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Abstract

Beatty sequences bnα + γc are nearly linear , also called balanced ,
namely, the absolute value of the difference D of the number of el-
ements in any two subwords of the same length satisfies D ≤ 1.

∗Research partially supported by the Hungarian Research Grant OTKA T042750 and
OTKA T058290

1



For an extension of Beatty sequences, depending on two parameters
s, t ∈ Z>0, we prove D ≤ b(s−2)/(t−1)c+2 (s, t ≥ 2), and D ≤ 2s+1
(s ≥ 2, t = 1). We show that each value that is assumed, is assumed
infinitely often. Under the assumption (s−2) ≤ (t−1)2 the first result
is optimal, in that the upper bound is attained. This provides infor-
mation about the gap-structure of (s, t)-sequences, which, for s = 1,
reduce to Beatty sequences. The (s, t)-sequences were introduced in
Fraenkel [9], where they were used to give a strategy for a 2-player
combinatorial game on two heaps of tokens.

Keywords: Extension of Beatty sequences, sequences of differ-
ences, gap structure

1 Introduction

Denote by Z, Z≥0 and Z>0 the set of integers, the set of nonnegative integers
and the set of positive integers, respectively. For a subset S ⊂ Z≥0, S 6= Z≥0,
the minimum excluded value of S is denoted mex S and defined to be the
least nonnegative integer not in S. Denoting S = Z≥0 \ S, we have that 1

mex S = min S.

For two positive integers s, t ∈ Z>0, define the (s, t)-sequences {An}, {Bn}
by:

An = mex{Ai, Bi : 0 ≤ i < n} for all n ≥ 0, (1)

Bn = sAn + tn for all n ≥ 0. (2)

Thus, A0 = B0 = 0 and A1 = 1, B1 = s + t. Prefixes of the two sequences,
for s = t = 2, are displayed in Table 1.

Note that (1), (2) imply that An and Bn are strictly increasing sequences.
Denoting A =

⋃∞
n=1 An and B =

⋃∞
n=1 Bn, we have that A and B are com-

plementary sets with respect to Z>0, that is, A ∪ B = Z>0 (by (1)), and
A ∩ B = ∅. The last equality is true since if Am = Bn, then m > n > 0
implies that Am is the mex of a set containing Bn = Am, a contradiction;

1The terminology “mex” was introduced in [2], and has since been used widely in the
literature on the theory of combinatorial games.
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Table 1: The first few entries of the (2, 2)-sequences.

n An Bn n An Bn

0 0 0 28 35 126
1 1 4 29 37 132
2 2 8 30 38 136
3 3 12 31 39 140
4 5 18 32 41 146
5 6 22 33 42 150
6 7 26 34 43 154
7 9 32 35 44 158
8 10 36 36 45 162
9 11 40 37 47 168
10 13 46 38 48 172
11 14 50 39 49 176
12 15 54 40 51 182
13 16 58 41 52 186
14 17 62 42 53 190
15 19 68 43 55 196
16 20 72 44 56 200
17 21 76 45 57 204
18 23 82 46 59 210
19 24 86 47 60 214
20 25 90 48 61 218
21 27 96 49 63 224
22 28 100 50 64 228
23 29 104 51 65 232
24 30 108 52 66 236
25 31 112 53 67 240
26 33 118 54 69 246
27 34 122 55 70 250

and 0 < m ≤ n is impossible since Bn = sAn + tn ≥ sAm + tm > Am. The
(s, t)-sequences were introduced in Fraenkel [9], where they were used to give
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a strategy for a 2-player combinatorial game on two heaps of tokens.

Notation 1. For m, n, j ∈ Z≥0, let

Dm,n,j = |(An+j − An)− (Am+j − Am)|,

Em,n,j = |(Bn+j −Bn)− (Bm+j −Bm)|.

Note that Dm,n,j and Em,n,j are symmetric in m, n, i.e., Dm,n,j = Dn,m,j,
Em,n,j = En,m,j. Our main purpose is to prove the following theorem, in §2.

Theorem 1. Let s ≥ 2, t ≥ 2 and assume that (s − 2) ≤ (t − 1)2. Then
Dm,n,j ∈ S1, where S1 := {0, . . . , q}, q := b(s− 2)/(t− 1)c + 2, and each of
the values in S1 is assumed infinitely often.

Note that (2) implies Em,n,j = sDm,n,j. Thus Theorem 1 implies the
following result about Em,n,j:

Corollary 1. Let s ≥ 2, t ≥ 2 and assume that (s − 2) ≤ (t − 1)2. Then
Em,n,j ∈ sS1 := {0, s, 2s, . . . , qs}, q as in Theorem 1. Each of the values in
sS1 is assumed infinitely often.

For the case s− 2 > (t− 1)2 we can only show an upper bound, namely
we have

Theorem 2. Let s ≥ 2, t ≥ 2 and assume that (s − 2) > (t − 1)2. Then
Dm,n,j ∈ S1, where S1 and q are as in Theorem 1, and each of the values in
S1 which is assumed, is assumed infinitely often.

For s ≥ 2 and t = 1 we prove the following result in §3.

Theorem 3. Let s ≥ 2, t = 1. Then Dm,n,j ∈ S2 := {0, . . . , 2s + 1}.

The two latter results are weaker than Theorem 1, since we don’t know
whether the upper bounds in each of them are sharp. The corresponding
corollaries applying to Em,n,j can be formulated for each of these cases anal-
ogously to Corollary 1.

Notice that if t ≥ s ≥ 2, then b(s− 2)/(t− 1)c = 0, so that in Theorem 1
we have that S1 = {0, 1, 2}. However, if s > t ≥ 2, then we may have
|S1| > 3.
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Theorem 1 provides information about the behavior of the gap-structure
of (s, t)-sequences. For s = 1, both {Am} and {Bm} are special cases of
Beatty sequences, namely An = bnαc, Bn = bn(α + t)c, where α = (2− t +√

t2 + 4)/2 (so, for t = 1, α = φ is the golden section). A general Beatty
sequence has the form An = bnα + γc, where α > 0, γ are real numbers,
n ∈ Z≥0. It is well known that for general Beatty sequences, the difference
Dm,n,j assumes only two values: Dm,n,j = Em,n,j ∈ {0, 1} for all j, m, n ∈ Z≥0,
where each of 0 and 1 is assumed infinitely often. In the earlier literature this
property was called nearly linear ; see Ron Graham et al. [11], Boshernitzan
and Fraenkel [4], [5]. Nowadays it is called balanced: Berstel and Séébold [3],
Tijdeman [13].

We note in passing that Theorem 1 holds also for s = 1 and t ≥ 2, since
then S1 = {0, 1}. In this case Corollary 1 coalesces with Theorem 1.

Balanced sequences have been used previously for providing a strategy
for games. See Wythoff [14], Coxeter [6], Yaglom and Yaglom [15] (s =
t = 1); Fraenkel [7] (s = 1, t ∈ Z>0). The subword complexity C(n) of the
characteristic functions of these sequences was computed in [10]. It is linear in
the length n of the subword, but larger than C(n) = n+1, which characterizes
the subword complexity of Sturmian sequences, the characteristic functions
of Beatty sequences. The subword complexity C(n) of a sequence S is the
number of distinct words of length n appearing in S. See e.g. [1].

2 Proof of Theorems 1 and 2

The proofs of Theorems 1 and 2 will be separated into three steps. First
we show that the number q in the statements of the theorems is, in both
cases, an upper bound for Dm,n,j. Then we will show that, in both cases, for
each value which is ever assumed, every value not exceeding it is assumed
infinitely often. Finally we show that under the assumption (s−2) ≤ (t−1)2

of Theorem 1, the upper bound q is attained. We thus split the proofs into
the following three parts.

Proposition 1. Let s ≥ 2, t ≥ 2. Then Dm,n,j ∈ S1, where S1 := {0, . . . , q},
q := b(s− 2)/(t− 1)c+ 2.

Proposition 2. Let s ≥ 2, t ≥ 2. Then if for some d and some m,n, j, we
have Dm,n,j = d, then for every d′ ≤ d there are infinitely many m, n, j such
that Dm,n,j = d′.
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Proposition 3. Let s ≥ 2, t ≥ 2 and assume that (s− 2) ≤ (t− 1)2. Then
for some m, n, j we have Dm,n,j = b(s− 2)/(t− 1)c+ 2.

We begin by introducing some notation, followed by three auxiliary re-
sults.

Notation 2. Let n ∈ Z≥0. An A-gap is GA = GA
n := An+1 −An. A B-gap is

GB = GB
n := Bn+1 −Bn. For i, m, n ∈ Z≥0, put ∆i := |Dm,n,i+1 −Dm,n,i|.

Lemma 1. Let s, t ∈ Z>0. For all n ∈ Z≥0,

GA
n ∈ {1, 2}, (3)

and each of the values 1, 2 is assumed infinitely often. Also for all n ∈ Z>0,

GB
n = s + t ⇐⇒ GA

n = 1, (4)

GB
n = 2s + t ⇐⇒ GA

n = 2,

and each of the B-gaps s + t and 2s + t is assumed infinitely often.

Proof. If there is some GA ≥ 3, then the complementarity of A, B
implies that there is some GB = 1. However, for all n ∈ Z≥0, (2) implies
GB

n = sGA
n + t ≥ s + t ≥ 2. This proves (3); and (4) follows from (2).

If there is N ∈ Z≥0 such that GA
n = 1 for all n ≥ N , then for suffi-

ciently large i there exists j such that Bi = sAi + ti = Aj, contradicting
complementarity. If there is N ∈ Z≥0 such that GA

n = 2 for all n ≥ N , then
GB

n = 2s + t ≥ 3 for all sufficiently large n, so some positive integers are
missing, again contradicting complementarity. Thus each of the values 1, 2
in (3) is assumed infinitely often. It follows that also each of s + t and 2s + t
in (4) is assumed infinitely often. �

Definition 1. Let n ∈ Z≥0. An A-word is a maximal run of Ai: An+1, . . . ,
An+m, such that GA

n+i = 1 for i ∈ {1, . . . ,m− 1}, GA
n = GA

n+m = 2.
A B-word is the corresponding maximal run of m elements Bi: Bn+1, . . . ,

Bn+m, which satisfies, by (3), GB
n+i = s + t for i ∈ {1, . . . ,m − 1}, GB

n =
GB

n+m = 2s + t.
The length of an A-word or a B-word is the number m of its elements.
An A-word of length s + t − 1 is a small A-word; An A-word of length

2s + t− 1 is a large A-word.
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Consider Z>0 = A∪B as a sequence C in which the elements of A and B
are sort-merged in increasing order. Note that C consists of small A-words or
large ones, separated by B-singletons, since GA ∈ {1, 2}, GB ∈ {s+t, 2s+t},
by Lemma 1.

Lemma 2. Let s, t ∈ Z>0. Following a finite prefix of small A-words, the
sequence C is composed of large A-words which are separated by s + t− 2 or
by 2s + t − 2 small A-words. Each of these A-word lengths and separating
lengths occur infinitely often, and there are no others.

Proof. By Lemma 1, GB ∈ {s + t, 2s + t}, so the complementarity of A, B
implies that the A-word lengths are restricted to {s + t− 1, 2s + t− 1}.

By (4), the B-words have the same length as the A-words. A B-word
of length s + t − 1 contains precisely s + t − 2 B-gaps of size s + t. By
complementarity, each such gap constitutes an A-word of length s+ t− 1. A
B-word of length 2s + t− 1 contains precisely 2s + t− 2 B-gaps of size s + t.
Each such gap again constitutes a small A-word. Either of these two B-words
is flanked on both sides by GB = 2s + t, which, again by complementarity,
induces A-words of length 2s + t− 1.

By (4), the A-words of C, except the prefix, have only two possible
lengths: s + t − 1 and 2s + t − 1, and also the the number of consecu-
tive B-gaps is restricted to s + t − 2 and 2s + t − 2. Therefore the cases
considered here are the only ones, and by Lemma 1 each occurs infinitely
often. This also implies that the prefix has finite length. �

Lemma 3. Let m, j ∈ Z≥0, k ∈ Z>0. Then

(i) Dm,m+k,j = Dm,m+j,k ,

(ii) Dm,m+1,j = Dm,m+j,1 ∈ {0, 1},

(iii) ∆i ∈ {0, 1} for all i ≥ 1.

Proof. (i) We have

Dm,m+k,j = |(Am+k+j − Am+k)− (Am+j − Am)| =
|(Am+j+k − Am+j)− (Am+k − Am)| = Dm,m+j,k.

(ii) The equality is the special case k = 1 of (i). By (3), Dm,m+j,1 =
|(Am+j+1 − Am+j)− (Am+1 − Am)| = |GA

m+j −GA
m| ∈ {0, 1}.
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(iii) By the triangle inequality (in the form ||x| − |y|| ≤ |x− y|),

∆i =
∣∣ |(An+i+1 − An)− (Am+i+1 − Am)|

− |(An+i − An)− (Am+i − Am)|
∣∣

≤ |(An+i+1 − An+i)− (Am+i+1 − Am+i)| = Dm+i,n+i,1 ∈ {0, 1}

by (ii). �

Proof of Proposition 1. The following trivial observation will be used
throughout the proof: for every a, k ∈ Z≥0, the cardinality of the half-open
interval (Ak, Ak+a] ⊆ C is

Ak+a − Ak = a + card{B ∩ (Ak, Ak+a)}, (5)

and for every b, ` ∈ Z≥0, the cardinality of the half-open interval (B`, B`+b] ⊆
C is

B`+b −B` = b + card{A ∩ (B`, B`+b)}. (6)

We show, by induction on j, that for any m, n ∈ Z≥0, we have Dm,n,j ∈ S1.
By Lemma 3(ii), for every m and n one has Dm,n,1 ∈ {0, 1} ⊆ S1. Let j ≥ 2
and assume inductively that Dm,n,i ∈ S1 for all i < j and for all m, n ∈ Z≥0.
Suppose that the assertion is false, i.e., Dm,n,j = d > q for some m, n ∈ Z≥0.
Without loss of generality, and using (5), we may assume that for some h ≥ 0
there are h members of B in [Am, Am+j] and h + d (d > q) members of B in
[An, An+j]. So C must contain the following two subwords,

Bu . . . Am . . . Bu+1 . . . Bu+h . . . Am+j . . . Bu+h+1 . . . Bu+h+d−1, (7)

Bv . . . An . . . Bv+1 . . . Bv+h+d . . . An+j . . . Bv+h+d+1 (8)

for suitable indices u, v ∈ Z≥0, where possibly Bu = 0 or Bv = 0. We wish to
estimate Ev+1,u,h+d−1. From (6) and (7) we get

Bu+h+d−1 −Bu ≥ (h + d− 1) + (d− 2)(s + t− 1) + (j + 1),

since there are at least s + t− 1 members of A in (Bu+h+i, Bu+h+i+1) for all
i ∈ {1, . . . , d− 2}, and j + 1 members of A in (Bu+1, Bu+h+1).
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Similarly (6) and (8) imply that Bv+h+d − Bv+1 ≤ (h + d − 1) + j − 1,
since there are at most j − 1 members of A in (Bv+1, Bv+h+d). Hence

Ev+1,u,h+d−1 ≥ (s + t− 1)(d− 2) + 2 (9)

= s(d− 2) + (t− 1)(d− 2) + 2 ≥ s(d− 2) + (t− 1)(q − 1) + 2

= s(d− 2) + (t− 1)(b(s− 2)/(t− 1)c+ 1) + 2

> s(d− 2) + (t− 1)(s− 2)/(t− 1) + 2 = s(d− 1) ≥ qs.

Recall that in the interval [An, An+j] there are h + d members of B.
Taking (5) and (8) into account, we can see that h+d < j: indeed, Lemma 1
guarantees that between each two elements of B there are at least s+t−1 ≥ 3
elements of A. But between Bv+1 and Bv+h+d there are at most j−1 members
of A. Thus 3(h+d−1) ≤ j−1, which in turn implies h+d < j (since j ≥ 2).
The induction hypothesis now implies that Ev+1,u,h+d−1 ≤ qs, contradicting
(9). Thus also Dm,n,j ∈ S1. �

We now wish to show the second part of Theorems 1 and 2, that each
of the values in S1 is attained infinitely often. We begin by proving Propo-
sition 2, stating that (for both Theorem 1 and Theorem 2) once a value is
assumed, this value, and all of the values below it, will be assumed infinitely
often.

Proof of Proposition 2. We first claim that it suffices to show that d
is assumed infinitely often, and that this already implies that all d′ < d
are also assumed infinitely often. Indeed, assume that Dm,n,j = d for some
m,n ∈ Z≥0. Without loss of generality, m < n. When i increases by 1, then
Dm,m+i,j = Dm,m+j,i changes by at most 1 (Lemma 3). Since Dm,m,j = 0,
we see that as i changes from 0 to n − m, Dm,m+i,j assumes all the values
in {0, . . . , d}. If d is assumed infinitely often, then so are all the values
{0, . . . , d}.

Thus, without loss of generality, we will assume that d is the largest value
which is assumed. We have to show that it is assumed infinitely often. So
we let d be such that Dm,n,j = d for some m, n, j ∈ Z≥0 and Dm,n,j ≤ d for
all m,n, j ∈ Z≥0. From Proposition 1 it follows that d ≤ q.

Choose m and n such that C contains the subwords

Bu . . . Am . . . Bu+1 . . . Bu+h . . . Am+j . . . Bu+h+1 . . . Bu+h+d−1, (10)

Bv . . . An . . . Bv+1 . . . Bv+h+d . . . An+j . . . Bv+h+d+1, (11)
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where, possibly, Bu = 0 or Bv = 0.
To every subword containing some terms Ai, there corresponds a subword,

appearing later on in C, containing the terms Bi with the same indices as the
terms Ai. In particular, corresponding to parts of the subwords (10), (11)
above there exist subwords:

AxBmAx+1 . . . Bm+1 . . . Ax+i1−1Bm+jAx+i1 , (12)

Ay−1BnAy . . . Bn+1 . . . Ay+i2Bn+jAy+i2+1, (13)

where the indices x, y are chosen so that Ax + 2 = Bm + 1 = Ax+1 and
Ay−1 + 2 = Bn + 1 = Ay, and the indices i1 and i2 are chosen so that
Ax+i1−1 + 2 = Bm+j + 1 = Ax+i1 and Ay+i2 + 2 = Bn+j + 1 = Ay+i2+1. It
suffices to show that Dx,y,i1 = d. By (2) and since Am+j − Am = h + j and
An+j − An = h + d + j, we have

Bm+j −Bm = sh + sj + tj = j + i1 − 1,

Bn+j −Bn = sh + sj + sd + tj = j + i2 + 1.

Thus, i2− i1 = sd− 2, which implies the identity i2− i1 = F +G+H, where

F = 2s + t− 1, G = (d− 3)(s + t− 1), H = (s− 2)− (d− 2)(t− 1).

Notice that: (i) F is the length of a large A-word, (ii) G might be negative
(e.g., if s = 2); (iii) d ≤ q implies H ≥ 0. To compute Dx,y,i1 we need to
compute the cardinality of the half-open interval I := (Ay+i1 , Ay+i2 ], which
is, by (5),

Ay+i2 − Ay+i1 = i2 − i1 + |{B ∩ (Ay+i1 , Ay+i2)}|.

To estimate |{B ∩ (Ay+i1 , Ay+i2)}| suppose that I contains ≥ 2 large A-
words. Since between 2 distinct large A-words there are at least s + t − 2
small A-words, we thus have 2F + (s + t − 2)(s + t − 1) ≤ F + G + H,
i.e., F + (s + t − 2)(s + t − 1) ≤ G + H = s(d − 2) − t − 1. However,
s(d−2)− t−1 ≤ s(q−2)− t−1 ≤ s(s−2)− t−1 < F +(s+ t−2)(s+ t−1),
since s ≤ s + t− 1, s− 2 < s + t− 2. So there is at most one large A-word
in I. If there is one, then there are at least (d− 3) small A-words in I, and
we still have H A-terms to spare, which may also include a B-term. So I
contains at least d− 2 A-words, the rightmost of which ends at Ay+i2 , since
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to the right of Ay+i2 there is a B-term by (13). The leftmost of the A-words
in I doesn’t begin with Ay+i1 , since it is outside I, nor with Ay+i1 + 1, since
then the first A-word of I would be incomplete. Therefore it begins with
Ay+k for some k > i1, so there is a B-term to its left which is still in I. It
follows that I contains at least d− 2 B-terms, one to the left of each A-word
in I. Hence,

|{B ∩ (Ay+i1 , Ay+i2)}| ≥ d− 2,

which implies Ay+i2 − Ay+i1 ≥ i2 − i1 + d− 2.
In case there is no large A-word in [Ay+i1 , Ay+i2 ] we are only better off,

and still have at least (d−2) B-terms in the interval. From (12), Ax+i1−Ax =
i1 + j + 1, and from (13), Ay+i2 − Ay = i2 + j − 1. Therefore,

Dx,y,i1 = |(Ax+i1 − Ax)− (Ay+i1 − Ay)|
= |(Ax+i1 − Ax)− (Ay+i2 − Ay) + (Ay+i2 − Ay+i1)|
= (i1 + j + 1)− (i2 + j − 1) + Ay+i2 − Ay+i1 ≥ d,

but as d was chosen to be the largest value assumed, we see that Dx,y,i1 = d.
�

To prove Proposition 3, we follow the same lines and notations as in the
proof of Proposition 2 above, with a modification at the end.

Proof of Proposition 3. Notice that already in the proof of Proposition 2
we were quite close to proving that q is attained. Indeed, if we would have
been able to show that I = (Ay+i1 , Ay+i2 ] contains (d− 1) small A-words, we
could rewrite i2 − i1 as

i2 − i1 = (d− 1)(s + t− 1) + ((s− 2)− (d− 1)(t− 1)) .

Assuming d < q, we have d ≤ 1+(s−2)/(t−1), that is, (d−1)(t−1) ≤ s−2,
so that

i2 − i1 ≥ (d− 1)(s + t− 1).

By the same reasoning as in the proof of Proposition 2, we would then get
that there are at least (d− 1) B-terms in I (one to the left of each A-word),
and so, as in the Proof of Proposition 2, that

Dx,y,i1 ≥ d + 1,

contradicting the maximality of d assumed in that proof, so d = q. However,
there is no guarantee that there are only small A-words in this interval.
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Remark 1. The interval I cannot contain a large A-word and d − 2 small
A-words. Indeed, d ≥ 1 by Lemma 1, say by choosing m,n so that GA

n =
1, GA

m = 2, hence Dm,n,1 = |GA
n − GA

m| = 1. Thus F + (d − 2)(s + t − 1) =
sd + (d− 1)(t− 1) ≥ sd > i2 − i1.

The plan of the proof below is as follows: We choose d to be the largest
value attained, and assume d < q. We then repeat the construction as
in Proposition 2, that is, arrive at words of the form (10), (11), (12) and
(13). By the same argument as in Proposition 2, Dx,y,i1 = d. We will then
“count” the number of small A-words in I = (Ay+i1 , Ay+i2 ]. In the case
where this number is at least (d− 1), then, as explained above, we arrive at
a contradiction and the proof is complete. In the complementary case, we
will iterate the construction once more.

More precisely, we consider the subword (13) and ask what is the number
of small A-words to the left of Bn+j. To check what are the lengths of the
various A-words we have to look back at the structure of the original word
(11). Let k ∈ Z≥0 denote the number of consecutive A terms to the left of
An+j, that is, Bv+h+d + 1 = An+j−k. Then, in the word (13) (which is the
“B-image” of (11)) we have, counting A-words from right to left, starting
with the A-word which ends with Ay+i2 , exactly k small A-words to the right
of the first large A-word. If k ≥ (d − 1), the proof is complete. So we may
assume that k < (d−1), and that there are less than (d−1) small A-words in
I. Then we know the structure of the word (13) in more detail. We consider
two cases.

(i) k ≤ d − 3. There are k small A-words to the left of Bn+j, followed
on the left by a large A-word, and then (by the formula for i2 − i1)) we
have (d − 3 − k) ≥ 0 additional small A-words. The last word on the left
counted up-to-now has the term Bn+j−(d−2) to its left. To the left of that we
have H = (s − 2) − (d − 2)(t − 1) extra A-terms, which do not form a full
A-word by Remark 1, and then the term Ay+i1 (which is already outside I,
since I was chosen to be half-open). Since we assume s − 2 ≤ (t − 1)2 and
d < q, we have (s− 2) + (t− 1) ≥ (s− 2)t/(t− 1) ≥ (d− 1)t. This implies
H = (s − 2) − (d − 2)(t − 1) ≥ (d − 1). As before, this means that there
are at least (d− 1) B-terms in the interval [Az+l1 , Az+l2), one to the right of
each A-word. Plugging this back into the equations we get Dz,w,l2 = d + 1, a
contradiction.

(ii) k = d − 2. There are (d − 2) small A-words to the left of Bn+j, the
leftmost of which has Bn+j−(d−2) to its left. This is followed on the left by
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F +G +H − (d− 2)(s + t− 1) = 2s− 2− (d− 2)(t− 1) A-terms, not enough
to fill a whole large A-word, and then we have Ay+i1 .

We rewrite part of the subword (13) in a way emphasizing its properties
discussed in cases (i) and (ii).

BnAy . . . Bn+1 . . . Bn+j−d+1 . . . Ay+i1 . . . Bn+j−(d−2), (14)

We now generate the following two subwords (15) and (16) from (14) and
(12) respectively, the same way as the words (13) and (12) were generated
from (10), (11):

AzByAz+1 . . . By+1 . . . Az+l1−1By+i1Az+l1 . . . Az+l2 , (15)

Aw−1BxAw . . . Bx+1 . . . Aw+l2Bx+i1Aw+l2+1, (16)

where the indices z, w are chosen so that Az + 2 = By + 1 = Az+1 and
Aw−1 + 2 = Bx + 1 = Aw, and the indices l1 and l2 are chosen so that
Az+l1−1 + 2 = By+i1 + 1 = Az+l1 and Aw+l2 + 2 = Bx+i1 + 1 = Aw+l2+1. We
now repeat the reasoning of the type used in the proof of Proposition 2. We
have,

By+i1 −By = s(i1 + j − d + 1) + i1t = i1 + l1 − 1

Bx+i1 −Bx = s(i1 + j + 1) + i1t = i1 + l2 + 1.

Thus,

l2 − l1 = sd− 2 = (s + t− 1)(d− 1) + ((s− 2)− (d− 1)(t− 1)).

We would now like to estimate Dz,w,l2 . We have,

Az+l2 − Az = (Az+l1 − Az) + (Az+l2 − Az+l1)

= i1 + 1 + l2 + |B ∩ (Az+l1 , Az+l2)|

and
Aw+l2 − Aw = l2 + i1 − 1.

We wish to show that there are at least (d− 1) B-terms in the interval J :=
[Az+l1 , Az+l2), since then we’ll have our desired contradiction: Dz,w,l2 = d+1.
To this end we count the A-words in J , to the right of each of which there is
a B-term.

13



We have exactly 2s−2−(d−2)(t−1) small A-words to the right of By+i1 ,
because this is the number of A-terms to the right of Ay+i1 . This number is
easily checked to be at least (d− 1), assuming d < q:

2s− 2− (d− 2)(t− 1) = 2s + t− 3− (d− 1)(t− 1) ≥ s + t− 1 ≥ d− 1.

Thus, there are at least (d − 1) B-terms in the interval [Az+l1 , Az+l2), one
to the right of each A-word. Plugging this back into the equations we get
Dz,w,l2 = d + 1, a contradiction. �

3 Proof of Theorem 3

Both Theorem 3 and Proposition 1 give an upper bound. In fact, their proofs
are very similar. We sketch the proof of Theorem 3, elaborating only on the
points that are different from that of Proposition 1.

We again use induction. Assume that the assertion is false for the smallest
j in Dm,n,j. We may assume that j ≥ 2, since Dm,n,1 ∈ S2 by Lemma 3(ii).
Thus for some d > q := 2s + 1 we have two words of the form (10) and (11),
where now A-words have either length s or 2s. This time we use the fact
that d− 2 > 2s− 1, which implies that at least one of the A-words between
Bu+h+1 and Bu+h+d−1 is of length 2s (follows from Lemma 2). This in turn
implies the inequality

Bu+h+d−1 −Bu ≥ (h + d− 1) + (d− 1)s + (j + 1).

The second inequality is the same as for the case t > 1, Bv+h+d − Bv+1 ≤
(h + d− 1) + j − 1, and combining the two we arrive at

(Bu+h+d−1 −Bu)− (Bv+h+d −Bv+1) ≥ s(d− 1) + 2 > s(2s + 1). (17)

However, again h + d < j, so the induction hypothesis guarantees that this
cannot be true, and we arrive at the desired contradiction. We conclude that
for all m, n, j ∈ Z≥0, Dm,n,j ∈ S2. �

The following questions remain open: (i) Is the condition s − 2 ≤ (t −
1)2 in Theorem 1 indeed necessary? We used it just once, in the proof of
Proposition 3. If in that proof we would iterate the construction of (15) and
(16) from (14) and (12) once more, it appears that the condition could be
relaxed to s− 2 ≤ t(t− 1). (ii) Is the upper bound 2s + 1 in Theorem 3 not
sharp when t = 1?
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4 Epilogue

For n ∈ Z>0, the characteristic function χ(n) of any sequence Am is defined
by

χ(n) =

{
1 if ∃m such that Am = n
0 otherwise.

Let S2n be any binary word of length 2n, and σ(2i), the sum of the
elements of its prefix of length 2i (1 ≤ i ≤ n). R. Tijdeman observed
(private communication), that if σ(2i) = i for all i ∈ Z>0, and we let Ak be
a sequence with characteristic function S2n, then:

(i) Every such sequence that contains the subwords 00, 01 and 11, satisfies
Dm,n,1 ∈ {0, 1, 2}, and so is not a Beatty sequence. It also satisfies
GA

n ∈ {1, 3}, and so it is not an (s, t)-sequence by Lemma 2. This
shows that the converse of Theorem 1 does not hold.

(ii) There are |S2n| = 2n such sequences. (We can always prefix such a
sequence with 00, 01, or 11 if either is missing.)

We note that similar constructions (say with σ(4i) = 2i), show that also the
a converse theorem in the case t = 1 does not hold. We also mention that
Mignosi [12] has shown that Dk,m,j ∈ {0, 1} for all k, m, j ∈ Z≥0 is satisfied
only by O(n3) sequences of length n.

Explicit functions satisfying Dm,n,j ≤ 2; and Dm,n,j = 2 infinitely often,
can be constructed using the following

Theorem 4. (See [8], Theorem 1.) Let n ≥ 1 and a0, . . . , an, m, K,L, M ∈
Z. Suppose that anx

n + an−1x
n−1 + · · ·+ a1x + a0 = 0 has a real nonzero root

α. Let A(m) = bmαc. Then

A

(
M + Lm +

n−2∑
i=0

Ai
(
Kai+2A(m)

))
= (L−Ka1)A(m)−Ka0m + D,

where D is bounded in m, namely,

D = bMα + (L + Ka0α
−1){mα} − θαc,
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Table 2: Discrete chaos 1.

m bmαc
⌊
bmαcα

⌋
1 2 4
2 4 9
3 7 16
4 9 21
5 12 28
6 14 33
7 16 38
8 19 45
9 21 50
10 24 57
11 26 62
12 28 67
13 31 74
14 33 79
15 36 86
16 38 91
17 41 98
18 43 103
19 45 108
20 48 115

θ =
n−2∑
i=1

(
Kai+2A(m)αi − Ai(Kai+2A(m))

)
,

where {x} is the fractional part of x.

Put n = 2, a2 = 1, a1 = −2, a0 = −1, K = 1, L = M = 0 in (17). Then⌊
bmαcα

⌋
= 2bmαc+ m− 1

for α = 1 +
√

2. Since bmαc satisfies Dk,`,j ∈ {0, 1}, the right-hand side of
this identity shows that Dk,`,j ≤ 2. In fact, Dk,`,j ∈ {0, 2}. Theorems 1 and
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Table 3: Discrete chaos 2.

m bmφc
⌊
bmφc2φ

⌋
1 1 3
2 3 9
3 4 12
4 6 19
5 8 25
6 9 29
7 11 35
8 12 38
9 14 45
10 16 51
11 17 55
12 19 61
13 21 67
14 22 71
15 24 77
16 25 80
17 27 87
18 29 93
19 30 97
20 32 103

2 thus imply that this is not an (s, t)-sequence. The first few entries of this
table are depicted in Table 2.

Putting a1 = −1, K = 2, but retaining the other values leads to⌊
bmφc2φ

⌋
= 2bmφc+ b(1−

√
5){mφ}c,

where φ is the golden section. Note that b(1−
√

5){mφ}c ∈ {−1,−2} for all
m ∈ Z>0. It can be seen that now Dk,`,j ∈ {0, 1, 2, 3, 4}, and each of these
values is assumed infinitely often. Lemma 1 once again shows that it is not
an (s, t)-sequence. See Table 3.
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