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Abstract

We determine the maximal set of moves for 2-pile take-away games
with prescribed P -positions (bαnc, bβnc) for n ∈ Z≥1 where α ∈ (1, 2)
is irrational, 1/α+1/β = 1. This was done in [3] for the special case α
= golden ratio. We generalize the infinite Fibonacci word to an infinite
wordW with alphabet Σ = {a, b}, in which α replaces the golden ratio,
and we analyze the set {s ∈ Z≥0 : W(s) = b, W(s + x) = a} for any
fixed value of x.

1 Introduction

Generalized Wythoff (see [5]) is a two-player game, played on two piles of
tokens. The two possible types of moves are: a. remove a positive amount of
tokens from one pile, b. remove k > 0 tokens from one pile and ` > 0 from
the other, provided that |k − `| < t, where t ∈ Z≥1 is a parameter of the
game. The player making the last move wins.

The case t = 1, in which the second type of move is to remove the
same amount of tokens from both piles, is the classical Wythoff game [11],
a modification of the game Nim. From among the extensive literature on
Wythoff’s game we mention just three: [2], [5], [12].

Since the game is finite, every position of the game is either an N -position
– a position from which the Next player can win, or a P -position – a position
from which the Previous player can win. The game positions are encoded
in the form (x, y), where x, y are the sizes of the piles and x ≤ y. It
was shown in [5] that the set of P -position, P , for generalized Wythoff is
{(bαnc, bβnc) : n ∈ Z≥0}, where α = [1; t, t, t, . . .] = (2− t+

√
t2 + 4)/2 and
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β = 1 + 1/(α− 1). Notice that the condition β = 1 + 1/(α− 1) is equivalent
to 1/α + 1/β = 1; and when α = [1; t, t, t, . . .], then β = α + t.

We consider two games to be identical if they have the same set of P -
positions. Let

α−1 + β−1 = 1, α irrational, 0 < α < β. (1)

Then 1 < α < 2 < β. In this paper we seek the largest set of moves in games
whose P -positions are {(bnαc, bnβc)}n≥0. The existence of such a game for
an arbitrary irrational α was proven in [8].

For example, [4] describes a nice set of moves for α = [1; 1, t, 1, t, . . .] =
1 + (

√
t2 + 4t − t)/2: A player can (a) remove a positive amount of tokens

from one pile or (b) remove the same amount of tokens, k, from both piles
as long as k /∈ {2, 4, . . . , 2t−2} or (c) remove 2t+ 1 tokens from one pile and
2t+ 2 tokens from the other.

It turns out that the largest set of moves is V \M where V is the set of
all moves consisting of either taking x > 0 from a single pile, or else taking
x > 0, y > 0 from both; and M is the set of moves that allow the players to
move from one P -position to another.

We will consider the set of y’s such that (x, y) ∈ M for any fixed x. It
turns out that there is a strong relation between this set and a generalized
version of the Fibonacci word,W . In fact, we will have to investigate the set
of y’s such that W(y) = b and W(y + x) = a.

This analysis can be done using a generalization of the Fibonacci numer-
ation system (for information on numeration systems, see [6]), and also using
techniques from the theory of words and morphisms of words. In this paper
we chose the latter approach.

2 Preliminaries

An invariant game is a game for which the moves are playable from any
position (see [4]). A symmetric invariant game is a game where the piles are
unordered.

We consider symmetric invariant take-away games, played on two piles of
tokens. We denote a position of the game by a pair (a, b) such that a ≤ b. A
move is also denoted by a pair (x, y) such that x ≤ y. Notice that there can
be two ways of playing this move from the position (a, b): to (a − x, b − y)
or to (a− y, b− x) (we may need to change the order if a− x > b− y).
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We assume throughout, without stating so explicitly, that we can never
take away from any pile more than the pile size.

The set of moves V defined in the introduction can be written as V =
{(x, y) ∈ Z≥0 × Z≥0 : x ≤ y, y 6= 0}. For any subset of moves V ⊆ V, let
P(V ) denote the set of P -positions of the game defined by V (the P - and
N -positions of a game are defined in the introduction).

For example, for Generalized Wythoff,

V = {(0, k) : k ∈ Z≥1} ∪ {(k, `) : k, l ∈ Z≥1, 0 ≤ `− k < t}, (2)

P(V ) = {(bαnc, bβnc) : n ∈ Z≥0},

where α = [1; t, t, t, . . .] and 1/α + 1/β = 1.
Note that the definition of P - and N -positions implies that from a P -

position the players can move only to N -positions and from an N -position
there exists a move to a P -position. In particular, there is no move from any
P -position to any other P -position. We say that the set P of P -positions of
any given game constitute an independent set.

It was shown in [8], that for any irrational α ∈ (1, 2), there exists an
invariant game with a set of moves, V , such that P(V ) = {(bαnc, bβnc) : n ∈
Z≥0}, where α, β satisfy (1). Notice that (1) implies that {bαnc : n ∈ Z≥1},
{bβnc : n ∈ Z≥1} are a pair of complementary Beatty sequences (see [1], [5]).

In this paper we study the following question: Fix an irrational α ∈ (1, 2).
What is the maximal set of moves V ⊆ V such that

P(V ) = {(bαnc, bβnc) : n ∈ Z≥0}, (3)

where β = 1 + 1/(α− 1)?

Proposition 1. Let M ⊆ V be the subset of moves that allow the players to
move from one P -position to another. The maximal set of moves, Vmax, that
satisfies (3) is V \M .

Proof. Since P is an independent set, M ∩V = ∅ for every subset of moves
V that satisfies (3). So V ⊆ V \M .

Take a set V0 that satisfies (3). The existence of an invariant game G with
move set V0 satisfying (3) was proven in [8]. In particular, in G the move set
V0 ⊆ V \M permits to move from every N -position into a P -position.

On the other hand, one cannot move from a P -position to another P -
position using the moves in V \M , so V \M satisfies (3).
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The intuition behind Proposition 1 is that adjoining moves to a given
game from P -positions to N -positions or vice versa, or from N -positions to
N -positions, leaves the set of P -positions invariant, as long as no move from
P to P is adjoined, and no cycles are formed. The conditions k ∈ Z≥1,
` ∈ Z≥1 in (2) prevent cycles. Note that the existence and uniqueness of
Vmax is implied by Proposition 1.

From now on, we will analyze the structure of M .
An algorithm that determines whether a move (x, y) is in M was given

in [3] for the original Wythoff (α = [1; 1, 1, 1, . . .] = (1 +
√

5)/2).
In this paper, we give a formula for all the y’s such that (x, y) ∈ Vmax

for a fixed x, rather than only an algorithm that determines whether any
specific element is in this set (as in [3]).

Observe that there are two ways to connect two P -positions, (bαnc, bβnc)
and (bαmc, bβmc):

1. The direct way: (bαnc − bαmc, bβnc − bβmc), possible when n > m.

2. The crossed way: (bαnc − bβmc, bβnc − bαmc), possible when bαnc >
bβmc.

We define the set M1 as the set of moves that are obtained in the direct way,
and we define M2 for the crossed way similarly. Notice that M = M1 ∪M2.
We will analyze each of these sets separately.

Figure 1 shows a matrix (axy) where axy = 1 if (x, y) ∈ M1, axy = 2 if
(x, y) ∈M2, axy = 3 if (x, y) ∈M1 ∩M2 and axy = 0 otherwise, for the case
α = [1; 1, 2, 3, . . .] = 1.6977746..., β = 2.4331274....

2.1 Notation

For a set A ⊆ Z, let A− x = {a− x : a ∈ A} and A · x = (A− x) ∩ Z≥0.
Let x ∈ R. Denote its integer part by bxc and its fractional part by {x},

so x = bxc+ {x}, bxc ∈ Z and {x} ∈ [0, 1).
Every continued fraction alluded to in the sequel is a simple continued

fraction (with numerators 1, denominators positive integers). See [7, ch. 10].
Let Σ be a finite alphabet of letters. Then, Σ∗ is the free monoid over Σ

and its elements are the finite words over Σ. Let ε ∈ Σ∗ denote the empty
word. For w ∈ Σ∗, let |w| denote the length of w, counting multiplicities,
and let |w|σ denote the number of occurrences of the letter σ ∈ Σ in w. We
refer to the i-th letter of w by w(i) and we use the index 0 for the first letter.

4



HH
Hx y 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

1 0 1 3 2 0 0 2 2 0 0 2 0 0 0 2 2 0 0 0 2 0 0 2 2 0 0
2 1 1 0 0 2 0 0 0 0 2 0 0 2 0 0 0 0 2 0 0 0 2 0 0 2
3 0 1 1 2 0 0 2 0 0 0 2 0 0 0 0 2 0 0 0 2 0 0 0 2
4 1 1 0 0 2 2 0 0 2 2 0 0 2 0 0 0 0 2 0 0 0 2 0
5 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0
6 0 1 1 1 1 2 0 0 2 2 0 0 2 2 0 0 0 2 0 0 0
7 0 0 1 1 0 0 0 2 0 0 0 2 0 0 0 0 0 0 0 2
8 0 0 0 0 1 3 0 0 2 0 0 0 0 2 0 0 0 2 0
9 0 0 0 1 1 0 0 2 0 0 2 2 0 0 0 2 0 0
10 0 0 0 0 1 1 0 0 0 0 0 0 0 2 0 0 0
11 0 0 0 1 1 0 1 3 0 0 2 0 2 0 0 2
12 0 0 0 0 0 1 1 0 0 2 0 0 0 0 0

n 1 2 3 4 5 6 7 8 9 10 11 12 13
bαnc 1 3 5 6 8 10 11 13 15 16 18 20 22
bβnc 2 4 7 9 12 14 17 19 21 24 26 29 31

Figure 1: The sets M1,M2 for α = [1; 1, 2, 3, . . .]

In other words, w = w(0)w(1) · · ·w(|w|−1). General references about words
and morphisms of words are [9], [10].

3 The set M1

Notice that (x, y) ∈M1 if and only if x = bαnc−bαmc and y = bβnc−bβmc
for some n > m. Observe that x = bαnc − bαmc = bα(n −m)c + a, where
a = 1 when {αn} < {α(n−m)} and a = 0 otherwise. Similarly, we can write
y = bβ(n−m)c+ b where b = 1 if and only if {βn} < {β(n−m)}.

Let X (k) be the set of the pairs (a, b) that are obtained by taking n, m
such that n−m = k. Then,

M1 = {(bαkc+ a, bβkc+ b) : k ∈ Z≥1, (a, b) ∈X (k)}.

We now analyze the set X (k). For n = k and m = 0, we get (0, 0) ∈
X (k) for every k. From now on, we assume n > k.

Let ν0 = {αk}, ξ0 = {βk}. Let T2 denote the torus [0, 1) × [0, 1), let
Rab ⊆ T2 be the rectangle defined in Table 1 and let D = {({αn}, {βn}) :
n ∈ Z>k}. Then, (a, b) ∈X (k) if and only if Rab ∩D 6= ∅.
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(a, b) Rab

(0, 1) {(ν, ξ) ∈ T2 : ν > ν0, ξ < ξ0}
(1, 0) {(ν, ξ) ∈ T2 : ν < ν0, ξ > ξ0}
(1, 1) {(ν, ξ) ∈ T2 : ν < ν0, ξ < ξ0} -

6

ν

ξ

(ν0, ξ0)qR10

R11 R01

Table 1: The rectangle Rab ⊆ T2

We now consider two cases. The first case is when the only solution for
the equation

Aα +Bβ + C = 0, A,B,C ∈ Z, (4)

is (A,B,C) = (0, 0, 0). In this case, Kronecker’s theorem (see, for example,
[7, ch. 23]) guarantees that D is dense in T2 and therefore X (k) = {0, 1} ×
{0, 1}.

We now turn to the second case. Note that (4) has a nontrivial solution
if and only if α is a root of a quadratic polynomial with integer coefficients,
and this is true when the continued fraction of α is periodic (see [7, ch. 10]).

Observe that if (4) has a nontrivial solution then there exist A,B,C ∈ Z
such that gcd(A,B,C) = 1 and the solutions of (4) are {(Az,Bz, Cz) : z ∈
Z}. We call (A,B,C) the primitive solution.

Lemma 1. Let (A,B,C) be the primitive solution of (4) and let E :=
{(ν, ξ) ∈ T2 : Aν +Bξ ∈ Z}. Then, the (topological) closure of D is E.

Proof. Notice that A{nα} + B{nβ} = A(nα − bnαc) + B(nβ − bnβc) =
−nC − Abnαc −Bbnβc ∈ Z. Therefore, D ⊆ E.

We prove the case gcd(A,B) = 1. The case gcd(A,B) > 1 follows easily
from this case.

Take u, v ∈ Z such that vA− uB = 1. Consider the continuous function
f : E → S1 given by (ν, ξ) 7→ {uν + vξ} where S1 is the circle [0, 1). Then,

M :=

(
A B
u v

)
, |M | =

∣∣∣∣A B
u v

∣∣∣∣ = 1 =⇒ M−1 ∈M2×2(Z).

This implies that f is a homeomorphism between E and S1.
Let γ = uα + vβ. The image of D under f is

f [D] =
{
{unα + vnβ} : n ∈ Z>k

}
=
{
{γn} : n ∈ Z>k

}
.

If γ ∈ Q, then uα + vβ = c/d for some c, d ∈ Z. This implies that
(ud, vd,−c) is a solution for (4). Then |M | = 0, which contradicts the fact
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that |M | = 1. Hence γ /∈ Q, and therefore f [D] is dense in S1 and D is dense
in E.

Example 1. Figure 2 shows the set E for three cases: (a) 2α + 3β ∈ Z,
(b) 2α− 4β ∈ Z, (c) α− β ∈ Z. Notice that,

1. The direction of the lines depends on the sign of AB.

2. In (b), gcd(A,B) = 2, and therefore E is the union of two circles on
the torus.

2α + 3β ∈ Z
AB > 0

(a)

6

- ν

ξ

1

1

Q
QQ

Q
Q
Q
Q
QQ

Q
Q
Q
Q
QQ

Q
QQ

2α− 4β ∈ Z
AB < 0

(b)

6

- ν

ξ

1

1

��
�

��
�
��
�

��
�
��
�

��
�
��
�

��
�

α− β ∈ Z
AB < 0

(c)

6

- ν

ξ

1

1

�
�
�
�
��

Figure 2: Examples of the set E

We can now complete the characterization of X (k): When AB > 0,
since the slope is negative, we have (0, 1), (1, 0) ∈ X (k) for every k. We
have (1, 1) ∈ X (k) only when (ν0, ξ0) is not on the leftmost segment (in
other words, when |A|ν0 > 1 or |B|ξ0 > 1). We can use similar arguments
for the case AB < 0. The following table summarizes the results:

Sign of AB (a, b) Condition for (a, b) ∈X (k)

AB > 0
(0, 1) Always
(1, 0) Always
(1, 1) |A|ν0 > 1 or |B|ξ0 > 1

AB < 0
(0, 1) |A|(1− ν0) > 1 or |B|ξ0 > 1
(1, 0) |A|ν0 > 1 or |B|(1− ξ0) > 1
(1, 1) Always

Example 2. Consider the case of generalized Wythoff: β = α + t, t ∈ Z.
Then, (1,−1, t) is the primitive solution (see Figure 2(c)). This fits into the
case AB < 0 and since |A| = |B| = 1, X (k) = {(0, 0), (1, 1)} for every
k ∈ Z≥1. We obtain M1 = {(bαkc+ z, bβkc+ z) : k ∈ Z≥1, z ∈ {0, 1}}.
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4 The set M2

4.1 The α-word

It was shown in [3], that for the original Wythoff (α = [1; 1, 1, . . .]), there is a
relation between the set M2 and the infinite Fibonacci word (the Fibonacci
word is defined, for example, in [10, ch. 1]). We start by considering the
natural generalization of the infinite Fibonacci word, F , to any α.

Definition 1. For α ∈ (1,∞)\Q, the α-word,W [α], is the infinite word over
{a, b}, for which the positions of the a’s are given by bαnc−1 (n ∈ Z≥1), and
the positions of the b’s are given by bβnc−1 (n ∈ Z≥1), where 1/α+1/β = 1.

Notice that the two sequences: {bαnc−1 : n ∈ Z≥1}, {bβnc−1 : n ∈ Z≥1}
are a pair of complementary Beatty sequences and therefore partition Z≥0,
and so W [α] is well-defined.

Example 3.

W [[1; 1, 1, 1, . . .]] =abaababaabaababaababaabaababaabaababaaba · · · = F ,
W [[1; 1, 2, 3, . . .]] =ababaababaababaabababaababaababaabababaa · · · .

We now give another definition that is based on morphisms of words:

Definition 2. Let t ∈ Z≥1. The morphism ϕt : {a, b}∗ → {a, b}∗ is defined
by:

ϕt(a) = atb, ϕt(b) = a.

Definition 3. Let τ1, τ2, . . . be an infinite sequence of morphisms such that
for each i, τi(a) starts with an a. Define their infinite product τ1τ2 · · · (a) to
be the word:

lim
n→∞

τ1τ2 · · · τn(a).

Note that since τ1 · · · τn(a) is a prefix of τ1 · · · τn+1(a), the limit in the
previous definition is well-defined. If τi(σ) 6= ε and |τi(a)| > 1 for every i and
σ, then τ1τ2 · · · (a) is an infinite word.

Theorem 1. If α = [1; t1, t2, t3, . . .] then W [α] = ϕt1ϕt2ϕt3 · · · (a).

To prove this theorem we will need the following lemma:
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Lemma 2. Let µ1 be the morphism that sends a 7→ b and b 7→ a and let
µ2 be the morphism that sends a 7→ bta and b 7→ b for some t ∈ Z≥1. Let
α ∈ (1,∞) \Q. Then,

µ1(W [α]) =W [1 + 1/(α− 1)], µ2(W [α]) =W [α + t].

As a corollary,
ϕt(W [α]) =W [1 + 1/(α− 1 + t)].

Proof. Let β = 1 + 1/(α − 1) such that 1/α + 1/β = 1. Therefore, the
sequences {bnαc−1}∞n=1, {bnβc−1}∞n=1 partition the set Z≥0. Since {bnαc−
1}∞n=1 are the positions of the a’s ofW [α] then {bnβc−1}∞n=1 are the positions
of the a’s of µ1(W [α]) and therefore µ1(W [α]) =W [β].

For µ2, notice that the positions of the a’s of W [α + t] are given by
b(α+ t)nc − 1 = bαnc − 1 + nt. So in order to go from W [α] to W [α+ t] we
have to insert bt to the left of each a. This is exactly the morphism µ2.

The corollary follows immediately:

ϕt(W [α]) = µ1µ2(W [α]) = µ1(W [α + t]) =W [1 + 1/(α− 1 + t)].

Proof of Theorem 1. Define αn = [1; tn+1, tn+2, . . .] for n ∈ Z≥0. The
previous lemma implies that ϕtn(W [αn]) =W [αn−1] and therefore

W [α] =W [α0] = ϕt1ϕt2 · · ·ϕtn(W [αn]).

Since a is a prefix of W [αn], ϕt1ϕt2 · · ·ϕtn(a) is a prefix of W [α]. Sending
n→∞, we get the requested result.

Fix α ∈ (1, 2) \ Q, α = [1; t1, t2, . . .]. Define a sequence of finite words:
W−1 := b, W0 := a and Wn := ϕt1 · · ·ϕtn(a) for n ≥ 1 and denote W :=
W [α] = limn→∞Wn. Let αn = [1; tn+1, tn+2, . . .] as in the proof of Theorem 1.

For any word w of length ≥ 2, write w = wbwe where |we| = 2.
The following proposition describes the basic properties of the sequence

Wn. These are the natural generalizations of known properties of the (finite)
Fibonacci words.

Proposition 2.

(a). For n ≥ 0, Wn+1 = (Wn)tn+1Wn−1.

(b). |Wn| = pn, |Wn|a = qn where pn/qn are the convergents of the continued
fraction of α.
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(c). p−1 = 1, p0 = 1, pn+1 = tn+1pn + pn−1 (for n ≥ 0).

(d). q−1 = 0, q0 = 1, qn+1 = tn+1qn + qn−1 (for n ≥ 0).

(e). For n ≥ −1, (WnWn+1)b = (Wn+1Wn)b.

(f). For n ≥ 1, if 2 | n, then (Wn)e = ba and if 2 - n then (Wn)e = ab.

(g). (Wn)b is a palindrome for n ≥ 1.

Proof. Items (a)-(d) follows from the definition of Wn, and items (e)-(g)
can be proven by induction on n.

4.2 Ex

As we mentioned before, we want to find a formula for the elements of M2 in
a fixed row, x. Let Ex be the set of these positions: Ex = {y ≥ x : (x, y) ∈
M2}. Let g(n) = bαnc, h(n) = bβnc. Notice that g−1(n) = dn/αe (when
n ∈ Im g), h−1(n) = dn/βe (when n ∈ Imh).

The following proposition describes the relation between the set Ex and
the α-word. Notice that [3] describes a simpler relation for the case α =
[1; 1, 1, . . .]. A similar relation can be given also for generalized Wythoff
(α = [1; t, t, . . .], t ∈ Z≥1. See Section 9.2), but unfortunately the case of an
arbitrary α is more complicated.

Let A0
0 (B0

0) be the set of positions of the a’s (b’s) of W . The reason for
this notation will become clear later. Then, B0

0 ∩ (A0
0
· x) is the set of s’s

such that W(s) = b and W(s+ x) = a.

Proposition 3. Let x ∈ Z≥1. Then,

Ex = {hg−1(s+ x+ 1)− gh−1(s+ 1) : s ∈ B0
0 ∩ (A0

0
· x)}.

Proof. Suppose that y ∈ Ex. Then, y = h(n)− g(m) and x = g(n)− h(m).
Choose s = h(m) − 1. Then s ∈ B0

0, s + x ∈ A0
0, so s ∈ B0

0 ∩ (A0
0
· x).

Moreover, y = h(n) − g(m) = hg−1g(n) − gh−1h(m) = hg−1(s + x + 1) −
gh−1(s+ 1).

The other direction is similar.
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5 The sets Ami , Bmi
5.1 Motivation

As we saw in the last section, we have to analyze the set B0
0 ∩ (A0

0
· x).

Consider the case α = [1; 1, 2, 3, . . .], x = 2. We have B0
0 ∩ (A0

0
· 2) =

{3, 8, 13, 20, 25, 30, 37, . . .}. In the following α-word, these positions are shown
as B: abaBaabaBaabaBaababaBaabaBaabaBaababaBaa · · · . Theorem 1
implies thatW = ϕ1ϕ2(W [α2]), soW consists of the blocks ϕ1ϕ2(a) = ababa,
ϕ1ϕ2(b) = ab and the order of the blocks is determined by W [α2]. Notice
that the B’s above are exactly the second b’s of each block ababa. This fact
will follow from the results of Section 7.

Therefore we would like to consider “higher resolutions” of the α-word.
These resolutions will be represented using the sets Ami , Bmi . We will start
by constructing some tools that will help us to define these sets.

5.2 Partitions and morphisms

Let w be an infinite word over some finite alphabet Σ such that all the letters
of Σ are in w. For every σ ∈ Σ, take the set Pw(σ) := {y ∈ Z≥0 : w(y) = σ}.
Observe that the sets Pw(σ) for σ ∈ Σ form a partition of Z≥0.

Definition 4. The partition induced by w is Pw := {Pw(σ) : σ ∈ Σ}.

Remark. In this paper we do not allow partitions that contain the empty
set. Therefore, we defined Pw only when all the letters of Σ appear in w.

Definition 5. Let Σ be some finite alphabet and let τ : Σ∗ → Σ∗ be a
morphism. Consider the new alphabet Στ := {σi : σ ∈ Σ, 0 ≤ i < |τ(σ)|}.
The indicator morphism of τ is the morphism Iτ : Σ∗ → Σ∗τ where Iτ (σ) =
σ0σ1 · · ·σ|τ(σ)|−1 for every σ ∈ Σ.

Example 4. Consider the example in the “Motivation” section (Section 5.1).

For τ = ϕ1ϕ2, we have Στ = {a0, a1, a2, a3, a4, b0, b1} and a
Iτ7−→ a0a1a2a3a4,

b
Iτ7−→ b0b1. Observe that if w = Iτ (W [α2]) then Pw(a3) is the set of the

positions of the B’s, and therefore Pw(a3) = B0
0 ∩ (A0

0
· 2).

Consider an infinite word w. The information in Iτ (w) is larger than the
information in τ(w) in the sense that if we know the letter of Iτ (w) in some
position, then we also know the letter of τ(w) in the same position. This is
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stated formally in the following definition and proposition, using the notion
of the induced partition.

Definition 6. Let A , B be two partitions of a set C. We say that A is
finer than B, and we write A ≤ B, if for every set A ∈ A , there exists a
set B ∈ B such that A ⊆ B.

It is easy to see that the relation ”finer than” is a partial order relation
over the set of partitions of C.

Proposition 4. Let w be an infinite word and let τ : Σ∗ → Σ∗ be a morphism.
Then PIτ (w) ≤Pτ(w).

Proof. This follows from the fact that τ(w) and Iτ (w) consist of blocks of
the same lengths, in the same order, and in Iτ each letter appears once.

5.3 Definition of Ami , Bmi
Fix m ∈ Z≥0. The morphism Φm := ϕt1ϕt2 · · ·ϕtm satisfies: |Φm(a)| =
|Wm| = pm, |Φm(b)| = |Wm−1| = pm−1 (see Proposition 2(b)). Therefore,

the indicator morphism of Φm, ηm := IΦm , maps: a
ηm7−→ a0a1 · · · apm−1 and

b
ηm7−→ b0b1 · · · bpm−1−1.
Let Hm = ηm(W [αm]) and denote the elements of the partition induced

by Hm by: Am0 ,Am1 , · · · ,Ampm−1,Bm0 ,Bm1 , · · · ,Bmpm−1−1 respectively.

Example 5. Consider Example 4 again. We have τ = Φ2, Iτ = η2, w = H2

and B0
0 ∩ (A0

0
· 2) = Pw(a3) = A2

3.

Observe that A0
0 (B0

0) is indeed the set of positions of the a’s (b’s) of W
as we defined before.

There is an equivalent construction for these sets, that uses a generaliza-
tion of Zeckendorf sums, but we will not use it here. See Section 10.1.1 for
details.

5.4 Properties

The following proposition gives a formula for the sets Ami :

Proposition 5. For m ∈ Z≥0 and 0 ≤ i < pm, we have:

Ami = {bαmncpm−1 + n(pm − pm−1)− pm + i : n ∈ Z≥1}.

12



Proof. Observe that the n-th ai of Hm = ηm(W [αm]) is generated by the
n-th a of W [αm]. The position of this a is bαmnc − 1. The first bαmnc − 1
letters of W [αm] contain (n− 1) a’s and (bαmnc − n) b’s. Each a generates
pm letters, and each b generates pm−1 letters. The claim follows.

Observation 1. Let m ∈ Z≥0, 0 ≤ j ≤ i < pm. Then, Ami − j = Ami · j =
Ami−j.

Proposition 6. PH0 ≥PH1 ≥PH2 ≥ · · · .

Proof. Fix m ∈ Z≥0. We have to show that PHm ≥PHm+1 .
Let τ = ϕtm+1 . Notice that |Φm(w)| = |ηm(w)| for any word w ∈ {a, b}∗.

In particular, |Φm+1(σ)| = |ηm(τ(σ))| for σ ∈ {a, b}. This implies that
Iηmτ = IΦm+1 = ηm+1, and so Hm+1 = Iηmτ (W [αm+1]). Using Proposition 4,
we obtain that PHm+1 = PIηmτ (W[αm+1]) ≤ Pηmτ(W[αm+1]) = Pηm(W[αm]) =
PHm .

Observation 2. If m > 0 and y ∈ Ami or y ∈ Bmi , then W(y) =W(i).

Proof. The first part follows directly from the fact that PHm ≤ PH0 =
{A0

0,B0
0} and the fact that y, i ∈ Ami . For the second part, notice that both

W tm+1
m Wm−1, Wm−1 are prefixes of W . Therefore, W(i) = W(i + tm+1pm)

and the claim follows since i+ tm+1pm ∈ Bmi .

6 Shifts in W
As we saw in Section 4.2, we have to examine the set B0

0∩ (A0
0
· x). We start

with a simpler task: examining the set A0
0 ∆ (A0

0
· x), where ∆ denotes the

symmetric difference. This is the set of y’s for which W(y) 6=W(y + x).
Notice that B0

0 ∩ (A0
0
· x) = B0

0 ∩ (A0
0 ∆ (A0

0
· x)).

Our goal is to represent A0
0 ∆ (A0

0
· x) using the basic sets Ami (for these

sets we already have an explicit formula – Proposition 5).
We start with x = pk for k ∈ Z≥0 and then we generalize to an arbitrary

x ∈ Z≥1.

6.1 Shifts by pk, k ∈ Z≥0

Lemma 3. Let k ∈ Z≥0. If 0 ≤ i < pk+1 − 2, then W(i) = W(i + pk). On
the other hand, if pk+1 − 2 ≤ i < pk+1, then W(i) 6=W(i+ pk).

13



Proof. Notice thatWk+1Wk is a prefix ofW . By Proposition 2(e), (WkWk+1)b

is also a prefix. This implies the first part. The second part follows from
Proposition 2(f).

The following proposition describes the set A0
0 ∆ (A0

0
· pk). It follows

from the previous lemma and the fact that Hk+1 consists of the blocks
a0a1 · · · apk+1−1, b0b1 · · · bpk−1.

Proposition 7. For k ∈ Z≥0, A0
0 ∆ (A0

0
· pk) = Ak+1

pk+1−1 ∪· Ak+1
pk+1−2.

6.2 Arbitrary x ∈ Z≥1

To answer the question for an arbitrary x, we will use the following idea: A
generalization of Zeckendorf sums (see [13], [5], [6]) can be used to represent
x as a sum of elements from the set Π := {p0, p1, p2, . . .}. Then, we use
Proposition 7 for each of the summands.

Apply the following algorithm on x: While x 6= 0, find the largest k such
that pk ≤ x and subtract pk from x. Formally, define two sequences:

x0 := x,

ki := max{k ∈ Z≥0 : pk ≤ xi−1} (i ≥ 1),

xi := xi−1 − pki (i ≥ 1).

Notice that if xi = 0 for some i, then the two sequences kj, xj are not
defined for j > i. Denote this i by n. Observe that we get a representation
of x as a sum of elements from Π: x = pk1 + pk2 + · · ·+ pkn .

Example 6. Consider the case α = [1; 1, 2, 3, . . .], Π = {1, 2, 5, 17, 73, . . .},
x = 12 = 5 + 5 + 2. Here the algorithm yields:

i 0 1 2 3
xi 12 7 2 0
ki 2 2 1
pki 5 5 2

Let 1 ≤ i ≤ n. Denote Xi := (A0
0
· xi−1) ∆ (A0

0
· xi) and observe that

A0
0 ∆ (A0

0
· x) = X1 ∆ X2 ∆ · · · ∆ Xn. Proposition 7 implies that

Xi = (A0
0 ∆ (A0

0
· pki)) · xi = (Aki+1

pki+1−1 ∪· A
ki+1
pki+1−2) · xi.
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The fact that xi = xi−1− pki ≤ pki+1− 1− pki ≤ pki+1− 2 and Observation 1
imply that Xi = Aki+1

pki+1−xi−1 ∪· A
ki+1
pki+1−xi−2. Therefore,

A0
0 ∆ (A0

0
· x) =

n

∆
i=1

(Aki+1
pki+1−xi−1 ∪· A

ki+1
pki+1−xi−2).

Example 7. For the case in the previous example, we get:

A0
0 ∆ (A0

0
· 12) = (A3

9 ∪· A3
8) ∆ (A3

14 ∪· A3
13) ∆ (A2

4 ∪· A2
3).

7 The set B0
0 ∩ (A0

0
· x)

For x = 1, since each b of W is followed by an a, B0
0 ⊆ (A0

0
· 1) and so

B0
0 ∩ (A0

0
· 1) = B0

0 = A1
t1

.
We now assume x > 1. Notice that B0

0∩(A0
0
· x) = B0

0∩
[
A0

0 ∆ (A0
0
· x)

]
.

Continue with the notation of the previous section. We have:

B0
0 ∩ (A0

0
· x) =

n

∆
i=1

[
(B0

0 ∩ A
ki+1
pki+1−xi−1) ∪ (B0

0 ∩ A
ki+1
pki+1−xi−2)

]
.

Observation 2 implies that B0
0 ∩ Ami is Ami if W(i) = b and ∅ otherwise. We

now investigate W(pki+1 − xi − z) for z ∈ {1, 2}.

Observation 3. If xi− z′ ≥ 0 for z′ ∈ {1, 2}, then W(xi− z′) =W(x− z′).

Proof. By induction on i:
The claim holds trivially for i = 0.
For i > 0, if xi − z′ ≥ 0 then also xi−1 − z′ ≥ 0. Notice that xi−1 − z′ =

(xi − z′) + pki and xi − z′ ≤ xi − 1 ≤ xi−1 − 2 < pki+1 − 2. By Lemma 3 and
the induction hypothesis, W(xi − z′) =W(xi−1 − z′) =W(x− z′).

Observation 4. If xi + z ≥ 3 for z ∈ {1, 2}, then W(pki+1 − xi − z) =
W(x+ z − 3).

Proof. Proposition 2(g) implies that W(pki+1 − xi − z) = W(xi + z − 3)
and by the last observation (for z′ = 3 − z), we get: W(pki+1 − xi − z) =
W(x+ z − 3).

We now consider three cases: (1) W(x − 1) = b, (2) W(x − 2) = b and
(3) W(x− 1) =W(x− 2) = a.
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Consider the first case: For 1 ≤ i < n we have xi ≥ 1 and by Observa-
tion 4,

W(pki+1 − xi − 2) =W(x− 1) = b.

Notice that b =W(x−1) =W(xn−1−1) =W(pkn−1). This means that
2 - kn (see Proposition 2(f)). Therefore,W(pkn+1−xn−2) =W(pkn+1−2) =
b.

Hence, for 1 ≤ i ≤ n, W(pki+1 − xi − 2) = b. Since W does not contain
bb as a factor, we get that W(pki+1 − xi − 1) = a. This implies

B0
0 ∩ (A0

0
· x) =

n

∆
i=1

Aki+1
pki+1−xi−2.

The other cases are analyzed similarly. Formulas for the x’s of each
case can be obtained by considering the blocks of H1. The following table
summarizes the three cases.

Case W(x− 2),W(x− 1) x− 2 ∈ B0
0 ∩ (A0

0
· x)

1 a, b A1
t1−1 ∆

n
i=1A

ki+1
pki+1−xi−2

2 b, a A1
t1

= B0
0 ∆

n
i=1A

ki+1
pki+1−xi−1

3 a, a A1
i (i < t1 − 1), A1

t1
= B0

0

B1
0 = A2

(t1+1)t2

Example 8. For the case described in Example 7, we have W(12 − 1) = b
and therefore this is Case 1. This implies B0

0 ∩ (A0
0
· 12) = A3

8 ∆ A3
13 ∆ A2

3.

8 B0
0∩ (A0

0
· x) as a disjoint union of basic sets

Our goal now is to represent B0
0 ∩ (A0

0
· x) as a disjoint union of sets of the

form Ami , instead of taking their symmetric difference as we did in Section 7.
Such a representation seems to be much better. However, in order to attain
this, we will have to understand better the structure formed by the sets Ami ,
Bmi .

8.1 The structure of Ami , Bmi
Notice that Hm = ηm(W [αm]) = ηmϕtm+1(W [αm+1]), so both Hm, Hm+1

consist of blocks of lengths pm+1, pm in an order determined by W [αm+1].
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By considering these blocks we obtain:

Ami = Am+1
i ∪· Am+1

i+pm
∪· · · · ∪· Am+1

i+(tm+1−1)pm
∪· Bm+1

i , Bmi = Am+1
i+tm+1pm

.

Therefore,

Ami = Am+1
i ∪· Am+1

i+pm
∪· · · · ∪· Am+1

i+(tm+1−1)pm
∪· Am+2

i+tm+2pm+1
. (5)

Definition 7. A partition tree of a set C 6= ∅ is a tree, in which every node
is a subset of C, the root is C, and for every node A, which is not a leaf, the
set of children of A form a partition of A.

Consider the tree of all the sets Ami ⊆ B0
0, where there is an edge from

Ami to each of the sets in the right-hand side of (5). We denote this tree by
Tα. Notice that the root of the tree is A1

t1
= B0

0. Let prA denote the parent
of a set A in the tree. If A is the root, we define prA := A. Notice that Tα

is a partition tree.

Example 9. Figure 3 shows the tree Tα for α = [1; 1, 2, 3, . . .]. For example,
prA3

16 = A1
1 and prA3

1 = A2
1.

A1
1             

A2
1
!!!!

A3
1
...

%
%
A3

6
...

e
e
A3

11
...

aaaa
A4

69
...

A2
3
!!!!

A3
3
...

%
%
A3

8
...

e
e
A3

13
...

aaaa
A4

71
...

````````````̀
A3

16
�������

A4
16
...

"
""

A4
33
...

A4
50
...

b
bb
A4

67
...

XXXXXXX
A5

381
...

Figure 3: Tα for α = [1; 1, 2, 3, . . .]

Corollary 1. Consider the node Ami in Tα, where Ami is not the root. We
have

prAmi = Ami mod pm−1
, where m =

{
m− 1, i < pm−1 · tm
m− 2, i ≥ pm−1 · tm

.

Proof. This follows directly from (5).
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8.2 The Chain Proposition

Notice that for Case 3 (see table on page 16) we have B0
0 ∩ (A0

0
· x) = A1

t1
.

So we focus on the first two cases. Let Z = 2 for Case 1, and Z = 1 for
Case 2. Denote ri := pki+1 − xi − Z. Then, B0

0 ∩ (A0
0
· x) = ∆

n
i=1Aki+1

ri
.

Proposition 8. For 1 ≤ i < n, prAki+1
ri
⊆ prAki+1+1

ri+1 .

In order to prove Proposition 8 we first prove the following two lemmas:

Lemma 4. Let 1 ≤ k ≤ m, m ≡ k (mod 2), 1 ≤ i ≤ pk. Then, Ampm−i ⊆
Akpk−i.

Proof. By Equation (5), we have that Akpk−i ⊇ A
k+2
pk+1·tk+2+(pk−i) = Ak+2

pk+2−i.

Similarly, Ak+2
pk+2−i ⊇ A

k+4
pk+4−i and we get the following sequence:

Akpk−i ⊇ A
k+2
pk+2−i ⊇ A

k+4
pk+4−i ⊇ · · · .

Clearly Ampm−i is one of the elements of this sequence and so Ampm−i ⊆ A
k
pk−i.

Lemma 5. Let k ≥ 2, 0 ≤ i < pk − pk−1. If both Aki , Aki+pk−1
are nodes of

Tα, then prAki ⊆ prAki+pk−1
.

Proof. Corollary 1 implies that prAki = Ak1j , prAki+pk−1
= Ak2j for some j,

where k1, k2 ∈ {k − 1, k − 2}. Since i < i+ pk−1, we have k2 ≤ k1.
If k1 = k2, then the claim holds. Otherwise, k1 = k− 1, k2 = k− 2. This

implies j < pk−2, and so prAki = Ak−1
j ⊆ prAk−1

j = Ak−2
j = prAki+pk−1

.

Proof of Proposition 8. We use the following notation:

a := xi + Z, k := ki + 1,
b := xi+1 + Z, ` := ki+1 + 1.

In this notation, we have to show: prAkpk−a ⊆ prA`p`−b.
We have p`−1 < a ≤ p` + 1 and p` − b = p` + p`−1 − a. Note that all the

sets that are mentioned in the proof are subsets of B0
0 and therefore they are

nodes in Tα.
Consider the following 4 cases: (a) ` = 1, (b) k ≡ `+1 (mod 2), (c) a ≤ p`

and k ≡ ` (mod 2), (d) a = p` + 1 and k ≡ ` (mod 2).
(a) is trivial. We show here the proof of (c). (b), (d) are proven similarly

using applications of Lemma 4, Lemma 5 and Corollary 1.
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Suppose that a ≤ p` and k ≡ ` (mod 2). Lemma 4 implies that Akpk−a ⊆
A`p`−a. Therefore, prAkpk−a ⊆ prA`p`−a. Lemma 5 implies that

prAkpk−a ⊆ prA`p`−a ⊆ prA`p`−1+p`−a = prA`p`−b.

8.3 A disjoint union

Proposition 8 implies that the sets that participate in the symmetric differ-
ence satisfy the following property:

prAk1+1
r1
⊆ prAk2+1

r2
⊆ prAk3+1

r3
⊆ · · · ⊆ prAkn+1

rn . (6)

Theorem 2. The set B0
0 ∩ (A0

0
· x) can be written as a disjoint union of

O(Σk1+1
i=1 ti) sets of the form Ami .

Notice that if ti < T for all i ∈ Z≥1, then the number of sets is O(T log x).

Proof. Define a partition subtree to be a subtree which is also a partition
tree. In other words, every node of the subtree which is not a leaf, should
have the same set of children as the same node in the original partition tree.

Consider the minimal partition subtree of Tα that contains the node
Ak1+1
r1

. Denote it by Tx. This tree consists of the nodes priAk1+1
r1

(i ∈ Z≥1)
and their children. Notice that (6) guarantees that all the sets Aki+1

ri
are

nodes in the tree. The tree has at most k1 + 1 layers, so the number of nodes
is at most

∑k1+1
i=1 (ti + 1). It is easy to see that in every finite partition tree,

each element of the algebra (of sets) generated by the nodes, is a disjoint
union of leaves.

Notice that Theorem 2 can be used to write an algorithm that gets x and
outputs a list of sets Ami whose disjoint union is B0

0 ∩ (A0
0
· x): Compute the

tree Tx and mark the sets Aki+1
ri

in it. Visit the nodes of the tree, starting
from the root, and if an internal node is marked, replace its mark with its
children. Then, output the marked leaves.

Example 10. Consider the sets that appear in Example 8. The minimal
partition subtree that contains A3

8 is shown in Figure 4. We have B0
0 ∩

(A0
0
· 12) = A3

8 ∆ A3
13 ∆ A2

3 = A3
3 ∪· A4

71.
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A1
1
���

A2
1 A2

3
!!!!

A3
3

%
%
A3

8
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e
A3

13

aaaa
A4

71

HHH
A3

16

Figure 4: T12

9 Ex as a union of basic sets

We saw that B0
0 ∩ (A0

0
· x) = ·⋃ n′

j=1A
mj
ij

for some n′, i1,m1, . . . , in′ ,mn′ .

Proposition 3 implies that Ex =
⋃n′

j=1 F [Amjij ] where F (s) = hg−1(s + x +

1) − gh−1(s + 1). In this section we give a somewhat better representation
of Ex.

9.1 The general case

We start by computing h−1(s + 1) for s ∈ Ami ⊆ B0
0. Suppose that s is the

n-th element of Ami . It is generated (when applying Φm) by the n-th a of
W [αm]. Let j = h−1(i + 1) be the number of b’s in the first i + 1 letters of
Φm(a). Since the n-th a of W [αm] is in position bαmnc− 1, there are (n− 1)
a’s and (bαmnc − n) b’s before this a. Each a contributes (when applying
Φm) (pm − qm) b’s and each b contributes (pm−1 − qm−1) b’s. This implies:

h−1(s+ 1) = (pm − qm) · (n− 1) + (pm−1 − qm−1) · (bαmnc − n) + j.

In other words, there are constants A,B,C ∈ Z such that h−1(s + 1) =
Abαmnc+Bn+ C.

In order to compute g−1(s+x+1) we will need the following generalization
of a proposition that appears in [3] (it is proven there for the case α =
[1; 1, 1, . . .]):

Proposition 9. If bua is a factor of W where n = |u| then |u|a = |w|a and
|u|b = |w|b where w is the prefix of W of length n.

Proof. It suffices to prove that |u|b = |w|b as |u| = |w|. Denote by j the
index of the first b of the bua factor.

Let X = {iβ : i ∈ Z}. Notice that (z + 1, z + 2) ∩ X 6= ∅ if and only if
W(z) = b. Let f : R → Z, f(x) = |(x, x+ n) ∩X|. In other words, f(x) is

20



the number of points from X in the interval (x, x+ n). It is easy to see that
f is periodic with period β and that f is increasing on the interval [0, β).

Notice that |u|b = f(j + 2) and |w|b = f(1). Since we have an a after the
u it implies that f(j + 3) ≤ f(j + 2). We also know that there is a b before
the u and therefore there is r ∈ Z such that j + 1 < βr < j + 2. Hence

βr < j + 2 < βr + 1 < j + 3 < β(r + 1).

But f is increasing in the interval [βr, β(r + 1)) and so

f(j + 2) ≤ f(βr + 1) ≤ f(j + 3) ≤ f(j + 2).

We conclude that |w|b = f(1) = f(βr + 1) = f(j + 2) = |u|b.

Notice that W(s− 1) = a. We can give a formula for g−1(s) in a similar
way to what we did for h−1(s + 1). Let w be the prefix of length x− 1. By
the last proposition, we have g−1(s + x + 1) = g−1(s) + |w|a + 1 and so we
get a formula for g−1(s+ x+ 1) that has the form A′bαmnc+B′n+ C ′.

We conclude that the set Ex can be written as a union of sets of the form

{h (A′bαmnc+B′n+ C ′)− g (Abαmnc+Bn+ C) : n ∈ Z≥1} ,
where A,B,C,A′, B′, C ′ ∈ Z and m ∈ Z≥1.

Example 11. For α = [1; 1, 2, 3, . . .] we have E12 = F [A3
3] ∪ F [A4

71] and

F [A3
3] = {h(3bα3nc+ 7n)− g(2bα3nc+ 5n− 5) : n ∈ Z≥1},

F [A4
71] = {h(10bα4nc+ 33n+ 7)− g(7bα4nc+ 23n) : n ∈ Z≥1},

α3 = [1; 4, 5, 6, . . .] ≈ 1.23845, α4 = [1; 5, 6, 7, . . .] ≈ 1.19369.

9.2 The case α = [1; t, t, t, . . .]

In turns out that in the case α = [1; t, t, t, . . .] there is a simpler relation
between Ex and B0

0 ∩ (A0
0
· x):

Proposition 10. Let x ∈ Z≥1. There exists C ∈ Z such that F (s) = ts+C
for any s ∈ B0

0 ∩ (A0
0
· x).

Proof. Let s ∈ B0
0∩(A0

0
· x). Notice that β = α+ t and so h(y) = g(y)+yt.

Therefore, h(g−1(s+x+1)) = g−1(s+x+1)t+s+x+1 and g(h−1(s+1)) =
s+ 1− h−1(s+ 1)t. We also have h−1(s+ 1) + g−1(s) = s+ 1. This implies,
F (s) = hg−1(s+x+1)−gh−1(s+1) = x+[g−1(s+ x+ 1)− g−1(s) + s+ 1] t.
Proposition 9 implies that g−1(s+ x+ 1)− g−1(s) does not depend on s and
this completes the proof.
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10 Conclusion

We saw that the maximal set of moves that defines a game with P -positions
(bαnc, bβnc) is V \ (M1 ∪M2). We represented this set by a matrix (axy)
where axy indicates whether (x, y) ∈M1 and whether (x, y) ∈M2.

We examined the structure of any fixed row, x, of this matrix. The set
M1 may contribute at most 4 elements for each row. We gave a description
of M1 that facilitates computing these elements. For the set M2, we defined
Ex = {y ≥ x : (x, y) ∈M2}. We saw that Ex is related to the α-word in the
following manner: Ex = F [B0

0 ∩ (A0
0
· x)] where F (s) = hg−1(s + x + 1) −

gh−1(s+ 1).
The next step was to investigate the set B0

0 ∩ (A0
0
· x). In order to do it,

we wrote x as a sum of pi’s. In the process, we obtained two sequences: x =
x0 > x1 > . . . > xn = 0 and k1 ≥ k2 ≥ . . . ≥ kn, such that

∑n
j=i+1 pkj = xi.

It turned out that there are 3 cases:

1. When W(x− 1) = b, we have B0
0 ∩ (A0

0
· x) = ∆

n
i=1A

ki+1
pki+1−xi−2.

2. When W(x− 2) = b, we have B0
0 ∩ (A0

0
· x) = ∆

n
i=1A

ki+1
pki+1−xi−1.

3. When W(x− 1) =W(x− 2) = a, we have B0
0 ∩ (A0

0
· x) = B0

0 = A1
t1

.

For the first two cases, we provided an algorithm that converts the sym-
metric difference to a disjoint union of sets of the form Ami .

Then we showed a way to simplify F [Ami ], and we concluded that Ex is
the union of sets of the form

{h (A′bαmnc+B′n+ C ′)− g (Abαmnc+Bn+ C) : n ∈ Z≥1} .

Examples 6, 7, 8, 10, 11 show the process for the case α = [1; 1, 2, 3, . . .]
and x = 12.

10.1 Further directions of research

10.1.1 Zeckendorf sums

Let x ∈ Z≥0. It is well known (see, for example, [6] and [5]) that x can be
written as x =

∑∞
i=0 x̃ipi where 0 ≤ x̃i ≤ ti+1 such that if x̃i = ti+1 for some

i > 0 then x̃i−1 = 0. Moreover, this representation is unique.

Definition 8. For x ∈ Z≥0, define Rm(x) =
∑m−1

i=0 x̃ipi.
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The following proposition, which we do not prove here, gives another
definition for the sets Ami , Bmi :

Proposition 11. Ami = {x ∈ Z≥0 : Rm(x) = i and x̃m < tm+1} and Bmi =
{x ∈ Z≥0 : Rm(x) = i and x̃m = tm+1}.

This definition gives us another way to look at these sets. It is possible
that one can rewrite the claims we proved here using the α-word, and use
the definition in Proposition 11 instead.

10.1.2 Finding a “nice” set of moves

For generalized Wythoff, we have a “nice” set of moves that defines the
game: {(0, k) : k ∈ Z≥1} ∪ {(k, `) : k, ` ∈ Z≥1, 0 ≤ ` − k < t}. For
α = [1; 1, t, 1, t, . . .] there is also a “nice” set of moves (see [4]). However,
for an arbitrary irrational 1 < α < 2, this is not the case. [8] shows the
construction of such a set and here we described the maximal set, but neither
can be considered “nice”. The question is whether such a “nice” set of moves
exists for the case of an arbitrary α or for some subset of the possible α’s.
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