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Abstract

We determine the maximal set of moves for 2-pile take-away games
with prescribed P-positions (|an|, |fn]) for n € Z>, where o € (1,2)
is irrational, 1/a+1/8 = 1. This was done in [3] for the special case «
= golden ratio. We generalize the infinite Fibonacci word to an infinite
word W with alphabet ¥ = {a, b}, in which « replaces the golden ratio,
and we analyze the set {s € Z>o : W(s) = b, W(s + z) = a} for any
fixed value of x.

1 Introduction

Generalized Wythoff (see [5]) is a two-player game, played on two piles of
tokens. The two possible types of moves are: a. remove a positive amount of
tokens from one pile, b. remove k > 0 tokens from one pile and ¢ > 0 from
the other, provided that |k — ¢| < t, where ¢t € Z>; is a parameter of the
game. The player making the last move wins.

The case t = 1, in which the second type of move is to remove the
same amount of tokens from both piles, is the classical Wythoft game [11],
a modification of the game Nim. From among the extensive literature on
Wythoff’s game we mention just three: [2], [5], [12].

Since the game is finite, every position of the game is either an N-position
— a position from which the Next player can win, or a P-position — a position
from which the Previous player can win. The game positions are encoded
in the form (z,y), where z, y are the sizes of the piles and = < y. It
was shown in [5] that the set of P-position, P, for generalized Wythoff is
{(lan], [pn]) : n € Zso}, where a = [1;t,t,t,...] = (2 —t+ V1> +4)/2 and



B =1+1/(a—1). Notice that the condition 5 =1+ 1/(a— 1) is equivalent
to1/a+ 1/ =1; and when o = [1;¢,¢,¢,...], then f = a +t.

We consider two games to be identical if they have the same set of P-
positions. Let

a '+ 71 =1, «airrational, 0 < a < 8. (1)

Then 1 < a < 2 < 3. In this paper we seek the largest set of moves in games
whose P-positions are {(|na], |nf])}n>0. The existence of such a game for
an arbitrary irrational o was proven in [8].

For example, [4] describes a nice set of moves for a = [1;1,¢,1,¢,...] =
14 (Vt2+4t —t)/2: A player can (a) remove a positive amount of tokens
from one pile or (b) remove the same amount of tokens, k, from both piles
as long as k ¢ {2,4,...,2t—2} or (c) remove 2t + 1 tokens from one pile and
2t + 2 tokens from the other.

It turns out that the largest set of moves is V \ .# where V is the set of
all moves consisting of either taking z > 0 from a single pile, or else taking
x>0, y > 0 from both; and .# is the set of moves that allow the players to
move from one P-position to another.

We will consider the set of y’s such that (x,y) € 4 for any fixed x. It
turns out that there is a strong relation between this set and a generalized
version of the Fibonacci word, W. In fact, we will have to investigate the set
of y’s such that W(y) = b and W(y + z) = a.

This analysis can be done using a generalization of the Fibonacci numer-
ation system (for information on numeration systems, see [6]), and also using
techniques from the theory of words and morphisms of words. In this paper
we chose the latter approach.

2 Preliminaries

An invariant game is a game for which the moves are playable from any
position (see [4]). A symmetric invariant game is a game where the piles are
unordered.

We consider symmetric invariant take-away games, played on two piles of
tokens. We denote a position of the game by a pair (a, b) such that a < b. A
move is also denoted by a pair (x,y) such that z < y. Notice that there can
be two ways of playing this move from the position (a,b): to (a — z,b — y)
or to (a —y,b — ) (we may need to change the order if a —z > b — y).
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We assume throughout, without stating so explicitly, that we can never
take away from any pile more than the pile size.

The set of moves V defined in the introduction can be written as V =
{(z,y) € Zsoy X Z>o : © <y, y # 0}. For any subset of moves ¥ C V| let
P(?) denote the set of P-positions of the game defined by ¥ (the P- and
N-positions of a game are defined in the introduction).

For example, for Generalized Wythoff,

7/:{(0,]{7)kZGZZl}U{U{?,g)kZ,lEZZl, 0§€-k5<t}, (2)

P(¥) = {(lan], |6n]) : n € Zxo},

where o = [1;t,¢,¢,...] and 1/a+ 1/ = 1.

Note that the definition of P- and N-positions implies that from a P-
position the players can move only to N-positions and from an N-position
there exists a move to a P-position. In particular, there is no move from any
P-position to any other P-position. We say that the set P of P-positions of
any given game constitute an independent set.

It was shown in [8], that for any irrational o € (1,2), there exists an
invariant game with a set of moves, ¥, such that P(¥") = {(|an]|, |fn]) : n €
Z>o}, where a, [ satisfy (1). Notice that (1) implies that {|an| :n € Z>1},
{|pn] : n € Z>1} are a pair of complementary Beatty sequences (see [1], [5]).

In this paper we study the following question: Fix an irrational o € (1, 2).
What is the maximal set of moves ¥ C V such that

P(7) =A{(lan], [#n]) : n € Zxo}, (3)
where f =14+1/(a —1)7?

Proposition 1. Let .# C 'V be the subset of moves that allow the players to
move from one P-position to another. The maximal set of moves, Vmaz, that

satisfies (3) is V\ A .

Proof. Since P is an independent set, .# N¥ = () for every subset of moves
¥ that satisfies (3). So ¥ CV\ .Z.

Take a set % that satisfies (3). The existence of an invariant game G with
move set ¥ satisfying (3) was proven in [8]. In particular, in G the move set
¥ C V\ A permits to move from every N-position into a P-position.

On the other hand, one cannot move from a P-position to another P-
position using the moves in V \ .Z, so V \ .# satisfies (3). O
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The intuition behind Proposition 1 is that adjoining moves to a given
game from P-positions to N-positions or vice versa, or from N-positions to
N-positions, leaves the set of P-positions invariant, as long as no move from
P to P is adjoined, and no cycles are formed. The conditions k € Zsq,
¢ € Z>y in (2) prevent cycles. Note that the existence and uniqueness of
Vmax 1s implied by Proposition 1.

From now on, we will analyze the structure of .Z .

An algorithm that determines whether a move (z,y) is in .# was given
in [3] for the original Wythoff (o = [1;1,1,1,...] = (1 ++/5)/2).

In this paper, we give a formula for all the y’s such that (x,y) € ¥ax
for a fixed x, rather than only an algorithm that determines whether any
specific element is in this set (as in [3]).

Observe that there are two ways to connect two P-positions, (|an]|, |Sn])

and (lam],|pm]):
1. The direct way: (lan| — [am], [Sn]| — [Sm]), possible when n > m.

2. The crossed way: (lan| — |pSm], |Bn| — |am]), possible when |an]| >
LBm].

We define the set .#; as the set of moves that are obtained in the direct way,
and we define .#5 for the crossed way similarly. Notice that .# = .41 U .#>.
We will analyze each of these sets separately.

Figure 1 shows a matrix (a,,) where a,, = 1 if (z,y) € A, a,y = 2 if
(x,y) € Mo, ayy = 3 if (x,y) € M1 N M and a,, = 0 otherwise, for the case
a=1[1;1,2,3,...] = 1.6977746..., § = 2.4331274....

2.1 Notation

Foraset ACZ,let A—x={a—x:a€ A} and A~z = (A—2x)NZ>o.

Let z € R. Denote its integer part by |x] and its fractional part by {z},
sox = |z| +{z}, |z] € Z and {z} € ]0,1).

Every continued fraction alluded to in the sequel is a simple continued
fraction (with numerators 1, denominators positive integers). See [7, ch. 10].

Let X be a finite alphabet of letters. Then, >* is the free monoid over
and its elements are the finite words over ¥. Let ¢ € ¥* denote the empty
word. For w € ¥* let |w| denote the length of w, counting multiplicities,
and let |w|, denote the number of occurrences of the letter o € ¥ in w. We
refer to the i-th letter of w by w(i) and we use the index 0 for the first letter.
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Figure 1: The sets .4, # for a = [1;1,2,3,.. ]

In other words, w = w(0)w(1) - - - w(|Jw| —1). General references about words
and morphisms of words are [9], [10].

3 The set 4,

Notice that (z,y) € 4, if and only if = |an] — |am| and y = | fn|— | Sm]
for some n > m. Observe that = |an| — |am] = |a(n —m)| + a, where
a =1 when {an} < {a(n—m)} and a = 0 otherwise. Similarly, we can write
y=|B(n—m)| +bwhere b=1if and only if {fn} < {B(n —m)}.

Let 2 (k) be the set of the pairs (a,b) that are obtained by taking n, m
such that n — m = k. Then,

My ={(|lak] +a, |Bk] +b) k€ Zsi, (a,b) € 2 (k).

We now analyze the set 2 (k). For n = k and m = 0, we get (0,0) €
Z (k) for every k. From now on, we assume n > k.

Let vy = {ak},& = {Bk}. Let T? denote the torus [0,1) x [0,1), let
Ra C T? be the rectangle defined in Table 1 and let D = {({an},{8n}) :
n € Zsr}. Then, (a,b) € 2 (k) if and only if R, N D # 0.



3
| (a,b) | R | Ip
0. {8 eTov>mt<) (el
(1,0) | {(,6) e T? : v < 1y, € > &} Rl Ry
(1,1) [ {(r,6) e T? : v < 1y, € < &} »

Table 1: The rectangle Ry, C T?

We now consider two cases. The first case is when the only solution for
the equation
Aa+ BB+ C =0, A, B,C € Z, (4)

is (A, B,C) = (0,0,0). In this case, Kronecker’s theorem (see, for example,
7, ch. 23]) guarantees that D is dense in T? and therefore 2 (k) = {0,1} x
{0,1}.

We now turn to the second case. Note that (4) has a nontrivial solution
if and only if « is a root of a quadratic polynomial with integer coefficients,
and this is true when the continued fraction of « is periodic (see [7, ch. 10]).

Observe that if (4) has a nontrivial solution then there exist A, B,C € Z
such that ged(A, B,C) = 1 and the solutions of (4) are {(Az, Bz,Cz) : z €
Z}. We call (A, B,C) the primitive solution.

Lemma 1. Let (A, B,C) be the primitive solution of (4) and let E :=
{(v,&) € T*: Av + B¢ € Z}. Then, the (topological) closure of D is E.

Proof. Notice that A{na} + B{nf} = A(na — |na]) + B(np — |np]) =
—nC — A|na| — B[nB] € Z. Therefore, D C E.

We prove the case ged(A, B) = 1. The case gcd(A, B) > 1 follows easily
from this case.

Take u,v € Z such that vA — uB = 1. Consider the continuous function
[ E— S given by (v,€) — {uv + v€} where S* is the circle [0,1). Then,

M:_(A B)) |4 B

— -1
u v u U‘ =1 — M € MQXQ(Z).

This implies that f is a homeomorphism between E and S*.
Let v = ua + vf. The image of D under f is

fID] = {{una +vnp} :n € Zoy} = {{yn} :n € Zoy}.

If v € Q, then ua + v = ¢/d for some ¢,d € Z. This implies that
(ud,vd,—c) is a solution for (4). Then |M| = 0, which contradicts the fact
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that |[M| = 1. Hence v ¢ Q, and therefore f[D] is dense in S' and D is dense
in B. [

Example 1. Figure 2 shows the set E for three cases: (a) 2a + 38 € Z,
(b) 2a — 45 € Z, (¢) o — B € Z. Notice that,

1. The direction of the lines depends on the sign of AB.

2. In (b), ged(A, B) = 2, and therefore E is the union of two circles on
the torus.

§ § §

1 1 1
\

7 7 7
20+ 3B € Z 200 — 4B € 7 a—0B el
AB >0 AB <0 AB <0
(a) (b) (c)

Figure 2: Examples of the set £

We can now complete the characterization of 2°(k): When AB > 0,
since the slope is negative, we have (0,1),(1,0) € Z'(k) for every k. We
have (1,1) € Z'(k) only when (19,&) is not on the leftmost segment (in
other words, when |Alyy > 1 or |BJ§ > 1). We can use similar arguments
for the case AB < 0. The following table summarizes the results:

| Sign of AB | (a,b) |  Condition for (a,b) € Z'(k) |

(0,1) Always

AB>0 | (1,0) Always
(1,1) |Alvg > 1 or |Bl& > 1
(0,1) | JA|(1 =) >1or |Bl§ >1

AB <0 |(1,0) |Alvg > 1 or |B|(1 — &) > 1
(1,1) Always

Example 2. Consider the case of generalized Wythoft: § = a +t, t € Z.
Then, (1,—1,t) is the primitive solution (see Figure 2(c)). This fits into the
case AB < 0 and since |A| = |B| = 1, Z(k) = {(0,0),(1,1)} for every
k € Z>,. We obtain .#, = {(|ak] + z, |Bk| + 2) : k € Z>1,z € {0,1}}.



4 The set #,

4.1 The a-word

It was shown in [3], that for the original Wythoff (v = [1;1,1,...]), there is a
relation between the set .#5 and the infinite Fibonacci word (the Fibonacci
word is defined, for example, in [10, ch. 1]). We start by considering the
natural generalization of the infinite Fibonacci word, F, to any a.

Definition 1. For a € (1,00)\ Q, the a-word, W]a], is the infinite word over
{a, b}, for which the positions of the a’s are given by |an|—1 (n € Z>;), and
the positions of the b’s are given by |Sn] —1 (n € Zs;), where 1/a+1/8 = 1.

Notice that the two sequences: {|an|—1:n € Zs1}, {|fn]—1:n € Z>1}
are a pair of complementary Beatty sequences and therefore partition Zs,
and so W[a] is well-defined.

Example 3.
WI[1;1, 1,1, .. .]] =abaababaabaababaababaabaababaabaababaaba - - - = F,
WI[1;1,2,3,...]] =ababaababaababaabababaababaababaabababaa - - - .

We now give another definition that is based on morphisms of words:

Definition 2. Let ¢t € Z>;. The morphism ¢, : {a,b}* — {a,b}* is defined
by:
©i(a) = a'b, (b)) = a.

Definition 3. Let 7, 7, ... be an infinite sequence of morphisms such that
for each i, 7;(a) starts with an a. Define their infinite product Ty ---(a) to
be the word:

1i . .

Jim 7y To(a)

Note that since 7 ---7,(a) is a prefix of 71 ---7,51(a), the limit in the

previous definition is well-defined. If 7;(0) # ¢ and |;(a)| > 1 for every i and
o, then 7175 -- - (a) is an infinite word.

Theorem 1. If a = [1;t,ta,t3,...] then W[a] = @i, 01,01, -+ - (a).

To prove this theorem we will need the following lemma:



Lemma 2. Let yy be the morphism that sends a — b and b — a and let
pe be the morphism that sends a — bla and b~ b for some t € Z>y. Let
a € (1,00)\ Q. Then,

pWla]) =W +1/(e=1)],  pp(Wla]) = Wia +1].

As a corollary,

e:Wla]) = W[l +1/(a—1+1)].

Proof. Let § = 1+ 1/(aw — 1) such that 1/a+ 1/8 = 1. Therefore, the
sequences {|na] —1}22 . {|nB] —1}°, partition the set Z>q. Since {|na] —
1}22 , are the positions of the a’s of W[a] then {|ng]—1}5°, are the positions
of the a’s of u;(W]a]) and therefore 1y (W[a]) = W[p].

For o, notice that the positions of the a’s of W[a + t| are given by
[(a+t)n|] —1 = |an] —1+nt. So in order to go from W[a] to W]a + t] we
have to insert b to the left of each a. This is exactly the morphism .

The corollary follows immediately:

pWla]) = ppe(Wla]) = mWla +1]) = W[l +1/(a = 1+1)]. O

Proof of Theorem 1. Define o, = [1;t,41,tn42,...] for n € Zsg. The
previous lemma implies that ¢;, (W]a,]) = W]a,,—1] and therefore

Wla] = Wlaol = en,i, - - 1, (Wlewm]).

Since a is a prefix of W], @1, ¢, -+ - @1, (a) is a prefix of W]a]. Sending

n — 00, we get the requested result. O

Fix a € (1,2) \ Q, a = [1;t1,ts,...]. Define a sequence of finite words:
W_y :=b, Wy :=a and W,, := ¢, -+ ¢y, (a) for n > 1 and denote W :=
Wla| = lim,, oo W,,. Let oo, = [1;tp41, Late, - - .| as in the proof of Theorem 1.

For any word w of length > 2, write w = w’w® where |w¢| = 2.

The following proposition describes the basic properties of the sequence
W,,. These are the natural generalizations of known properties of the (finite)
Fibonacci words.

Proposition 2.
(a). Forn >0, W, = (W)W, _;.

(b). [Wal = Py |Wala = gn where p,/q, are the convergents of the continued
fraction of «.



c). p-1=1, po=1, Ppy1=tug1Pn+Puo1 (forn>0).

(d). ¢-1=0, q@=1, @ui1 =tws1gn+ -1 (forn>0).

(c).

).
(e). Forn > —1, (WyWyi1)? = (Wi W, ).
(£).

).

f). Forn>1, if 2| n, then (W,)¢ = ba and if 24 n then (W,)¢ = ab.
(g). (W,)? is a palindrome for n > 1.
Proof. Items (a)-(d) follows from the definition of W,,, and items (e)-(g)
can be proven by induction on n. O]
4.2 FE,

As we mentioned before, we want to find a formula for the elements of .45 in
a fixed row, z. Let E, be the set of these positions: E, = {y > z : (z,y) €
Mo}, Let g(n) = |an], h(n) = |Bn]. Notice that g~'(n) = [n/a] (when
n € Img), h™*(n) = [n/B] (when n € Tmh).

The following proposition describes the relation between the set F, and
the a-word. Notice that [3] describes a simpler relation for the case a =
[1;1,1,...]. A similar relation can be given also for generalized Wythoff
(= [1;t,t,...], t € Z>1. See Section 9.2), but unfortunately the case of an
arbitrary « is more complicated.

Let A (B)) be the set of positions of the a’s (b’s) of W. The reason for
this notation will become clear later. Then, B) N (AY = x) is the set of s’s
such that W(s) = b and W(s + z) = a.

Proposition 3. Let x € Z>,. Then,
E,={hg ' (s+x+1)—gh ' (s+1):s€ByN (A=)}

Proof. Suppose that y € E,. Then, y = h(n) — g(m) and x = g(n) — h(m).
Choose s = h(m) — 1. Then s € B, s+ 1z € A}, so s € BN (A= x).
Moreover, y = h(n) — g(m) = hg~tg(n) — gh™*h(m) = hg~'(s + . + 1) —
gh (s +1).

The other direction is similar. 0
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5 The sets A", B"

5.1 Motivation

As we saw in the last section, we have to analyze the set BY N (A3~ z).
Consider the case o = [1;1,2,3,...], = = 2. We have B} N (AJ~2) =
{3,8,13,20,25,30,37,...}. Inthe following a-word, these positions are shown
as B: abaBaabaBaabaBaababaBaabaBaabaBaababaBaa - --. Theorem 1
implies that W = p102(W]as]), so W consists of the blocks ¢ p2(a) = ababa,
©1p2(b) = ab and the order of the blocks is determined by W][as]. Notice
that the B’s above are exactly the second b’s of each block ababa. This fact
will follow from the results of Section 7.

Therefore we would like to consider “higher resolutions” of the a-word.
These resolutions will be represented using the sets A", B/". We will start
by constructing some tools that will help us to define these sets.

5.2 Partitions and morphisms

Let w be an infinite word over some finite alphabet 3 such that all the letters
of ¥ are in w. For every o € ¥, take the set P,(0) :={y € Z>o : w(y) = o}.
Observe that the sets P, (o) for o € 3 form a partition of Z,.

Definition 4. The partition induced by w is P, := {P,(0) : 0 € X}.

Remark. In this paper we do not allow partitions that contain the empty
set. Therefore, we defined &2, only when all the letters of > appear in w.

Definition 5. Let ¥ be some finite alphabet and let 7 : ¥* — ¥* be a
morphism. Consider the new alphabet ¥, := {0; : 0 € ¥, 0 < i < |7(0)|}.
The indicator morphism of T is the morphism I, : ¥* — ¥ where I, (0) =
0001+ Oj7(s)|—1 for every o € 2.

Example 4. Consider the example in the “Motivation” section (Section 5.1).

I
For 7 = @19, we have 3. = {ag, a1, as, az, as, by, b1} and a — agajasasay,

b HZs boby. Observe that if w = I.(W]azg]) then P,(a3) is the set of the
positions of the B’s, and therefore P, (a3) = By N (A) = 2).

Consider an infinite word w. The information in I, (w) is larger than the
information in 7(w) in the sense that if we know the letter of I (w) in some
position, then we also know the letter of 7(w) in the same position. This is
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stated formally in the following definition and proposition, using the notion
of the induced partition.

Definition 6. Let &7, % be two partitions of a set C. We say that .o is
finer than %, and we write & < 4, if for every set A € &7, there exists a
set B € 4 such that A C B.

It is easy to see that the relation ”finer than” is a partial order relation
over the set of partitions of C.

Proposition 4. Let w be an infinite word and let T : 3* — ¥* be a morphism.
Then @IT(w) < :@T(w).

Proof. This follows from the fact that 7(w) and I,(w) consist of blocks of
the same lengths, in the same order, and in I, each letter appears once. [J

5.3 Definition of A}, B"
Fix m € Zso. The morphism ®,, := ¢y, ¢, - - ¢y, satisfies: |, (a)| =
(Wil = Py [Pim(b)] = [Wi—1| = pm-1 (see Proposition 2(b)). Therefore,
the indicator morphism of ®,,, 1, := I3, , maps: a LN apay - - - ap,,—1 and
b ™ boby - - by, 1.

Let Hp = nm(W[a,]) and denote the elements of the partition induced
by H,, by: Ay AT - AT By B -+ B Tespectively.

Example 5. Consider Example 4 again. We have 7 = @y, I, =19, w = Ho
and By N (A) = 2) = P,(a3) = A3.

Observe that A9 (B)) is indeed the set of positions of the a’s (b’s) of W
as we defined before.

There is an equivalent construction for these sets, that uses a generaliza-
tion of Zeckendorf sums, but we will not use it here. See Section 10.1.1 for
details.

5.4 Properties
The following proposition gives a formula for the sets A™:

Proposition 5. For m € Z>o and 0 <1 < p,,, we have:

.A;n = {Laanpm—l + n(pm _pm—l) —PmFiine Zzl}'
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Proof. Observe that the n-th a; of H,, = nn(W[a,,]) is generated by the
n-th a of W|a,,,]. The position of this a is |a,n| — 1. The first |a,n| — 1
letters of W[a,,] contain (n — 1) a’s and (|a,,n] —n) b’'s. Each a generates
Pm letters, and each b generates p,,_1 letters. The claim follows. O

Observation 1. Let m € Z>, 0 < j <i < py,. Then, A" —j = A"~ j =
AT

Proposition 6. &2y, > Py, > Py, > ---.

Proof. Fix m € Z>o. We have to show that &y, > Py, ...

Let 7 = ¢y,,.,. Notice that |®,,(w)| = |nm(w)| for any word w € {a,b}*.
In particular, |®,,11(0)] = |nm(7(0))| for 0 € {a,b}. This implies that

Ly =1, . = Nmt1, and s0 Hpq1 = Iy, -(W[oum41]). Using Proposition 4,
we obtain that Py, .. = 21, Wamal) < PomrWiams)) = PomWiam]) =
P, - O

Observation 2. If m >0 and y € A" ory € B, then W(y) = W(i).

)

Proof. The first part follows directly from the fact that 22y, < Py, =
{A9,B)} and the fact that y,i € A™. For the second part, notice that both
WimtaW,,_1, Wp,—1 are prefixes of W. Therefore, W(i) = W(i + tyi1Dm)
and the claim follows since 7 + t,,,410m € B} O

6 Shifts in W

As we saw in Section 4.2, we have to examine the set By N (AJ~ x). We start
with a simpler task: examining the set AJ A (Af~ ), where A denotes the
symmetric difference. This is the set of y’s for which W(y) # W(y + x).

Notice that B N (A~ z) = BY N (A A (A§ = z)).

Our goal is to represent A3 A (A~ x) using the basic sets A (for these
sets we already have an explicit formula — Proposition 5).

We start with « = p;, for k € Z>, and then we generalize to an arbitrary
T € Z>1.

6.1 Shifts by pi, k € Z>

Lemma 3. Let k € Z>o. If 0 < i < ppy1 — 2, then W(i) = W(i + pg). On
the other hand, if ppy1 — 2 < i < pry1, then W(i) # W(i + p).

13



Proof. Notice that W, W}, is a prefix of W. By Proposition 2(e), (W Wp1)°
is also a prefix. This implies the first part. The second part follows from
Proposition 2(f). O

The following proposition describes the set A3 A (A= pg). It follows
from the previous lemma and the fact that Hy,; consists of the blocks
aopQy - apk+1*17 bObl cee bpkfl.

Proposition 7. For k € Zsg, A A (A3 = p) = AFTL g AR

Pk+1— Pk4+1—2"

6.2 Arbitrary z € Z>,

To answer the question for an arbitrary x, we will use the following idea: A
generalization of Zeckendorf sums (see [13], [5], [6]) can be used to represent
x as a sum of elements from the set IT := {pg,p1,pa,...}. Then, we use
Proposition 7 for each of the summands.

Apply the following algorithm on z: While x # 0, find the largest k£ such
that p, < z and subtract py from z. Formally, define two sequences:

Ty ‘= T,
ki :=max{k € Z>o:pr < w;—1} (1 >1),
Notice that if x; = 0 for some ¢, then the two sequences k;,z; are not

defined for j > i. Denote this ¢ by n. Observe that we get a representation
of x as a sum of elements from II: © = py, + pr, + -+ + Px,,-

Example 6. Consider the case o = [1;1,2,3,...], II = {1,2,5,17,73,...},
x =12 =545+ 2. Here the algorithm yields:

i 01123
z; |12]712|0
k; 2121

DPk; 51512

Let 1 <4 < n. Denote X; := (A~ z;-1) A (A~ 2;) and observe that
AJA (A= 2) =X A Xy A --- A X,. Proposition 7 implies that

X = (Ag A (A= pr,)) = @5 = (.A;,fi+1 OV iy

kj+1—1 Pl +1—
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The fact that z; = 2,1 — pr, < Priy1 — 1 — P, < Pi,;+1 — 2 and Observation 1
imply that x; = A% ARt . Therefore,

Ph;+1—Ti—1 Phy+1—Ti—2

ASA(AS*@: (Akk+1x_1UA“1 2):

P, +1—Ti—

1 >

Example 7. For the case in the previous example, we get:

Aj A (A= 12) = (AgUAT) A (Afy U ATy A (ATU A3,

7 The set B)N (A}~ z)

For x = 1, since each b of W is followed by an a, B C (Aj—=1) and so
N(AS=1)=B) = A
We now assume x > 1. Notice that BYN(AJ = z) = BIN [AJ A (A) = z)].
Continue with the notation of the previous section. We have:

(.AO; 33) — é [(BO N Akl+1 m_l) (BO N Akl+1 2)]

PEk;+1— Pk, +1—Ti—

Observation 2 implies that BO NA"is A7 if W(i) = b and 0 otherwise. We
now investigate W(py,+1 — x; — 2) for z € {1,2}.

Observation 3. If x; —2' > 0 for 2’ € {1,2}, then W(x; — 2') = W(z — 2).

Proof. By induction on i:

The claim holds trivially for i = 0.

For i > 0, if z; — 2’ > 0 then also x;_; — 2’ > 0. Notice that z;_; — 2’ =
(x; —2")+pp, and x; — 2" < a; — 1 < 2,1 —2 < pg,+1 — 2. By Lemma 3 and
the induction hypothesis, W(z; — 2') = W(x;_1 — 2') = W(x — 2'). O

Observation 4. If x; + z > 3 for z € {1,2}, then W(pg,41 — ;i — 2) =
W(x + 2z — 3).

Proof. Proposition 2(g) implies that W(pg,+1 — 2; — 2) = W(x; + 2z — 3)
and by the last observation (for 2z’ = 3 — z), we get: W(pg,41 — @i — 2) =
W(z + z — 3). O

We now consider three cases: (1) W(x — 1) = b, (2) W(z —2) = b and
B)W(x—-1)=W(x-2)=

15



Consider the first case: For 1 <17 < n we have z; > 1 and by Observa-
tion 4,
W(pk41 —xi —2) =W(x — 1) =b.

Notice that b = W(z —1) = W(z,—1 —1) = W(pg, —1). This means that
21k, (see Proposition 2(f)). Therefore, W(pg,+1—xn—2) = W(pg,+1—2) =
b.

Hence, for 1 < i < n, W(pg,+1 — x; — 2) = b. Since W does not contain
bb as a factor, we get that W(py, 41 — 2; — 1) = a. This implies

B0 (A=) = A AT

pk +1—Z5—

The other cases are analyzed similarly. Formulas for the z’s of each
case can be obtained by considering the blocks of H;. The following table
summarizes the three cases.

| Case [ W@ —-2),W(x—-1)| z-2¢ | Bin(AJ=z) |
1 a,b 'Atl 1 ZL 1A];2+:1 —z;—2
2 b,a A =B} Al;::l i1
3 a,a .Al (i<t1—1) A%l—BO
= Al

Example 8. For the case described in Example 7, we have W(12 — 1) = b
and therefore this is Case 1. This implies B) N (AJ = 12) = A3 A A3, A A3.

8 BiN(A)— z) as a disjoint union of basic sets

Our goal now is to represent By N (A~ x) as a disjoint union of sets of the
form A7, instead of taking their symmetric difference as we did in Section 7.
Such a representation seems to be much better. However, in order to attain
this, we will have to understand better the structure formed by the sets A",

B".

)

8.1 The structure of A", BI"

Notice that H, = nm(Wlom]) = 0m@t,s (Wlam41]), so both Hp,, Hinga
consist of blocks of lengths py,+1, pr, in an order determined by W(a,,11].
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By considering these blocks we obtain:

A = A;n-i-l WA A;'jr-l(—tl L B;n—i-l’ B = Am+1

+Pm m+1 71)pm i+tm+1pm :
Therefore,
m __ gm+1 ., m+1 . m+1 . m+2
Al = AT UAT, W UATG o YA (5)

Definition 7. A partition tree of a set C' # () is a tree, in which every node
is a subset of C', the root is C', and for every node A, which is not a leaf, the
set of children of A form a partition of A.

Consider the tree of all the sets A" C B, where there is an edge from
A" to each of the sets in the right-hand side of (5). We denote this tree by
T Notice that the root of the tree is Aj, = Bj). Let pr A denote the parent
of a set A in the tree. If A is the root, we define pr A := A. Notice that .7,
is a partition tree.

Example 9. Figure 3 shows the tree .7, for a = [1;1,2,3,...]. For example,
pr A}, = Al and pr A} = A2
A
A Aj Als

Al AG AN Ay AT AT AR AL A Ay A5 A Al
Figure 3: .7, for a« = [151,2,3,.. ]

Corollary 1. Consider the node A" in 7, where A" is not the root. We
have

_ -1, 1 <pp1-tnm
pr A" = Al p, s where m= m Z Pm-1 )
" m-—=2, 12pp_1-tn
Proof. This follows directly from (5). O
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8.2 The Chain Proposition

Notice that for Case 3 (see table on page 16) we have Bj N (Aj = z) = A} .
So we focus on the first two cases. Let Z = 2 for Case 1, and Z = 1 for
Case 2. Denote 7; 1= pg,41 — 2; — Z. Then, By N (A~ z) = A, Abith
Proposition 8. For 1 <i <n, pr At C pr Agiitt

In order to prove Proposition 8 we first prove the following two lemmas:

Lemma 4. Let 1 <k <m, m=k (mod2), 1 <i<p,. Then, A" .C

prn_i -
k
Apk—i'
. k k+2 _ pAk+2
Proof. By Equation (5), we have that A; ; 2 At ot on—i) = Aprra—i
Similarly, Alg;ﬁ_i ) Al;;i_i and we get the following sequence:

,4’; .3,4’;:2 DAL o

k=1 = 42—t = YV Ppya—t =

Clearly A7 _ is one of the elements of this sequence and so A7 _, C AF _,.

Lemma 5. Let k > 2,0 <1 < py — pr_1. If both AF, Aﬁpkﬂ are nodes of
T, then pr A¥ C pr A¥

1+Pr—1"

Proof. Corollary 1 implies that pr A = Aﬁ?l, pr Af+pk_1 = A;” for some 7,
where ki, ko € {k — 1,k — 2}. Since i < i+ pg_1, we have ky < k.
If k1 = ko, then the claim holds. Otherwise, k; = k — 1, ko = k — 2. This

implies j < pj_2, and so pr A¥ = A¥! C pr At = A2 = pr A O

i+pr—1"
Proof of Proposition 8. We use the following notation:

a:=ux; + 4, k =k +1,
b:= .lei+1+Z, l:= ki+1 + 1.

In this notation, we have to show: pr. A% _ CprAl .

We have p;_1 <a <p;+1and p, —b = p;+ pr—1 — a. Note that all the
sets that are mentioned in the proof are subsets of B) and therefore they are
nodes in .7,.

Consider the following 4 cases: (a) £ =1, (b) k = /(41 (mod 2), (¢) a < py
and k= ¢ (mod 2), (d) a=p,+ 1 and k = ¢ (mod 2).

(a) is trivial. We show here the proof of (c). (b), (d) are proven similarly
using applications of Lemma 4, Lemma 5 and Corollary 1.
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Suppose that a < p; and k = ¢ (mod 2). Lemma 4 implies that A* C

Pr—a

¢ k ¢ T
A, .- Therefore, pr Ay, Cpr A, ,. Lemma 5 implies that
k ¢ ¢ _ ¢
pr ‘Apk*a Cpr 'Apz*a Cpr ‘Apefﬁrpzﬂl =pr ‘Ape*b‘ 0

8.3 A disjoint union

Proposition 8 implies that the sets that participate in the symmetric differ-
ence satisfy the following property:

pr Afll+1 C pr .A%Jrl C pr A’;??Jrl C...Cpr Ai«‘ZJrl_ (6)

Theorem 2. The set By N (A= z) can be written as a disjoint union of
O(SF 14, sets of the form AT

Notice that if t; < T for all i € Z>y, then the number of sets is O(T log ).

Proof. Define a partition subtree to be a subtree which is also a partition
tree. In other words, every node of the subtree which is not a leaf, should
have the same set of children as the same node in the original partition tree.

Consider the minimal partition subtree of .7, that contains the node
AFHL Denote it by T,. This tree consists of the nodes pr* AF*! (i € Zx)
and their children. Notice that (6) guarantees that all the sets AF*! are
nodes in the tree. The tree has at most k; + 1 layers, so the number of nodes
is at most Zf:{l(tl +1). It is easy to see that in every finite partition tree,
each element of the algebra (of sets) generated by the nodes, is a disjoint
union of leaves. O

Notice that Theorem 2 can be used to write an algorithm that gets x and
outputs a list of sets A" whose disjoint union is By N (A9 = x): Compute the
tree T, and mark the sets A,’?}“ in it. Visit the nodes of the tree, starting
from the root, and if an internal node is marked, replace its mark with its
children. Then, output the marked leaves.

Example 10. Consider the sets that appear in Example 8. The minimal
partition subtree that contains A3 is shown in Figure 4. We have B) N

(AJ~12) = A3 A A3, A A] = A3 U A7,
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Al
Al AT A
A AL A Ay
Figure 4: Ti

9 FE, as a union of basic sets

We saw that By N (AJ~z) = | ?IZIAZj for some n', i1, m1, ..., 0, My
Proposition 3 implies that £, = U;lel F[.A:?J] where F(s) = hg™ (s +x +

1) — gh™'(s + 1). In this section we give a somewhat better representation
of E,.

9.1 The general case

We start by computing h~'(s + 1) for s € A™ C BY. Suppose that s is the
n-th element of A". It is generated (when applying ®,,) by the n-th a of
Wia,,]. Let j = h™'(i + 1) be the number of b’s in the first i + 1 letters of
®,,(a). Since the n-th a of W[a,,] is in position |a,,n| — 1, there are (n — 1)
a’s and (|a,n| —n) b’s before this a. Fach a contributes (when applying
®,.) (Pm — qm) b's and each b contributes (p,—1 — ¢m—_1) b’s. This implies:

W (s+1) = (Pm —qm) - (n— 1) + (Pm—1 — Gm-1) - (Lamn] —n) +J.

In other words, there are constants A, B,C' € Z such that h=!(s + 1) =
Alagpn] + Bn+ C.
In order to compute g~ !(s+z+1) we will need the following generalization

of a proposition that appears in [3] (it is proven there for the case o =
1;1,1,...]):

Proposition 9. If bua is a factor of W where n = |u| then |u|, = |w|, and
lulp = |wl|p where w is the prefix of W of length n.

Proof. It suffices to prove that |u|, = |w|, as |u| = |w|. Denote by j the
index of the first b of the bua factor.

Let X = {if : i € Z}. Notice that (z 4+ 1,2 +2) N X # 0 if and only if
W(z) =b. Let f: R — Z, f(z) = |(x,z+n)NX|. In other words, f(z) is
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the number of points from X in the interval (z,z 4 n). It is easy to see that
f is periodic with period 5 and that f is increasing on the interval [0, /).
Notice that |u], = f(j+2) and |w|, = f(1). Since we have an a after the
w it implies that f(j +3) < f(j + 2). We also know that there is a b before
the uw and therefore there is r € Z such that j +1 < fr < j + 2. Hence
Br<j+2<fBr+l1<j+3<p(r+1).
But f is increasing in the interval [8r, B(r + 1)) and so

FO+2) < fPr+1) < fI+3) < fU+2)
We conclude that |w|, = f(1) = f(Br+ 1) = f(j + 2) = |uls. O
Notice that W(s — 1) = a. We can give a formula for g~'(s) in a similar
way to what we did for h=!(s + 1). Let w be the prefix of length z — 1. By
the last proposition, we have g7 (s + z + 1) = g7 !(s) + |w|, + 1 and so we
get a formula for g~!(s + z + 1) that has the form A'|a,,n] + B'n+ C".
We conclude that the set E, can be written as a union of sets of the form

{h (A amn| +Bn+C")—g(Alayn] +Bn+C):n € Zs},
where A, B,C, A", B',C" € Z and m € Z>;.
Example 11. For a = [1;1,2,3,...] we have Ej, = F[A3}] U F[A%,] and
F[A3) = {h(3|asn] + Tn) — g(2lasn| +5n —5) :n € Zs, },
F[A2] = {h(10|ayn| + 33n + 7) — g(7|cun] + 23n) : n € Zs1},
= [1:4,5,6,.. ] ~1.23845, a4 =[1:5,6,7,..] ~ 1.19369.

9.2 The case a = [1;t,t,t,...]

In turns out that in the case a = [1;¢,¢,t,...] there is a simpler relation
between E, and BJ N (A3~ z):

Proposition 10. Let x € Z>y. There exists C € Z such that F(s) =ts+ C
for any s € By N (A) = z).

Proof. Let s € BYN (A= z). Notice that 8 = a+t and so h(y) = g(y)+ yt.
Therefore, h(g~ ' (s+x+1)) =g ' (s+ax+1)t+s+z+1and g(h ' (s+1)) =
s+1—h"1(s+1)t. We also have h™'(s+ 1) + ¢ '(s) = s + 1. This implies,
F(s)=hg Y s+x+1)—gh (s+1) =z+[g (s +x+1)— g (s) +s+ 1]t
Proposition 9 implies that g7 (s + 2+ 1) — g~ !(s) does not depend on s and
this completes the proof. O]
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10 Conclusion

We saw that the maximal set of moves that defines a game with P-positions
(lan], | pn]) is V\ (1 U #5). We represented this set by a matrix (ay,)
where a,, indicates whether (z,y) € .#; and whether (z,y) € 5.

We examined the structure of any fixed row, x, of this matrix. The set
1 may contribute at most 4 elements for each row. We gave a description
of ., that facilitates computing these elements. For the set .45, we defined
E,={y>ua:(v,y) € #>}. We saw that E, is related to the a-word in the
following manner: FE, = F[B) N (A) = z)] where F(s) = hg (s +z+ 1) —
gh™(s+1).

The next step was to investigate the set B) N (A= z). In order to do it,
we wrote x as a sum of p;’s. In the process, we obtained two sequences: = =
To>a1 > ...>x, =0and ky > ky > ... > k,, such that Z?:Hlpkj = ;.
It turned out that there are 3 cases:

1. When W(x — 1) = b, we have B N (A= z) = A, AT

Pl +1—Ti—2"

2. When W(x — 2) = b, we have Bj N (A~ z) = AL, Akl

Pk;+1—T4
3. When W(z — 1) = W(x — 2) = a, we have B) N (A}~ z) = B = A}, .

For the first two cases, we provided an algorithm that converts the sym-
metric difference to a disjoint union of sets of the form AJ".

Then we showed a way to simplify F[A7'], and we concluded that E, is
the union of sets of the form

{h (A amn| +Bn+C") —g(Alamn] + Bn+C):n € Zs}.

Examples 6, 7, 8, 10, 11 show the process for the case o = [1;1,2,3,.. ]
and z = 12.

10.1 Further directions of research
10.1.1 Zeckendorf sums

Let © € Zs¢. It is well known (see, for example, [6] and [5]) that z can be
written as x = Z;’io Z;p; where 0 < z; < t;11 such that if ; = ¢;,; for some
1 > 0 then z;_; = 0. Moreover, this representation is unique.

Definition 8. For x € Z>¢, define R,,(x) = Z?;Ol Tip;.
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The following proposition, which we do not prove here, gives another
definition for the sets A}, B

Proposition 11. A" = {x € Z>o : Ry, (z) =i and Ty, < i1} and B =
{Z‘ S ZZO : Rm(x) =1 and Zim = tm+1}.

This definition gives us another way to look at these sets. It is possible
that one can rewrite the claims we proved here using the a-word, and use
the definition in Proposition 11 instead.

10.1.2 Finding a “nice” set of moves

For generalized Wythoff, we have a “nice” set of moves that defines the
game: {(0,k) : k € Zx1} U{(k,0) : k0 € Z>,0 < ¢ —k < t}. For
a = [1;1,¢,1,t,...] there is also a “nice” set of moves (see [4]). However,
for an arbitrary irrational 1 < « < 2, this is not the case. [8] shows the
construction of such a set and here we described the maximal set, but neither
can be considered “nice”. The question is whether such a “nice” set of moves
exists for the case of an arbitrary « or for some subset of the possible a’s.
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