. It is easy to see that (an) and (bn) are a pair of complementary,

inhomogeneous Beatty sequences. Put a0 = b0 := 0, as usual. In [6], a variant gameG named ‘theMouse game’ was invented
withP (G) = {{an, bn} | n ∈ N0}. But, since it is easy to verify that {(an, bn)} is b1-SAC, by Theorem1.2wemay also introduce
an invariant game H , which we call ‘the Mouse trap’, with P (H) = P (G). In analogy with Example 2, the invariant rules are
M(H) = P (G⋆).

Remark 2. In [5,8] invariant games with symmetric moves are defined whose P-positions consist of complementary
inhomogeneous Beatty sequences (CIBS). Both papers include variations of Wythoff Nim. In the former a misère variation
(the player who moves last loses) is studied. Indeed, we believe it to be the ‘most natural/direct’ way to construct a game
with CIBS as P-positions. In the latter paper, the terminal positions are (l, 0) and (0, p − l), for some integers 0 < l < p, so
the game is only symmetric if p = 2l. Namely, here the game board is rearranged to

B := (N0 × N0)\{(i, j) | 0 ≤ i < l, 0 ≤ j < p − l}.
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Table 3
The initial P-positions of the game (1, 2)GDWN. For a more comprehensive list, see [9].

bn 0 3 6 5 10 14 17 25 28 18 35 23
an 0 1 2 4 7 8 9 11 12 13 15 16

n 0 1 2 3 4 5 6 7 8 9 10 11

The above examples provide some extra insight into the following problem, which nevertheless remains wide open:

Problem 1. Let (an), (bn) be a pair of complementary, increasing sequences with a1 = 1. Find necessary and sufficient
conditions for the existence of an invariant game Gwith P (G) = {{an, bn}} ∪ {0}.

A special case which might be more tractable is the case of inhomogeneous Beatty sequences. Motivated by Examples 4
and 5, we may ask

Problem 2. Let (an), (bn) be a pair of complementary, inhomogeneous Beatty sequences with a1 = 1. Is it true that there
exists an invariant game Gwith P (G) = {{an, bn}} ∪ {0} if and only if the set of pairs {(an, bn)} is b1-SAC?

Combining Theorem 1.2 with Example 2 (Wythoff Nim) leads us to the following question.

Problem 3. Let (an) and (bn) be a pair of complementary, increasing sequences with a1 = 1. Suppose further that there
exists an invariant subtraction game Gwith P(G) = {{an, bn}} ∪ {0}. Is then P((G⋆)⋆) = P(G)?

We know that the answer to Problem 3 is no, if we drop the condition that (bn) is increasing. Consider the following
example:

Example 6. Let G be the invariant game (1, 2)GDWN, studied in [9], so that M(G) = {{0, i}, (i, i), {i, 2i} | i ∈ N}. Define

{{an, bn} | n ∈ N0} := P (G), where (an) is increasing.

Then the sequences (an)n∈N and (bn)n∈N are complementary, but b is not increasing. Table 3 gives the initial P-positions of
this game.

Now consider the game G⋆, as defined by (1.1). It is not hard to check that (11, 23) ∈ P (G⋆). However, by brute-force
calculation one may also verify that (104, 235) and (115, 258) are in P (G). Since

(115, 258) ⊖ (104, 235) = (11, 23),

we see that P ((G⋆)⋆) cannot coincide with P (G).

Another possible direction for future work is to extend our results in somemanner to k-pile subtraction games for k > 2,
or even perhaps to consider subtraction games played on other partially ordered semigroups. Alternatively, one might try
to extend the notion of ‘invariance’ to games which cannot be formulated as subtraction games. Many such games appear in
the literature, see for example [11], where 14 such games are proved P-space-complete, three played on graphs, including
Geography – whose many variations have been addressed in other papers – and 11 on propositional formulas. Another
example is annihilation games – if a token moves onto another one, both disappear – for which there is a polynomial-time
winning strategy [7].

Finally, the ‘‘⋆-operator’’ introduced in (1.1) and the duality in (1.4) may turn out to be useful in other contexts.
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