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Abstract. Motivated by a recent conjecture of the second author related to

the ternary partition function, we provide an elegant characterization of the
values bm(mn) modulo m where bm(n) is the number of m-ary partitions of

the integer n and m ≥ 2 is a fixed integer.
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1. Introduction

Congruences for partition functions have been studied extensively for the last
century or so, beginning with the discoveries of Ramanujan [9]. In this note, we
will focus our attention on congruence properties for the partition functions which
enumerate restricted integer partitions known as m-ary partitions. These are par-
titions of an integer n wherein each part is a power of a fixed integer m ≥ 2.
Throughout this note, we will let bm(n) denote the number of m-ary partitions of
n.

As an example, note that there are five 3-ary partitions of n = 9 :

9, 3 + 3 + 3, 3 + 3 + 1 + 1 + 1,

3 + 1 + 1 + 1 + 1 + 1 + 1, 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1

Thus, b3(9) = 5.
In 1940, Mahler [8] found an asymptotic estimate of bm(n) as n tends to infinity.

Mahler’s estimate was improved significantly by de Bruijn [5] in 1948.
In the late 1960s, Churchhouse [3, 4] initiated the study of congruence properties

of binary partitions (m-ary partitions with m = 2). By his own admission, he did
so serendipitously. To quote Churchhouse [4], “It is however salutary to realise that
the most interesting results were discovered because I made a mistake in a hand
calculation!”

Within months, other mathematicians proved Churchhouse’s conjectures and
proved natural extensions of his results. These included Rødseth [10] who extended
Churchhouse’s results to include the functions bp(n) where p is any prime as well as
Andrews [2] and Gupta [6, 7] who proved that corresponding results also held for
bm(n) where m could be any integer greater than 1. As part of an infinite family
of results, these authors proved that, for any m ≥ 2 and any nonnegative integer
n, bm(m(mn− 1)) ≡ 0 (mod m).

We now fast forward forty years. In 2012, the second author conjectured the fol-
lowing absolutely remarkable result related to the ternary partition function b3(n):
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• For all n ≥ 0, b3(3n) is divisible by 3 if and only if at least one 2 appears
as a coefficient in the base 3 representation of n.
• Moreover, b3(3n) ≡ (−1)j (mod 3) whenever no 2 appears in the base 3

representation of n and j is the number of 1s in the base 3 representation
of n.

This conjecture is remarkable for at least two reasons. First, it provides a complete
characterization of b3(3n) modulo 3. Such characterizations in the world of
integer partitions are rare. Secondly, the result depends on the base 3 representation
of n and nothing else.

Just to “see” what the second author saw, let’s quickly look at some data related
to this conjecture.

n Base 3 Representation of n b3(3n) b3(3n) (mod 3)

1 1× 30 2 2
2 2× 30 3 0
3 0× 30 + 1× 31 5 2
4 1× 30 + 1× 31 7 1
5 2× 30 + 1× 31 9 0
6 0× 30 + 2× 31 12 0
7 1× 30 + 2× 31 15 0
8 2× 30 + 2× 31 18 0
9 0× 30 + 0× 31 + 1× 32 23 2
10 1× 30 + 0× 31 + 1× 32 28 1
11 2× 30 + 0× 31 + 1× 32 33 0
12 0× 30 + 1× 31 + 1× 32 40 1
13 1× 30 + 1× 31 + 1× 32 47 2
14 2× 30 + 1× 31 + 1× 32 54 0
15 0× 30 + 2× 31 + 1× 32 63 0

In recent days, the authors succeeded in proving this conjecture. Thankfully, the
proof was both elementary and elegant. After just a bit of additional consideration,
we were able to alter the proof to provide a completely unexpected generalization.
We describe this generalized result, and provide its proof, in the next section.

2. The Full Result

Our main theorem, which includes the above conjecture in a very natural way,
provides a complete characterization of bm(mn) modulo m:

Theorem 2.1. Let m ≥ 2 be a fixed integer and let

n = a0 + a1m+ · · ·+ ajm
j

be the base m representation of n (so that 0 ≤ ai ≤ m− 1 for each i). Then

bm(mn) ≡
j∏
i=0

(ai + 1) (mod m).

Notice that the conjecture mentioned above is exactly the m = 3 case of Theorem
2.1.
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In order to prove Theorem 2.1, we need a few elementary tools. We describe
these tools here.

First, it is important to note that the generating function for bm(n) is given by

(1) Bm(q) :=

∞∏
j=0

1

1− qmj .

Note that Bm(q) satisfies the functional equation

(1− q)Bm(q) = Bm(qm).

From here it is straightforward to prove that

bm(mn) = bm(mn+ i)

for all 1 ≤ i ≤ m − 1. Thus, we see that Theorem 2.1 actually provides a charac-
terization of bm(N) (mod m) for all N, not just for those N which are multiples
of m.

With this information in hand, we now prove a small number of lemmas which
we will use in our proof of Theorem 2.1.

Lemma 2.2. For |x | < 1,

1− xm

(1− x)2
≡

m∑
k=1

kxk−1 (mod m).

Proof. This elementary congruence can be proven rather quickly using well–known
mathematical tools. We begin with the geometric series identity

1

1− x
=

∞∑
k=0

xk.

Differentiating both sides yields

1

(1− x)2
=

∞∑
k=1

kxk−1.

We then multiply both sides by 1− xm and simplify as follows:

1− xm

(1− x)2
=

∞∑
k=1

kxk−1 − xm
∞∑
k=1

kxk−1

=

∞∑
k=1

kxk−1 −
∞∑

k=m+1

(k −m)xk−1

=

m∑
k=1

kxk−1 +

∞∑
k=m+1

mxk−1

≡
m∑
k=1

kxk−1 (mod m)

Lemma 2.3. Let ζ be the mth root of unity given by ζ = e2πi/m. Then

m−1∑
k=0

1

1− ζkq
= m

(
1

1− qm

)
.
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Proof. Using geometric series and elementary series manipulations, we have

m−1∑
k=0

1

1− ζkq
=

m−1∑
k=0

∞∑
r=0

ζkrqr

=

m−1∑
k=0

∑
r |m

ζkrqr +
∑
r -m

ζkrqr


=

m−1∑
k=0

∞∑
j=0

ζk(jm)qjm +

m−1∑
k=0

∑
r -m

ζkrqr

=

m−1∑
k=0

1

1− qm
using facts about roots of unity

= m

(
1

1− qm

)
.

Lemma 2.4. Let Tm(q) :=
∑
n≥0 bm(mn)qn. Then

Tm(q) =
1

1− q
Bm(q).

Proof. As in Lemma 2.3, let ζ = e2πi/m. Note that

Tm(qm) =
∑
n≥0

bm(mn)qmn

=
1

m

(
Bm(q) +Bm(ζq) + · · ·+Bm(ζm−1q)

)
=

 ∞∏
j=1

1

1− qmj

× 1

m

m−1∑
k=0

1

1− ζkq

=
1

1− qm
∞∏
j=1

1

1− qmj

thanks to Lemma 2.3. Lemma 2.4 then follows by replacing qm by q.

We now combine these elementary facts from the lemmas above to prove one last
lemma. This lemma will, in essence, allow us to “move” from considering Tm(q)
modulo m to a new function modulo m which makes the result of Theorem 2.1
transparent.

Lemma 2.5. Let Um(q) =
∏∞
j=0

(
1 + 2qm

j

+ 3q2m
j

+ · · ·+mq(m−1)m
j
)
. Then

Tm(q) ≡ Um(q) (mod m).

Proof. Lemma 2.5 will follow if we can prove that 1
Tm(q) ·Um(q) ≡ 1 (mod m), and

this will be our means of attack. Thankfully, this follows from a novel generating
function manipulation which we demonstrate here. Using (1) and Lemma 2.4, we
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know that
1

Tm(q)
· Um(q)

= (1− q)2
∞∏
j=1

(1− qm
j

)

∞∏
j=0

(
1 + 2qm

j

+ 3q2m
j

+ · · ·+mq(m−1)m
j
)

≡ (1− q)2
∞∏
j=1

(1− qm
j

)

∞∏
j=0

1− qmj+1

(1− qmj )2
(mod m) thanks to Lemma 2.2

=

∏∞
j=0 1− qmj+1∏∞
j=1 1− qmj

= 1.

We can now utilize all of the above results to prove Theorem 2.1.

Proof. First, we remember that∑
n≥0

bm(mn)qn = Tm(q) ≡ Um(q) (mod m).

So we simply need to consider Um(q) modulo m to obtain our proof. Note that

Um(q) =

∞∏
j=0

(
1 + 2qm

j

+ 3q2m
j

+ · · ·+mq(m−1)m
j
)
.

If we expand this product as a power series in q, then each term of the form qn can

occur at most once (because the terms qi·m
j

are serving as the building blocks for
the unique base m representation of m). Thus, if

n = a0 + a1m+ · · ·+ ajm
j ,

then the coefficient of qn in this expansion is

j∏
i=0

(ai + 1) (mod m).
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