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Abstract

We formulate three reasonably short game rules for three two-pile
take-away games, which share one and the same set of P-positions.
This set is comprised of a pair of complementary homogeneous Beatty
sequences together with (0,0). We relate the succinctness of the game
rules with the complexity of the P-positions by means of a notion
dubbed p-invariance.

1 Introduction

Let us recall the rules of k-Wythoff [7], k a fixed positive integer. The
available positions are (z,y), x and y non-negative integers. The legal moves
are

(IA) Nim type: (z,y) = (x —t,y), if z —¢t > 0 and (z,y) — (x,y — 1), if
y—t>0;t>0.
(1B) Extended diagonal type: (x,y) — (x — s,y —t) if |t — s| < k and
r—s2>0,y—t>0;s>0,%t>0.

This game is a so-called impartial take-away game [2], vol. 1. We restrict

attention to normal play, that is, the player first unable to move loses. For
our games it means that the player called upon to move from (0,0) loses.



Rules (1A) and (1B) imply that k-Wythoff is a so-called invariant [5],
[11] (take-away) game, that is, each available move is legal from any position
as long as the resulting position has non-negative coordinates. Every move
in any invariant game is an nvariant mowve.

In this note we study another type of take-away games, where certain
positions have some local restrictions on the set of otherwise invariant moves.
Such games are called variant [5], [11].

Central to our investigation is Beatty’s Theorem [1] (predated by Lord
Rayleigh [14]): Let 8 > 2 be an irrational number and define its complement,
B by B4 t=1 so that B = B/(B —1). This clearly implies 1 < B <
2 < B. Let A, = \"I’LBJ, B, = Lnﬁj, A = Unzl{An}a B = Unzl{Bn}-
Beatty’s Theorem then asserts that A and B are complementary sets, that
is, AUB = Z>1, AN B = (). Since B > 1, the (homogeneous) Beatty
sequences (Ay) and (By,) are strictly increasing.

1.1 Three Games

We formulate three variant games on the pairs of non-negative integers (for
all games, B > 2 is irrational):

(I) The moves are as in Nim on two piles (1A) except that the players
may use an ‘extended Nim type’ move of the form (s, t) or (¢, s) from a
position, ¢ a positive integer, s € {0, ..., ||}, whenever that position
does not contain a coordinate in B. This game is denoted by 3-Nim.

(IT) The moves are as in k-Wythoff with k£ = | 3] subject to (1A) and (1B),
except that if one of the coordinates is in B, then only Nim-type moves
(1A) are permitted. This game is denoted by S-Wynim.

(ITII) The moves are as in k-Wythoff with k£ = [3] subject to (1A) and
(1B), except that if one of the coordinates is in B, then the move (s, )
cannot belong to the pair of 5-triangles defined by

{(z,9), (v, 2) | (z,9) € {1, 1B]), (2, [B]), (2, [B] + D)}}.
This game is denoted by A7 - Wynim.

The main result of this note is as follows:

Theorem 1. The set of P-positions of 3-Nim, 5-Wynim and 1 -Wynim is
the same. It is

n>0 n>0



where A, = an, B, = [nj].

We prove this result in Section 3. In Section 4 we develop the distinc-
tion between invariant and variant games and relate our findings to certain
complexity issues. In the section to come we give some examples.

2 Examples and tables of P-Positions

In the proof of the main result and in the examples of sets of P-positions to
come, we use the following illustrative notation:

Notation 1. For every n > 0,

(i) AA, = A1 — Ay, AB,, := B, 11 — B, are the gaps.
(ii) A, = B, — A,,.

(iii) A2 == Apiq — Ay,

For some (invariant) take-away games on two heaps where short formulas
for both the rules and the P-positions are known, such as [7, 10, 9], the
coordinates of the P-positions are defined via certain algebraic numbers
together with the floor function. Our first example rather uses a well known
transcendental number.

Example 1. In the game of m-Wynim, a player may move as in Nim on
two piles (1A), or, if the position does not contain a coordinate of the form
|7n], deviate at most [7| — 1 = 2 positions from the ‘main diagonal’ as
given by the game k-Wythoff, that is use (1B) with & = 3. The result of
this note implies that the P-positions of this game are the set

Unzo{([#n], [wn]), (mn], [7n])},

the first few of which are displayed in Table 1.

Example 2. Example 1 illustrates Theorem 1 for a member of our second
game family, 8-Wynim. A further example: Let k be a positive integer,
B=024k+Vk?+4)/2,3=3—k. Then 8 =+2+2, 5 = —2; note that
|3] = 3 as in Example 1. The first few P-positions for k = 2 are shown in
Table 2. Since 8 — 8 = k = 2, we have A,, = kn = 2n, so A2 =k =2 for
all n > 0.



Table 1: The first few P-positions (A, B,,) for 3-Nim, 8-Wynim and 57-Wynim,
B=m=314159.. ..

n|01234 5 6 7 8 9101112131415161718192021 222324252627 2829

Apl01245 7 81011131416171920222324262729303233353638394142

Bp036912151821252831343740434750535659 626569 72757881848791

Anl0245 7 8 101114151718202123252729303233353739404243454649

A%222121 2 131212122221212221212131

Remark 1. It is remarkable that, for 8 = (2 + k + Vk? 4+ 4)/2, k-Wythoff
has the same set of P-positions as our three games. In particular, for k =1,
1-Wythoff is the classical Wythoff game [2]. For k = 2, the first few P-
positions of both games are displayed in Table 2. In [4] it was shown that
from the classical Wythoff game no move can be deleted while preserving
the set of P-positions of the classical Wythoff game. In the present note,
Wythoff moves were deleted, and the P-positions are still preserved. The
difference is that in [4] only invariant moves were permitted. See section 4
for more on the latter topic.

3 Proof of the Main Result

We preface the proof of Theorem 1 by collecting some facts on the sets {4, }
and {B,}.

Proposition 1. For every n > 0,
(i) The only possible gap pairs are

(Adn, ABy) € {(L, [8]), (1, 18] +1), (2,[8]), (2,[B8] +1)}.

(i) A2 = AB,, — AA,.
(i) A7 € {1B8] —2,18] — 1,18/}



Table 2: The first few P-positions (A4,, B,) for 2-Wythoff, 3-Nim S-Wynim and
BT-Wynim; 3 as in Example 2.

n0123 45 6 7 8 910111213141516171819 2021 222324252627

Ap0124 5 7 8 9111214151618 1921 2224 2526 28 29 31 32 33 35 36 38

Br03610131720232730343740444751545861646871 757881858892

Proof. (i) This is a well known result.

<H> Ai = (Bn—i-l - An+1) - (Bn - An) - (Bn+1 - Bn) - (An—l-l - An) =
AB, — AA,,.

(iii) Follows directly from (i) and (ii). |

Example 3. Notice that in Example 1, Table 1, A2 assumes all three
possible values {1,2,3} = {|8] -2, 8] —1,|8]}. In Example 2, A2 assumes
only the value 2 = | 5] — 1.

Proof of Theorem 1. Since our games are acyclic, it suffices to demon-
strate the following two properties for each game:
P — N: Every move from any position of the form

(An, By) or (By, Ap) (1)

results in a position outside (1).
N — P: Given any position outside (1), there exists a move into (1).

For the direction P — N we use the same argument for the games (I)
B-Nim and (II) S-Wynim, namely: Suppose that we play from a position
of the form (1). The game rules imply that only Nim type moves (1A) are
permitted so that by complementarity, there is no move to a position of the
same form.



For game (IIT) fT-Wynim, we have to show that both (i) (A, B,) —
(A, Bi) and (ii) cross moves (Ay, By) — (Bm, Am) are blocked for every
0<m<n.

(i) By Proposition 1, (B, — Bp,) — (Ap — Ap) = A — Ay > Ay — A1 =
A2 e {|B] —2,18] —1,|B]} where the > follows from the fact that
8> B, which implies that A; is a non-decreasing function of i. Therefore
the move (A4,, B,) — (A, By,) is either blocked by the triangle move re-
striction of BT-Wynim (if A2 _, < |8]), or by the |3]-Wythoff constraint
(if A%y > [B)).

(ii) Notice that this move is possible only if A,, > By,. Now (B, — A;,) —
(Ap,—Bm) = Ap+A,,. Similarly to (i), if A, + A, € {18 -2, 8] -1, 5]},
this forces m = 0 and n = 1 so that the move is blocked by the S-triangle
move restriction; otherwise by the |3 |-Wythoff constraint.

For the direction N — P, let (z,y), 0 <z < y be a position not of the
form (1). We assume first that this position has a coordinate of the form
B, so for each game it suffices to show that a Nim type (1A) move suffices
for moving into (1). If x = B,, then move y — A,,. If y = B,, and = > A,
then move x — A,,. If y = B, and x < A,, complementarity implies that
there exists m < n such that either x = A,, so the move y — B,, restores
(1); or else © = By, so the move y — A, does it.

Hence we may assume that both x and y arein A, say v = A,, < A, =
If y > B,,, then the Nim type (1A) move y — By, suffices for each game.
We may therefore assume that

r=An <A, =y < Bpn. (2)

Since each of (4;) and (B;) is strictly increasing, a Nim type move to a
position (1) does not exist, so we have to find a (1B) extended diagonal
type move for the games S-Wynim and S7-Wynim. Observe that for both
these games, this type of moves is now unrestricted with k£ = |3].

Let d :=y—2. Thend = A, — A, < By, — Ay = Ay, By Propo-
sition 1, A; grows from 0 to A,, as i grows from 0 to m, in steps AZZ =
AB; — AA; € {|B] —2,|8] — 1,8}, bounded above by |3]|. Hence there
exists j such that 0 < d—A; < [3]. Then move (z,y) — (A;, Bj). We need
to show three things: (i) j < m, (ii) y > By, (iii) [(y—B;)—(Am—A4;)| < |B8].

(i) Aj <d=y— A, < By, — Ay = Ay, Since A; is an increasing function



of i, we have j < m.
(ii) yZAm+d>Aj+d2Aj+Aj=Bj.
(iil) [(y = Bj) — (Am — Aj)[ = [(y = Am) — (B; — 4j)| = |[d = A;] < |B].

On the other hand, for the game $-Nim and a position of the form in (2),
by Proposition 1 (i) a nearest lower P-position is attainable by an extended
‘horizontal’ Nim-type move. Precisely, since AB,, € {|3], 8] + 1} we can
lower y = A, to B;, where ¢ > 0 is such that B; < A, < B;+1, and z = A,
to A;, that is move (A,,, A,) — (Ai, B;). By the (1A) Nim type move we
have to show that A; < A,,. But the definition of i together with (2) give
B; < A, < B,, which, by i < m, implies A; < A,.

Thus the set P is indeed the set of P-positions for our three games. MW

4 p-Invariance and game complexity

Let us continue our brief discussion of variant versus invariant games from
the introduction and Remark 1 and relate it to the complexity of numbers
and games. The complexity of a real number is its status as an integer,
rational, algebraic or transcendental number.

Our three games are, in fact, ‘minimally variant’ in the sense that all
their positions can be partitioned into precisely two sets, namely,

{(A;,A;)} and {(z,y) | z = B; or y = B; for some i},

such that, for each game, for each set, the possible moves are invariant.
This observation motivates a weakening of the notion of invariance to p-
inwvariance, p € Z~g, for certain variant games. A game is p-invariant if its
positions can be partitioned into p subsets, such that every move from any
position in each subset is invariant, and it cannot be thus partitioned into
less than p subsets. An invariant game is 1-invariant.

Let y=6— 3. 1t appears that the complexity of v, the simplicity of the
game rules and the size of p are related. By complexity of a real number, we
mean its category: integer, rational, algebraic or transcendental. If v = k
is an integer, there are simple game rules, (1A) and (1B), and the game is
invariant (Example 2). For our three games, ~ is not necessarily an integer,
the game rules are longer and the l-invariance is replaced by 2-invariance.
To shed more light on these suggested relationships, it might be well to



investigate whether ~ rational, algebraic [5, 12], or transcendental has any
effect on the length of the game rules and p-invariance.

We close this section with a conjecture which requires a little background.

The succinct input size of a given ordered pair of integers (z, y) is log(zy).
The time complexity of deciding whether a given ordered pair (x,y) is of the
form (A, By) is polynomial in log(zy), see [7], §3. In [11, Main Theorem|
it is demonstrated that, given the set P in Theorem 1, there is an invariant
game for which the time complexity of determining whether a given ordered
pair (s,t) is a legal move is exponential in log(st). In [5, 12] polynomial
time invariant game rules are determined for the set P when ~ is restricted
to some specific algebraic numbers of degree 2.

We make the following conjecture.

Conjecture 1. Given a set P = Up>0{(An, Bn)} Un>0 {(Bn, An)} where
(An)n>1 and (Bp)n>1 are complementary Beatty sequences with > 2 tran-
scendental, and a position (x,y) # (0,0), (z,y) &€ P. Then there is no
invariant game with polynomial time complexity in log(xzy) for finding a
move from (x,y) into a P-position.

Perhaps this conjecture holds even if v is algebraic of degree > 2, many
~ of degree 2, perhaps even if v is a non-integer rational number.

The notion of p-invariance is also interesting in a somewhat different
context. In [13] certain p-invariant 2-heap subtraction games with a finite
number of moves are studied and it is showed that they embrace computa-
tional universality.

5 Discussion

We have formulated three reasonably short game rules for three 2-invariant
games, which have identical sets of P-positions. Suppose that we fix §
and then increase the density of the pairs of sequences from 1 to say an
arbitrary number v > 1 (or decreases to a density < 1) where « is defined
via 1/a+1/8 = . (That is, for all 5, o # /3’) Given candidate P-positions
as above, is there still a short/succinct but non-trivial way of formulating
the game rules without disclosing both irrationals or/and the joint density
of the sequences? It is unknown to us whether or not there exist invariant
rules for such games, see [11], [6]. Is it possible to find 2-invariant rules
in the sense of this note? As another remark, observe that neither B nor
the density 1 is disclosed in the presentation of the rules of our games in
this note. In [11] invariant game rules are given for candidate P-positions



constructed from complementary Beatty sequences, but not in a single case
have we found a succinct description. In this note we have chosen to remove
the nice condition of invariance (and reverted to 2-invariance) from the game
rules and, maybe even more notably, one of the coordinates of the candidate
P-positions is disclosed within the game rules. This could be argued to
be a severe drawback in a definition of the rules of a game. But, on the
other hand, we were able to give a very succinct formulation, without a
complete trivialization of game rules, for all complementary homogeneous
Beatty sequences and these are uncountably many.
For other investigations that relate Nim and Wythoff, see [3], [8].
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