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Abstract

Partition the set of games into subsets CompGames and PrimGames,
precipitating a new 4-pile take-away game Flora. Let ϕ = (1 +

√
5)/2 de-

note the golden section. We investigate relationships between unbounded
iterations of the floor function applied to various combinations of ϕ and
ϕ2. We use them to formulate an algebraic polynomial-time winning strat-
egy for Flora, and also present recursive, arithmetic and morphic winning
strategies for it. The arithmetic one is based on the Fibonacci numeration
system. The four strategies differ in their computational efficiencies. We
further show how to generate the sequences induced by the iterations us-
ing morphisms and and characterize them using the Fibonacci numeration
system. We also exhibit an infinite array of such sequences.

Keywords: floor function, integer part function, combinatorial game
theory, Fibonacci numeration system

1 Introduction

As customary, we denote by bxc the integer part of x, commonly known as the
floor function. It is the largest integer not exceeding x. Let ϕ = (1 +

√
5)/2

denote the golden section.
Two topics motivate this work. On the one hand, we wish to study what

happens when we keep iterating the floor function with either ϕ or ϕ2 in various
ways. Are any interesting relationships between them discernible even after an
unbounded number of iterations, or total chaos takes over?

On the other hand, we aim at studying the class of impartial take-away
games. This class appears to be partitioned into two disjoint subclasses: those
that are easy to generalize to more than one or two piles, and those for which
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this seems to be very hard. A well-known representative of the former is Nim
[2], and of the latter Wythoff’s game [5]. Some progress in generalizing Wythoff
to multiple piles was recently made. See [9], [20], [19]. Three-pile games that
are extensions rather than generalizations of Wythoff were also given recently
[8], [4].

Here we consider an extension of Wythoff to four piles. The efforts in defining
a “right” extension and particularly in proving the validity of the winning strat-
egy are considerably greater than those for three-pile extensions. We present
four formulations of the winning strategy.

In §2 we investigate the unbounded iterations and come up with a wealth
of relationships and identities. In §3 we define the subclasses CompGames and
PrimGames, which motivate the definition of the 4-pile game, dubbed Flora. In
§3.1 we formulate an algebraic polynomial-time winning strategy for the game,
based on the results derived in §2. In §3.2 we formulate a recursive winning
strategy which is deceptively simple, but appears to have higher computational
complexity. We end in §3.3 with a polynomial-time arithmetic winning strategy,
based on the Fibonacci numeration system. In §4 we indicate how to generate
sequences induced by iterations of the floor function using morphisms. We
apply it to one of the sequences in §4.1. In §4.2 we present our fourth, morphic,
formulation of the winning strategy of the Flora game, which is also polynomial-
time. In §4.3 we use results from §3.3 and §1 and make minor use of the language
of §4, to characterize the representations of general cases of the sequences playing
a major role in the algebraic formulation of the winning strategy of Flora. In
§5 we show, by means of an example, how to produce infinite complementary
arrays using sequences induced by the iterations. In the final Epilogue we wrap
up and indicate natural further directions of research.

Let g(n, 1) = bnϕc, h(n, 1) = bnϕ2c, u(n, 1) = g(n, 1), v(n, 1) = h(n, 1), and
for k ≥ 2,

g(n, k) = bg(n, k − 1)ϕc, h(n, k) = bh(n, k − 1)ϕc,
u(n, k) = bg(n, k − 1)ϕ2c, v(n, k) = bh(n, k − 1)ϕ2c.

Let ∆g(n, k) = g(n + 1, k) − g(n, k), ∆h(n, k) = h(n + 1, k) − h(n, k). For
technical reasons we put

g(n, 0) = n, h(n, 0) = g(n, 1).

Further, let F−1 = 1, F0 = 1, Fn = Fn−1 + Fn−2 (n ≥ 1) be the Fibonacci
sequence.

Notation 1. For k ≥ 0, let Gk = ∪∞n=1g(n, k), Hk = ∪∞n=1h(n, k), Uk =
∪∞n=1u(n, k), V2 = ∪∞n=1v(n, 2), Gk − s = ∪∞n=1(g(n, k)− s) (subtracting s from
every element of Gk).

In particular, G0 = Z≥1, and H0 = G1 = U1.
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2 Identities

After multiplying by the irrational ϕ and then throwing out the fractional part
for an unbounded number of times, one might expect complete chaos among
relationships involving g(n, k), h(n, k), u(n, k) and v(n, k). It is thus surprising
that there are many striking identities and relationships among them. Our
purpose in this section is to prove a selection of them. Throughout it is useful
to think of n as running over all values in [1,∞) for every fixed, though arbitrary,
value k.

Theorem 1. For every k ∈ Z≥1 and all n ∈ Z≥1 the following holds:

(a) The k + 1 sequences Gk,Hk,Hk−1, . . . , H2,H1 partition Z≥1.

(b) u(n, k + 1) = g(n, k) + g(n, k + 1) = g(n, k + 2) + 1.

(c) h(n, k) = g(n, k + 1) + Fk−1.

(d) u(n, k + 1) = h(n, k + 1)− Fk + 1 = g(n, k + 2) + 1.

(e) (e1) h(n, k + 1)− h(n, k) = g(n, k) + Fk−2 − 1.

(e2) h(n, k + 1)− g(n, k + 1) = g(n, k) + Fk − 1.

(e3) bu(n, k + 1)ϕc = u(n, k + 2) + 1.

(f) (f1) Let

S1 = {n ∈ Z≥1 : ∆g(n, 1) = F0}, S2 = {n ∈ Z≥1 : ∆g(n, 1) = F1}.
Then S1 and S2 split Z≥1; and each of S1 and S2 is an infinite set.

(f2) For all k ∈ Z≥1: ∆g(n, k) = Fk−1 for all n ∈ S1 and ∆g(n, k) = Fk

for all n ∈ S2.

(f3) (i) If ∆g(n + 1, k) = Fk−1 for some n ∈ Z≥1, then ∆g(n, k) =
∆g(n + 2, k) = Fk. (ii) If ∆g(n + 1, k) = ∆g(n + 2, k) = Fk for some
n ∈ Z≥1, then ∆g(n, k) = ∆g(n + 3, k) = Fk−1.

(f4) ∆g(n, k) = ∆h(n, k − 1) ∈ {Fk−1, Fk}, and each of Fk−1 and Fk is
assumed for infinitely many n.

(f5) (i) ∆g(0, k) = 1, (ii) ∆h(0, k) = Fk−1 + 1.

(g) g(h(n, 1), k) = h(n, k + 1) (due to Lior Goldberg).

(h)(h1) (G2 + 2) ⊂ G1.

(h2) G2 ∪ (G2 + 2) = G1.

(h3) U2 ⊂ (G1 − 2) ⊂ G1 ∪ U2.

(h4) (V2 − 1) ⊂ G2.

We begin by recalling some elementary properties of the floor function. Let x,
y be any real numbers. Denote by {x} the fractional part of x, so x = bxc+{x}.
Then:
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• 0 ≤ {x} < 1, x− 1 < bxc ≤ x. Replacing x by −x, −x− 1 < b−xc ≤ −x,
hence −1 ≤ bxc + b−xc ≤ 0 and bxc + b−xc = 0 if and only if x is
an integer. For example, bϕc = 1, b−ϕc = −2, bϕc + b−ϕc = −1; and
ϕ2 = ϕ + 1 implies {ϕ} = 1− ϕ.

• bxc + byc ≤ bx + yc ≤ bxc + byc + 1. This follows immediately from
bx + yc = bbxc+ {x}+ byc+ {y}c = bxc+ byc+ b{x}+ {y}c.

Notation 2. For any set or sequence T of reals, s any real, T + s := {t + s :
t ∈ T}.
Lemma 1. (i) Let s ∈ Z. Each of the sequences Gk + s,Hk + s, Uk + s, V2 + s
is strictly increasing for every k ≥ 1.
(ii) The sequences Gk, Hk split Gk−1 for every k ≥ 1.

Proof. (i) Follows from the fact that ϕ2 = ϕ + 1 > ϕ > 1.
(ii) Since ϕ−1 + ϕ−2 = 1, the sequences G1 and H1 split Z≥1 = G0 (see e.g.,
[5], §3), so the result holds for k = 1. For any k ≥ 1, assume that Gk, Hk split
Gk−1. Then

Gk+1 ∪Hk+1 =
⋃
n

(g(n, k + 1) ∪ h(n, k + 1)) =
⋃
n

(bg(n, k)αc ∪ bh(n, k)αc)

=
⋃
n

bg(n, k − 1)αc (by induction) =
⋃
n

g(n, k) = Gk. ¥

Note. In our applications, s ∈ {0,−1,−2, 2}, most often 0.

Proof of Theorem 1 (a). We noted that G1 and H1 split Z≥1. Suppose
that Gk,Hk, Hk−1, . . . ,H2,H1 partition Z≥1. Then Gk+1,Hk+1,Hk, . . . , H2, H1

partition Z≥1, since Gk+1,Hk+1 split Gk by Lemma 1. ¥
Note. It follows from Lemma 1 (or from (a)) that for any positive integers

m, n, bmϕc 6= bnϕ2c. This property will be referred to in the sequel as
disjointness.

Proof of Theorem 1 (b). By definition,

g(n, k + 2) = bg(n, k + 1)ϕc = bbg(n, k)ϕcϕc ≤ bg(n, k)ϕ2c.

By disjointness, bg(n, k)ϕ2c ≥ g(n, k + 2) + 1. Conversely, multiply g(n, k)ϕ <
g(n, k + 1) + 1 by ϕ to get, g(n, k)ϕ2 < (g(n, k + 1) + 1)ϕ, hence bg(n, k)ϕ2c ≤
b(g(n, k + 1) + 1)ϕc. By disjointness this inequality is strict, so

bg(n, k)ϕ2c ≤ b(g(n, k + 1) + 1)ϕc − 1 = g(n, k + 2) + bϕc = g(n, k + 2) + 1.

On the other hand, bg(n, k)ϕ2c = bg(n, k)(ϕ + 1)c = g(n, k) + g(n, k + 1).
¥
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Lemma 2. For every k ∈ Z≥1,
(i) bFk−1ϕc ∈ {Fk − 1, Fk}.
(ii) bF2k−2ϕ

2c = F2k − 1, bF2k−1ϕ
2c = F2k+1.

Proof. (i) The ratios Fk/Fk−1 are the convergents of the simple continued
fraction expansion of ϕ = [1, 1, 1, . . .]. Therefore |Fk−1ϕ− Fk| < F−1

k−1 (see e.g.,
[12], ch. 10), so Fk−1ϕ − Fk = δ, where −F−1

k−1 < δ < F−1
k−1. Thus bFk−1ϕc =

Fk + bδc. The result follows if |δ| < 1, which is the case for all k ≥ 1, since
Fk−1 ≥ F0 = 1.

(ii) The ratios Fk+2/Fk are the convergents of the simple continued fraction
expansion of ϕ2 = [2, 1, 1, 1, . . .]. In fact, F2k+1/F2k−1 < ϕ2 < F2k/F2k−2. This
follows easily from [12], ch. 10. Then F2k−1ϕ

2 − F2k+1 = δ, where 0 < δ <
F−1

2k−1, hence bF2k−1ϕ
2c = F2k+1, since 0 < δ < 1 for all k ≥ 1. Similarly,

F2k−2ϕ
2 − F2k = δ, where −F−1

2k−2 < δ < 0. Thus bF2k−2ϕ
2c = F2k − 1, since

−1 < δ < 0 for all k ≥ 1. ¥

Lemma 3. For every n ∈ Z≥1, h(n, 2)− g(n, 3) = 2.

Proof. In Lemma 9 of [8] we proved the special case k = 2 of (d), namely
h(n, 2) = u(n, 2) + 1. Thus h(n, 2) − g(n, 3) = h(n, 2) − g(n, 3) + 1. Clearly
g(n, 3) = bbbnϕcϕcϕc ≤ bg(n, 1)ϕ2c=h(n,2). But this inequality is strict by
disjointness. Thus h(n, 2)− g(n, 3) ≥ 2.

Conversely, multiply the inequality g(n, 1)ϕ < g(n, 2) + 1 by ϕ, to get
g(n, 1)ϕ2 < (g(n, 2) + 1)ϕ. Therefore bg(n, 1)ϕ2c ≤ b(g(n, 2) + 1)ϕc. Again by
disjointness, this inequality is strict. Now Lemma 9 of [8] asserts bg(n, 1)ϕ2c =
h(n, 2) − 1. Therefore, h(n, 2) < b(g(n, 2) + 1)ϕc + 1, so h(n, 2) − g(n, 3) <
bg(n, 2)ϕ + ϕc − g(n, 3) + 1 ≤ 3. Hence h(n, 2)− g(n, 3) ≤ 2. ¥

Notation 3. For any positive integer N , denote by R(N) the representation of
N in the Fibonacci numeration system. It has the form R(N) = (dm, . . . , d0)
if N =

∑m
i=0 diFi, where di ∈ {0, 1}, di = 1 =⇒ di−1 = 0, i ≥ 1 [6]. The

position of a representation is the subscript of di. Thus, d0 is in position 0, d1

in position 1, etc.

Proof of Theorem 1 (c). For k = 1, this is Lemma 5 of [8], Sect. 5. For
k = 2, it is Lemma 3 above. We proceed by induction on k for arbitrary n ∈ Z≥1.
Suppose that h(n, k) = g(n, k + 1) + Fk−1 for some fixed k ≥ 2. Multiply by
ϕ and take the floor of both sides. This gives, by Lemma 2, h(n, k + 1) =
b(g(n, k +1)+Fk−1)ϕc ≤ g(n, k +2)+ bFk−1ϕc+1 ≤ g(n, k +2)+Fk +1. Now
[8] Sect. 6 implies that R(g(n, 2)) ends in 01 for every n ∈ Z≥1. By Lemma 1,
the same holds for g(n, k) and h(n, k) for every k ≥ 3 (but it does not hold for
h(n, 2)). Since R(Fk) ends in 00 for k ≥ 2, R(g(n, k + 2) + Fk) also ends in 01
for k ≥ 2, and so does h(n, k + 1) for k ≥ 2. But R(g(n, k + 2) + Fk + 1) ends
in 10. Hence h(n, k + 1) = g(n, k + 2) + Fk. ¥

Proof of Theorem 1 (d). From (b) and (c), u(n, k+1) = g(n, k+2)+1 =
h(n, k + 1)− Fk + 1. The second follows once more from (c). ¥
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We note that inspection shows that (d) does not hold for k < 1.

Proof of Theorem 1 (e1). Subtracting (c) from (c) with k replaced by
k + 1 gives h(n, k + 1)− h(n, k) = g(n, k + 2)− g(n, k + 1) + Fk−2. Substituting
the value of g(n, k + 2) from (b) yields the desired result. ¥
(e2) Follows from (e1), where we replace h(n, k) by its value from (c). ¥
(e3) We have,

bu(n, k + 1)ϕc = bbg(n, k)ϕ2cϕc = b(g(n, k) + g(n, k + 1))ϕc
≤ g(n, k + 1) + g(n, k + 2) + 1 = u(n, k + 2) + 1,

where the last equality follows from (b). On the other hand,

b(g(n, k) + g(n, k + 1))ϕc ≥ g(n, k + 1) + g(n, k + 2) = u(n, k + 2).

Hence by disjointness, bu(n, k + 1)ϕc = u(n, k + 2) + 1. ¥
We recall the following special case of Lemma 2 of [5]:
Lemma I. For integers i > j ≥ 0 and integer Ni+1 ∈ Z≥ 1, let R(Ni+1) =

Fi + Fi−2 + · · · + Fj, where j = 0 if i is even, j = 1 if i is odd. Then Ni+1 =
Fi+1 − 1.

This is the analog in the Fibonacci numeration system of the decimal 99 . . . 9.

Proof of Theorem 1 (f1). For any n ∈ Z≥1, clearly ϕ − 1 < ∆g(n, 1) <
ϕ + 1, so ∆g(n, 1) ∈ {1, 2} = {F0, F1}. This shows already that S1, S2 split
Z≥1. Moreover, if ∆g(n, 1) = 1 for all large n, then, since h(n, 1) is increasing,
we would have g(n, 1) ∩ h(n, 1) 6= ∅ for infinitely many n ∈ Z≥1, contradicting
the complementarity of the 2 sequences. If ∆g(n, 1) = 2 for all large n, then
also ∆h(n, 1) = 2 for all large n by complementarity. But a direct computation
shows that ∆h(n, 1) = ∆g(n, 1) + 1 = 3 for all n ∈ Z≥1, another contradiction.
Thus each of S1 and S2 is infinite as claimed. ¥

(f2) We proceed by induction on k. Suppose that for some k ≥ 1, ∆g(n, k) =
Fk−1 for all n ∈ S1, and ∆g(n, k) = Fk for all n ∈ S2. This holds trivially for
k = 1 by (f1). For now let’s assume that n ∈ S1. Then

∆g(n, k+1) = bg(n+1, k)ϕc−bg(n, k)ϕc < g(n+1, k)ϕ−g(n, k)ϕ+1 = Fk−1ϕ+1

by the induction hypothesis. Also,

∆g(n, k + 1) > g(n + 1, k)ϕ− g(n, k)ϕ− 1 = Fk−1ϕ− 1.

So bFk−1ϕc ≤ ∆g(n, k + 1) ≤ bFk−1ϕc + 1. Then Lemma 2 implies that
∆g(n, k) ∈ {Fk − 1, Fk, Fk + 1}.

In the proof of (c) above, it was mentioned that R(g(n + 2, 2)) ends in 01.
The same thus holds for R(g(n+1, k+1)) and R(g(n, k+1)) for all k ≥ 1, since
Gk+1 is a subsequence of G2 for all k ≥ 1. Therefore R(∆g(n, k + 1)) ends in
00, the same as R(Fk). But R(Fk + 1) ends in 01, and Lemma I implies that
R(Fk − 1) ends in 10, or in 01, depending on whether k is even or odd. Hence
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∆g(n, k+1) = Fk for all n ∈ S1. The same proof shows that ∆g(n, k+1) = Fk+1

for all n ∈ S2. ¥
(f3) This follows easily for k = 1 by considering the size of ϕ. For all k ≥ 1

it follows from (f2). ¥
(f4). This follows directly from (f1) and (f2). ¥
Note. Part of the proof of (f4) follows directly from (d):

h(n + 1, k + 1)− g(n + 1, k + 2) = h(n, k + 1)− g(n, k + 2) = Fk.

Hence ∆h(n, k + 1) = ∆g(n, k + 2). But this establishes the equality part of
(f4) only for k ≥ 3 and doesn’t prove the membership part.

(f5). (i) Induction on k. (ii) By definition, ∆h(0, k) = h(1, k) − h(0, k) =
h(1, k). The result for h(1, k) follows directly from (i) and (c). ¥

(g). For k = 1, h(n, 2) = bh(n, 1)ϕc = g(h(n, 1), 1). If the assertion holds for
any k ≥ 1, then h(n, k+2) = bh(n, k+1)ϕc = bg(h(n, 1), k)ϕc = g(h(n, 1), k+1).
¥

(h1). Clearly G2 ⊂ G1, so for every n ∈ Z≥1, g(n, 2) = g(m, 1) for some
m ∈ Z≥1. By (c), g(n, 2)+1 = h(n, 1) 6∈ G1. But then g(n, 2)+2 = g(m+1, 1) ∈
G1 by (f4) for k = 1. ¥

The following is a special case of Property 1, Sect. 5 of [5]:
Lemma II. The set of numbers {R(N) : N ∈ G1} ends in an even (possibly

0) number of 0s, hence the complementary set of numbers {R(N) : N ∈ H1}
ends in an odd number of 0s.

(h2). By (h1), G2 ∪ (G2 + 2) ⊆ G1. Choose any g(n, 1) ∈ G1. If g(n, 1) ∈
(G2 + 2), we are done. So suppose that g(n, 1) = g(m, 2) + 2 for no m ∈ Z≥1.
By (c), g(m, 2) + 1 = h(m, 1) for all m ∈ Z≥1, so by disjointness, g(n, 1) =
g(m, 2) + 1 for no m ∈ Z≥1. But then g(n, 1) = g(m, 2) for some m ∈ Z≥1 by
(f4) for k = 1, so g(n, 1) ∈ G2. ¥

(h3). The following is immediately implied by (f3): (a) if g(n, 1)− 1 6∈ G1,
then g(n, 1)− 2 ∈ G1; and, conversely, (b) if g(n, 1)− 1 ∈ G1, then g(n, 1)− 2 6∈
G1. Consider case (b). Lemma II then implies that R(g(n, 1)−1) ends in an even
positive number of 0s, and R(g(n, 1)) ends in 01. By Lemma I, R(g(n, 1) − 2)
then ends in 10. We now show that R(bg(n, 1)ϕ2c) ends in 10 for all n ∈ Z≥1.

Now R(g(n, 1)) ends in F2k−2 for some k ∈ Z≥1. By Lemma 2(ii), bF2k−2ϕ
2c =

F2k − 1, and R(F2k − 1) ends in 10 by Lemma I, the same as R(g(n, 1)− 2) for
case (b). This proves that R(bg(n, 1)ϕ2c) ends in 10 for all n ∈ Z≥1, and the
right-hand-side of (h3). On the other hand, let N ∈ U2. Then R(N) ends in
10, and so N + 1 and N + 2 are both in G1. Thus N ∈ G1 − 2, proving the
left-hand-side of (h3). ¥

(h4). In the proof of (h3) we showed that R(bg(n, 1)ϕ2c) ends in 10 for
all n ∈ Z≥1. Since R(h(n, 1)) ends in an odd number of 1s for all n ∈ Z≥1 by
Lemma II, it follows that R(v(n, 2)) ends in an odd number N ≥ 3 of 1’s. Then
Lemma I implies that R(v(n, 2) − 1) ends in 01. Theorem 3 of [8] states that
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R(G2) is the set of all numbers whose representation ends in 01, so (V2−1) ⊂ G2.
¥

3 An Application: The Flora Game

The class of impartial take-away games appears to be partitioned into two dis-
joint subclasses:

• CompGames (composite games), and

• PrimGames.1

Informally, CompGames are games that are easy to generalize to more than
one or two piles; PrimGames are those for which this seems to be very hard.
A well-known representative of the former is Nim, and of the latter, Wythoff’s
game. Some progress in generalizing Wythoff to multiple piles was recently
made. Two 3-pile games that are extensions rather than generalizations of
Wythoff were also given recently. It appears that, largely, a game belongs to
class CompGames if it decomposes into a disjunctive sum of subgames, such as
Nim, which is the Nim-sum of its pile sizes; and it belongs to class PrimGames
if it is not decomposable. Hence the names CompGames (composite games)
and PrimGames (not decomposable – prime). Whereas for the former there
are theories both for the impartial as well as for the partizan case, there is no
general theory for the latter yet, and we believe that these “lone wolf” games
should be investigated more seriously.

Here we study an extension of Wythoff to four piles. The efforts in defining
a “right” extension, and particularly in proving the validity of the winning strat-
egy, are considerably greater than those for three-pile extensions. We present
four winning strategies, recursive, algebraic, arithmetic and morphic. The re-
cursive is the easiest to describe, but seems to be hardest computationally. The
algebraic depends on iterations of the floor function, the arithmetic on the Fi-
bonacci numeration system and the morphic on a morphism. The latter three
are polynomial time winning strategies.

The Flora game is a 2-player game played on 4 piles of tokens. We denote
positions of Flora by (a1, a2, a3, a4) with 0 ≤ a1 ≤ a2 ≤ a3 ≤ a4. A position in
Flora is legal if

a1 = h(n, 1) for some n ∈ Z≥1 =⇒ a2 ≥ h(n, 2)− 2.

It goes without saying that every pile must contain a nonnegative number of
tokens at all times. Only legal positions are permitted.

The end position is T0 := (0, 0, 0, 0). The first player unable to move (because
the present position is T0) loses; the opponent wins.

There are 3 rules of move:
1It’s different from the partition into MathGames and PlayGames defined in [7].
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I. Any positive number of tokens from up to 3 piles may be removed.
II. From a nonzero position in which 2 piles have the same size or a3−a2 = 1,

one can move to T0.
III. If 0 < a1 < a2 < a3 < a4, one can remove p > 0 from a3, q > 0 from a4

and an arbitrary nonnegative integer from a1 and a2, subject to:
(i) q = p if a4 − a3 6∈ V2, except for the proviso that if a3 − p is the second
smallest component in the quadruple moved to, then p 6= 5.
(ii) q = p + 1 if a4 − a3 ∈ V2.

Note. If the position moved to under rule III(i) is (b1, b2, b3, b4), then a3 −
p = bi, a4 − p = bj for some 1 ≤ i < j ≤ 4. Then a4 − a3 = bj − bi = t for some
t ∈ Z≥1, and normally t 6= p.

3.1 Algebraic Formulation of the P -positions

The set of P -positions of a game is the set of game positions game positions
from which the second (Previous) player can force a win.

Let

An = h(n, 1), Bn = g(n, 3), Cn = h(n, 2), Dn = h(n, 3),

A = ∪∞n=1An, B = ∪∞n=1Bn, C = ∪∞n=1Cn, D = ∪∞n=1Dn,

Tn := (An, Bn, Cn, Dn), T = ∪∞n=0Tn.

A prefix of T of size 19 is shown in Table 1.

Notation 4. For n ∈ Z≥1, let ∆DC(n) := h(n, 3)−h(n, 2), ∆DB(n) := h(n, 3)−
g(n, 3), ∆DA(n) := h(n, 3) − h(n, 1), ∆CB(n) := h(n, 2) − g(n, 3), ∆CA(n) :=
h(n, 2) − h(n, 1), ∆BA(n) := g(n, 3) − h(n, 1), ∆(n) = ∆DC(n) ∪ ∆DB(n) ∪
∆DA(n) ∪∆CB(n) ∪∆CA(n) ∪∆BA(n), ∆ = ∪∞n=1∆(n).

Lemma 4. (i) ∆DC(n) = g(n, 2),
(ii) ∆DB(n) = g(n, 2) + 2,
(iii) ∆DA(n) = u(n, 2),
(iv) ∆CB(n) = 2,
(v) ∆CA(n) = g(n, 1),
(vi) ∆BA(n) = g(n, 1)− 2,
(vii) ∆ = Z≥1 \ V2,
(viii) ∆ = ∪∞n=1(∆DC(n) ∪∆DB(n) ∪∆DA(n)).

Proof. (i) This is Theorem 1 (e1) for k = 2.
(ii) Theorem 1 (e2) for k = 2.
(iii) ∆DA(n) = (h(n, 3)−h(n, 2))+(h(n, 2)−h(n, 1)) = g(n, 2)+g(n, 1) = u(n, 2)
by Theorem 1 (e1) and (b).
(iv) Theorem 1 (c).
(v) Theorem 1 (e1).
(vi) ∆BA(n) : (g(n, 3)− h(n, 2)) + (h(n, 2)− h(n, 1)) = g(n, 1)− 2.
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Table 1: P -positions of Flora.

n h(n, 1) g(n, 3) h(n, 2) h(n, 3)
0 0 0 0 0
1 2 1 3 4
2 5 6 8 12
3 7 9 11 17
4 10 14 16 25
5 13 19 21 33
6 15 22 24 38
7 18 27 29 46
8 20 30 32 51
9 23 35 37 59
10 26 40 42 67
11 28 43 45 72
12 31 48 50 80
13 34 53 55 88
14 36 56 58 93
15 39 61 63 101
16 41 64 66 106
17 44 69 71 114
18 47 74 76 122

(vii) Notice that for every n ∈ Z≥1, g(n, 2) ∈ G1, g(n, 2) + 2 ∈ G1 (by Theo-
rem 1 (h1)), 2 ∈ U2, g(n, 1)− 2 ∈ G1 ∪ U2 (by (h3). It then follows from (iii)
and (v) that ∆ = G1 ∪ U2. The result follows since the sets G1, U2, V2 clearly
partition Z≥1.
(viii) Follows from (i)-(iii), (vii) and Theorem 1 (h2). ¥

Lemma 5. For fixed n ∈ Z≥1, let 0 < t < g(n, 2), t 6∈ V2. Then there exists
0 ≤ m < n such that t ∈ ∆DC(m) ∪∆DB(m) ∪∆DA(m).

Proof. We have t < g(n, 2) = ∆DC(n) < ∆DB(n) < ∆DA(n). It then follows
from Lemma 4(viii), that there must be some m < n for which t ∈ ∆DC(m) ∪
∆DB(m) ∪∆DA(m). ¥

Theorem 2. The set T constitutes the set of P -positions of the game Flora.

Proof. To begin with we note the following facts:

• Every position (An, Bn, Cn, Dn) is a legal position (n ≥ 0).

• Lemma 1 implies that each of the sequences An, Bn, Cn, Dn is increasing
(Lemma 1).
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• A, B, C, D partition Z≥1 (Theorem 1 (a)).

It evidently suffices to prove the following two statements:

(A) Every move from any position in T results in a position outside T .

(B) For every position outside T there is a move into a position in T .

(A) Clearly there is no legal move T1 → T0. Suppose that there are positions
Tn, Tm with m < n, n ≥ 2 such that there is a legal move Tn → Tm. This move
must be of type III, since A,B, C, D partition Z≥1, from which it follows easily,
using Lemma 4, that An < Bn < Cn < Dn for n ≥ 2.

By Lemma 4(vii), ∆DC(n) 6∈ V2, so we have to consider only move III(i).
We first show that Dn − p can only be Dm. It cannot be Am, since then
Cn − p < Am has no place in row m of T . Suppose Dn − p = Bm. Then
Cn − p = Am. But ∆BA(m) < ∆BA(n) = g(n, 1) − 2 < ∆DC(n) = g(n, 2),
contradicting the move rule III(i). Suppose Dn − p = Cm. Since Cn − Bn = 2
for all n ∈ Z≥1, we have Cn − p = Am. But ∆CA(m) = ∆BA(m) + 2 ≤
∆BA(n) + 1 = g(n, 1) − 1 < ∆DC(n) = g(n, 2), again contradicting move rule
III(i). Thus indeed Dn − p = Dm.

Suppose Cn − p = Cm. Subtracting, ∆DC(n) = ∆DC(m), so g(n, 2) =
g(m, 2) which is impossible for m < n since the sequence g(`, 2) is strictly
increasing. Suppose Cn − p = Bm = Cm − 2. Then ∆DC(n) = ∆DB(m) =
∆DC(m) + 2 which is possible if and only if p = 5 and m = n − 1. But this
case is excluded by the proviso. Finally, suppose that Cn − p = Am. Then
∆DC(n) = ∆DA(m). By Lemma 4 this is equivalent to g(n, 2) = u(m, 2). This
is possible for no m < n by disjointness.

(B) Let (a1, a2, a3, a4) 6∈ T , 0 ≤ a1 ≤ a2 ≤ a3 ≤ a4. If there is equality in
any of these or a3 − a2 = 1, a move of type I or II leads to T0. So we may
assume 0 < a1 < a2 < a2 + 1 < a3 < a4. By the complementarity of A, B,
C, D, a1 appears in precisely one component of precisely one Tn, n ≥ 1. If
a1 = Dn, move a2 → An, a3 → Bn, a3 → Cn.

So suppose that a1 = Cn.

If a4 ≥ Dn, move a2 → An, a3 → Bn, a4 → Dn. So assume a4 < Dn. Let

t := a4 − a3.

We consider 2 cases.

(a) t 6∈ V2, and (b) t ∈ V2.

(a) t 6∈ V2. We have

0 < t = a4 − a3 < Dn − a3 < Dn − a1 = Dn − Cn = ∆DC(n) = g(n, 2).

By Lemma 5, there exists m < n such that either (i) t = ∆DC(m), or (ii) t =
∆DB(m), or (iii) t = ∆DA(m).
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For case (i), move (a1, a2, a3, a4) → (Am, Bm, Cm, Dm). This is a legal move:
a1 = Cn > An > Am, and a2 > a1 = Cn > Bn > Bm, a3 > a1 = Cn > Cm,
a4 = a3 + Dm − Cm > Dm, so this move (as well as in the remainder of this
proof) is of the form III.

For case (ii), move a1 → Am, a2 → Cm, a3 → Bm, a4 → Dm. This is a legal
move: a1 = Cn > An > Am, a2 > a1 = Cn > Cm, a3 > a1 = Cn > Cm > Bm,
a4 = a3 + Dm −Bm > Dm.

For case (iii), move a1 → Bm, a2 → Cm, a3 → Am, a4 → Dm. This is a legal
move: a1 = Cn > Bn > Bm, a2 > a1 = Cn > Cm, a3 > a1 = Cn > Cm > Am,
a4 = a3 + Dm −Am > Dm.

(b) t ∈ V2. To remind ourselves, t = a4−a3 and we have a1 = Cn, a4 < Dn.
Now t− 1 ∈ (V2 − 1). Since (V2 − 1) ⊂ G2 (Theorem 1 (h4)), we have t− 1 =
g(m, 2) for suitable m ∈ Z≥1. Also ∆DC(m) = g(m, 2) (Lemma 4 (i)). So we
move: (a1, a2, a3, a4) → (Am, Bm, Cm, Dm). This is a legal move:

• m < n, since ∆DC(m) = a4 − a3 − 1 < Dn − a1 = Dn − Cn = ∆DC(n).

• a1 = Cn > An > Am, a2 > a1 = Cn > Bn > Bm, a3 > a1 = Cn > Cm,
a4 = a3 + 1 + Dm − Cm > a1 + Dm − Cm = Cn + Dm − Cm > Dm.

So suppose that a1 = Bn.

If a4 ≥ Dn, then move a2 → An, a3 → Cn, a4 → Dn. This is a legal move,
since a2 > a1 = Bn > An and

a3 ≥ a2 + 1 ≥ a1 + 2 = Bn + 2 = Cn.

Therefore we may assume a4 < Dn. The proof is similar to the above case
a1 = Cn. We have a3 ≥ Cn, and 0 < t− 1 < t = a4 − a3 < Dn − a3 ≤ ∆DC(n).
Hence by Lemma 5 there is m < n such that, for case (a), either (i) t = ∆DC(m),
or (ii) t = ∆DB(m), or (iii) t = ∆DA(m). For case (b) we have t− 1 = g(m, 2)
for some m ∈ Z≥1.

(a) t 6∈ V2.
For case (i), move a2 → Am, (a3, a4) → (Cm, Dm). This is a legal move:

a2 > a1 = Bn > An > Am, a3 ≥ Cn > Cm,

a4 = a3 + Dm − Cm ≥ Cn + Dm − Cm > Dm.

For case (ii), move a1 → Am, a2 → Cm, a3 → Bm, a4 → Dm. This is a
legal move: a1 = Bn > An > Am, a2 ≥ a1 + 1 = Bn + 1 = Cn − 1 ≥ Cm,
a3 > a1 = Bn > Bm, a4 = a3 + Dm −Bm ≥ Cn + Dm −Bm > Dm.

For case (iii), move a1 → Bm, a2 → Cm, a3 → Am, a4 → Dm. This
is a legal move: a1 = Bn > Bm, a2 ≥ a1 + 1 = Bn + 1 = Cn − 1 ≥ Cm,
a3 > a1 = Bn > Bm > Am, a4 = a3 + Dm −Am > Dm.

(b) t ∈ V2. We have t = a4 − a3, a1 = Bn, a4 < Dn. As in case (b) above,
we move (a1, a2, a3, a4) → (Am, Bm, Cm, Dm). This is a legal move:
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• m < n, since ∆DC(m) = a4−a3−1 < Dn−a3−1 ≤ Dn−Cn−1 < ∆DC(n).

• a1 = Bn > An > Am, a2 > a1 = Bn > Bm, a3 ≥ Cn > Cm, a4 =
a3 + 1 + Dm − Cm ≥ Cn + 1 + Dm − Cm > Dm.

Finally, we consider the case a1 = An = h(n, 1).

Since the position is legal, we have a2 ≥ h(n−2)−2 = Bn. Since a3−a2 > 1,
we have a3 ≥ Bn + 2 = Cn. If a4 ≥ Dn, then at least one of the inequalities
for a2, a3, a4 is strict, since (a1, a2, a3, a4) 6∈ T . Then move (a1, a2, a3, a4) →
(An, Bn, Cn, Dn). If a4 < Dn then for case (a) there is m < n such that
0 < t = a4 − a3 < ∆DC(n). Hence by Lemma 5, there is m < n such that
either (i) t = ∆DC(m), or (ii) t = ∆DB(m), or (iii) t = ∆DA(m). For case (b),
0 < t− 1 = g(m, 2) for some m ∈ Z≥1.

(a) t 6∈ V2. For case (i) move (a1, a2, a3, a4) → (Am, Bm, Cm, Dm). This is a
legal move, since m < n implies a1 = An > Am, a2 ≥ Bn > Bm, a3 ≥ Cn > Cm,
Dn > Dm. For case (ii), move a1 → Am, a2 → Cm, a3 → Bm, a4 → Dm.
This is a legal move: a1 = An > Am, a2 ≥ Bn = Cn − 2 > Cm, where the
strict inequality follows since Cn − Cm ≥ 3 (Theorem 1 (f4) for k = 3). Also
a3 ≥ Cn > Bn > Bm, a4 = a3 +Dm−Bm > Dm. For case (iii) move a1 → Bm,
a2 → Cm, a3 → Am, a4 → Dm. We have to prove the legality of this move. We
begin by showing that a1 = An > Bm. Notice that

t = a4 − a3 = ∆DA(m) = u(m, 2) (Lemma 4)
< ∆DC(n) = g(n, 2) (Lemma 4)
= h(n, 1)− 1 (Theorem 1 (c)).

Thus h(n, 1) > u(m, 2) + 1. But h(n, 1) = An and u(m, 2) = g(m, 3) + 1 (by
Theorem 1 (d)) = Bm + 1, so indeed An > Bm + 2 > Bm. Next,

a2 ≥ Bn = g(n, 3) = h(n, 2)− 2 (Theorem 1 (d))
> h(n− 1, 2) (Theorem 1 (f4)) = Cn−1 ≥ Cm.

Also a3 ≥ Cn > Cm > Am and a4 = a3 + Dm −Am ≥ Cn + Dm −Am > Dm.

(b) t ∈ V2. We have t = a4 − a3, a1 = An, a4 < Dn, t − 1 = g(m, 2) =
∆DC(m) for some m ∈ Z≥1. As above we move (a1, a2, a3, a4) → (Am, Bm, Cm, Dm).
This is a legal move:

• m < n, since ∆DC(m) = a4 − a3 − 1 < Dn − Cn − 1 < ∆DC(n).

• a1 = An > Am, a2 ≥ Bn > Bm, a3 ≥ Cn > Cm, a4 = a3 +1+Dm−Cm >
Cn + Dm − Cm > Dm. ¥

3.2 Recursive Formulation of the P -positions

Let S $ Z≥1 and S = Z≥1 \ S. The “Minimum EXcludant” of S is defined by

mex S = min S = least positive integer not in S.
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In particular, the mex of the empty set is 1. (This somewhat nonstandard
definition of the mex function is needed for §5.)

Let T ′0 = (0, 0, 0, 0), T ′1 = (2, 1, 3, 4). If T ′m := (A′m, B′
m, C ′m, D′

m) has already
been defined for all m < n (n ≥ 2), then let

A′n = mex{A′i, B′
i, C

′
i, D

′
i : 0 ≤ i < n},

B′
n =

{
B′

n−1 + 3 if A′n −A′n−1 = 2
B′

n−1 + 5 otherwise,

C ′n = B′
n + 2,

D′
n =

{
D′

n−1 + 5 if A′n −A′n−1 = 2
D′

n−1 + 8 otherwise.

Let T ′ := ∪∞n=0T
′
n.

Theorem 3. The set T ′ constitutes the set of P -positions of the game Flora.

Proof. We show that for all m ∈ Z≥0, A′m = Am, B′
m = Bm, C ′m = Cm, D′

m =
Dm. Suppose this holds for all m < n (n ≥ 1). Let E = mex{Ai, Bi, Ci, Di :
0 ≤ i < n}. The value E cannot have been assumed in any of the four sequences
for m < n, since A,B, C, D split Z≥1, so E ≥ An. If E > An, then An would
never be assumed since the sequences are strictly increasing, again contradicting
the complementarity of the sequences. Thus An = E = A′n, and the other 3
equalities follow from Theorem 2 (f). ¥

The definition of the set T ′ is straightforward; it doesn’t use the functions
h, g used for defining T . Thus the recursive computation of T ′ looks easier than
that of the set T . Moreover, the proof of Theorem 3 is very short, and that of
Theorem 2 is long.

However, the proof of Theorem 3 leans heavily on Theorems 2 and 1. Let’s
examine how easy the computation of T ′ is. If the initial position of the game
is (a1, a2, a3, a4), the input size is log a1 + log a2 + log a3 + log a4. The time
needed to compute whether the position is a P -position or not, however, is
proportional to a1 +a2 +a3 +a4, because the unwieldy mex function requires to
scan previous entries of the sequences An, Bn, Cn, Dn. So the algorithm isn’t all
that easy; in fact, it requires exponential space (and hence exponential time)!
But the decision problem whether or not (a1, a2, a3, a4) is a P -position using T
is polynomial, since it requires computation of ϕ only up to O(log a1) bits (see
[5], §3). So the bottom line is that Theorem 3 looks easy but is hard, whereas
Theorem 2 looks hard but is easy.

3.3 Arithmetic Formulation of the P -positions

For N ∈ Z≥1, let R(N) = (dm, . . . , d0) be the representation of N in the Fi-
bonacci numeration system (recall Notation 3). Then (dm, . . . , d0, 0) is the left
shift of R(N).
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Theorem 4. R(A) is the set of all representations that end in an odd number
of 0-bits in the Fibonacci numeration system, R(B) the set of all representa-
tions that end in 001, R(C) the set of all representations that end in a positive
even number of 0-bits, and R(D) the set of all representations that end in 101.
Moreover, for every n ∈ Z≥1, R(Cn) is the left shift of R(An).

See Table 3.3 for an example.

Table 3.3: Representation of the P -positions in the Fibonacci numeration sys-
tem.

21 13 8 5 3 2 1 An n Bn 34 21 13 8 5 3 2 1
1 0 2 1 1 1

1 0 0 0 5 2 6 1 0 0 1
1 0 1 0 7 3 9 1 0 0 0 1

1 0 0 1 0 10 4 14 1 0 0 0 0 1
1 0 0 0 0 0 13 5 19 1 0 1 0 0 1
1 0 0 0 1 0 15 6 22 1 0 0 0 0 0 1
1 0 1 0 0 0 18 7 27 1 0 0 1 0 0 1
1 0 1 0 1 0 20 8 30 1 0 1 0 0 0 1

1 0 0 0 0 1 0 23 9 35 1 0 0 0 0 0 0 1
1 0 0 1 0 0 0 26 10 40 1 0 0 0 1 0 0 1

34 21 13 8 5 3 2 1 Cn n Dn 55 34 21 13 8 5 3 2 1
1 0 0 3 1 4 1 0 1

1 0 0 0 0 8 2 12 1 0 1 0 1
1 0 1 0 0 11 3 17 1 0 0 1 0 1

1 0 0 1 0 0 16 4 25 1 0 0 0 1 0 1
1 0 0 0 0 0 0 21 5 33 1 0 1 0 1 0 1
1 0 0 0 1 0 0 24 6 38 1 0 0 0 0 1 0 1
1 0 1 0 0 0 0 29 7 46 1 0 0 1 0 1 0 1
1 0 1 0 1 0 0 32 8 51 1 0 1 0 0 1 0 1

1 0 0 0 0 1 0 0 37 9 59 1 0 0 0 0 0 1 0 1
1 0 0 1 0 0 0 0 42 10 67 1 0 0 0 1 0 1 0 1

Proof. The proof is similar to that of Theorem 3 of [8]. For every m ∈ Z≥1,
R(bmϕc) ends in an even number of 0-bits (including 0 0-bits), and R(bmϕ2c)
ends in an odd number of 0-bits ([5], §4). Hence R(A) is the set of all num-
bers that end in an odd number of 0-bits in the Fibonacci numeration system,
whereas each of the other 3 representations ends in an even number of 0-bits.
Now R(C) is the set of all numbers that end in a positive even number of 0-bits
([8]), hence R(B) and R(D) each end in a 1-bit. Recall that Cn = Bn + 2. If

15



R(B) would contain a number with representation ending in 101, then adding 2
to it would end in 1 (since 2+3=5 is the next Fibonacci number), contradicting
the form of R(Cn). Therefore R(B) is the set of all numbers ending in 001. By
complementarity, R(D) is therefore the set of all numbers ending in 101.

Since R(A) is the set of all representations ending in an odd number of 0-
bits, and R(C) is the set of all representations ending in a positive even number
of 0-bits, the latter is the left shift of the former. Suppose that R(Cm) is the
left shift of R(Am) for every m < n. If R(Cn) would not be the left shift of
R(An), then it would be assumed later on (by complementarity), contradicting
the strict increase of C. ¥

This formulation of the P -positions is also easily seen to lead to a polynomial-
time winning strategy.

4 The Morphic Approach

In this section we show how to construct Gk recursively by a morphism for every
k ∈ Z≥1. Similar methods can be used to construct other functions defined in
§2, and we also present our fourth formulation of the P -positions of the game
Flora. We resort to the language of words. A word is any sequence over some
alphabet. Here we restrict attention to binary words. A subword (or factor) of a
word is any contiguous subset of symbols. Thus 00101 and 101100 are subwords
of the word w = 010010110001. The length of a (sub)word is the number of its
symbols, counting multiplicities. The lengths of the above 2 subwords and of w
are 5, 6 and 12 respectively. The length of any (sub)word w is denoted by |w|.

4.1 Morphism for Gk

Define the morphism 1 → 10, 0 → 1. Its fixed point is the word: F =
1011010110110 . . . , also known as the Fibonacci word. For k ≥ 1, the char-
acteristic function χk of Gk is defined by

χk(m) =
{

1 if ∃ n s.t. g(n, k) = m
0 otherwise.

Definition 1. Given a binary word W . A run of 0s is any (possibly empty)
subword of W consisting solely of 0s, flanked on the left and right by a 1-bit. A
block is any subword consisting of a 1-bit followed by a run of 0s.

Theorem 5. For every k ≥ 1, the “substitution morphism” for producing the
characteristic function χk of Gk, beginning with 10Fk−1−1, is:

10Fk−1−1 → 10Fk−1, 0Fk−2 → 10Fk−1−1.

Proof. The substitution morphism is well-defined. Indeed, the initial block of
length Fk−1 is mapped into a block B1 of length Fk. In the second iteration, the
prefix of length Fk−1 of B1 is again mapped into B1. The remaining abutting
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suffix of B1 consists of Fk−2 0s, so it is mapped into a block B2 of length Fk−1.
In the third iteration, B1 and B2 are generated again, and then the block B2 of
length Fk−1 generates a block B1. Thus for all subsequent iterations only blocks
of the form B1 and B2 are generated, and there is never any parsing conflict.

Notice that for G1, the “substitution morphism” is simply the well-known
morphism 1 → 10, 0 → 1, which produces F . Moreover, χ1 = F . See e.g., [1],
ch. 9 and [11].

Since χ1 = 1011010110110 . . . , Theorem 1(f) implies that χ2 = 10010100100
1010010100 . . . , where we inserted into χ1 F1 − F0 = 1 zero to each run of
F0 − 1 = 0 zeros (i.e., one 0 between every consecutive 1s), and F2 − F1 = 1
zero to each run of F1 − 1 = 1 zeros. Doing this yields distances between
consecutive 1s in χ2 of F1 and F2, precisely at the locations where the dis-
tances between consecutive 1s of χ1 are F0 and F1 respectively. Similarly,
χ3 = 1000010010000100001001000010010000 . . . , where we inserted into χ2

F2 − F1 = 1 zero to each run of F1 − 1 = 1 zero, and F3 − F2 = 2 zeros to each
run of F2 − 1 = 2 zeros.

In general, for producing χk+1 from χk, we add to χk Fk − Fk−1 = Fk−2

zeros to each run of Fk−1 − 1 zeros and Fk+1 − Fk = Fk−1 zeros to each run of
Fk zeros. This yields blocks of sizes Fk and Fk+1 respectively, at the locations
specified by Theorem 1(f).

Assume inductively that the substitution morphism

10Fk−1−1 → 10Fk−1, 0Fk−2 → 10Fk−1−1

produces χk, so it generates distances between consecutive 1s of Fk−1 and Fk

at the locations specified by Theorem 1(f). Then the substitution morphism

10Fk−1 → 10Fk+1−1, 0Fk−1 → 10Fk−1

produces χk+1, since it adds Fk+1 − Fk to the Fk 0s of the long 0-runs of χk,
and Fk − Fk−1 0s to the Fk−1 short 0-runs of χk. ¥

4.2 Morphic Formulation of of the P -positions

Denote terms of An, Bn, Cn, Dn by a, b, c d respectively.

Theorem 6. The morphism

bac → bacda, da → bac,

beginning with bac, generates the characteristic function of the P -positions of
the Flora game.

Proof. The proof is rather similar to that of Theorem 5, and is therefore
omitted. ¥

This theorem also leads to a polynomial-time winning strategy, since in-
duction shows that for every k ∈ Z≥1, the k-th application of the morphism
generates a word of length Fk+2.
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Notice that if we replace bac by 1 and da by 0, we get back our old morphic
friend 1 → 10, 0 → 1.

4.3 Characterization of the Sequences G, H, by the Fi-
bonacci Numeration System

We know from Lemma II and §3.3, that R(g(n, 1) ends in an even number of
0s, R(h(n, 1) in an odd number of 0s, R(h(n, 2) in an even positive number of
0s, R(h(n, 3) in 101, and R(g(n, 3) in 10s1, s ≥ 2. What’s the general pattern?

Theorem 7. (i) R(G1) is the set of all representations that end in an even
number of 0s, R(H1) is the set of all representations that end in an odd number
of 0s, R(G2) is the set of all representations that end in a 1-bit, and R(H2) is
the set of all representations that end in an even positive number of 0s.
(ii) For every k ∈ Z≥3 and all n ∈ Z≥1, R(Gk) is the set of all representations
that end in the word 10s1 for all s ≥ k − 1, and R(Hk) is the set of all repre-
sentations that end in the word 10k−21 (left 1-bit in position k − 1).
(iii) For every n ∈ Z≥1, R(h(n, 2)) is the left shift of R(h(n, 1)).

Proof. Items (i) and (iii) are already known from Theorem 4 and Lemma II,
and are included here only for the sake of completeness. We only have to point
out the statement about R(G2), which follows from the fact that G2,H2, H1

split the positive integers (see also [8], Theorem 3).
(ii) Induction on k. The base case k = 3 was proved in Theorem 4. For k ≥ 3,

suppose that we already proved that R(Gk) is the set of all representations
that end in 10s1 for all s ≥ k − 1, and R(Hk) is the set of all representations
that end in 10k−21. It clearly remains only to show that R(Gk+1) is the set
of all representations that end in 10s1 for all s ≥ k, and R(Hk+1) is the set
of all representations that end in the word 10k−11. Recall Theorem 1 (c):
h(n, k) = g(n, k+1)+Fk−1. If R(Gk+1) would contain a number, say g(n, k+1),
with representation ending in 10k−11 (with leftmost 1-bit in position k), then
adding Fk−1 to it would result in a word with representation ending in 0k1
because Fk−1 + Fk = Fk+1 is the next Fibonacci number. But then R(h(n, k))
would end in 10s1 for some s ≥ k, contradicting the induction hypothesis.
Thus R(Hk+1) is the set of all representations that end in the word 10k−11.
Since Gk+1,Hk+1,Hk, . . . , H2,H1 split the integers, R(Hk+1) is the set of all
representations that end in the word 10k−11. ¥

Notes. (1) The general pattern of the representation of the suffixes of Hk for
k ≥ 3 is quite different from that of H1 and H2, and both of these are different
from each other. The same holds for Gk, k ≥ 3 and G1 and G2. Therefore the
induction proof could not have begun with k = 1 or 2.
(2) The statement in (i) about R(G1) and R(H1) is Theorem 9.1.15 (see also
Corollary 9.1.14) in [1], credited there to [10]. (It is also Lemma II.) The proof
method of [1] follows [3].
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5 Infinite Complementary Arrays

The doubly infinite Stolarsky Array A with entries A(i, j), i, j ≥ 1 [18], is
defined as follows: For every m ≥ 1, A(m, 1) = mex{A(i, j) : i < m, j ≥ 1},
A(m, 2) = bA(m, 1)ϕ + 1/2c, and for all i ≥ 1, j ≥ 3, A(i, j), A(i, j) =
A(i, j − 1) + A(i, j − 2). Then every positive integer appears precisely once in
A. A beginning portion is exhibited in Table 2. Many variations, interspersions
and dispersions have since been given, see e.g., [14], [15]. All are doubly infinite,
limj→∞(A(i, j + 1) − A(i, j)) = ∞ for every i ≥ 1, and every positive integer
appears precisely once in A.

Table 2: The Stolarsky array

1 2 3 5 8 13 . . .
4 6 10 16 26 42 . . .
7 11 18 29 47 76 . . .
9 15 24 39 63 102 . . .
...

...
...

...
...

...

For every k ≥ 1, define the Flora-Array LK with the k+1 rows H1,H2, . . . ,Hk, Gk.
This array has a different character. By Theorem 1(a), this singly-infinite array
also has the property that every positive integer appears precisely once. More-
over, A(i, j +1)−A(i, j) ∈ {Fi, Fi+1} is bounded for every fixed i and all j ≥ 1,
but limi→∞(A(i, j +1)−A(i, j)) = ∞. Table 3 depicts the case k = 6. The two
bottom lines, below the horizontal line, illustrate the fact that G7, H7 split G6,
so replacing G6 by H7 and G7 constitutes Floor7.

Table 3: A complementary Flora array L6 with 7 rows

n 1 2 3 4 5 6 7 8 9 10 11 12 13
H1 2 5 7 10 13 15 18 20 23 26 28 31 34
H2 3 8 11 16 21 24 29 32 37 42 45 50 55
H3 4 12 17 25 33 38 46 51 59 67 72 80 88
H4 6 19 27 40 53 61 74 82 95 108 116 129 142
H5 9 30 43 64 85 98 119 132 153 174 187 208 229
H6 14 48 69 103 137 158 192 213 247 281 302 336 370
G6 1 22 35 56 77 90 111 124 145 166 179 200 221
H7 22 77 111 166 221 255 310 344 · · ·
G7 1 35 56 90 124 145 179 200 234 268 289 323 · · ·
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6 Epilogue

We have generated sequences consisting of nested arbitrary applications of the
floor function to ϕ and ϕ2, established many identities and relationships involv-
ing them and then applied them to formulate an algebraic winning strategy to
the game Flora. We also presented recursive, arithmetic and morphic formula-
tions of the winning strategy. In addition, we characterized the main sequences
by means of the Fibonacci numeration system, and generated infinite comple-
mentary arrays of the sequences.

Can some of the relationships of the iterated floor functions be generalized
to reals other than ϕ and ϕ2? As a first step, in the definition of g(n, k) and
h(n, k), we could interchange ϕ with ϕ2, studying the ensuing sequences and the
games implied by them. Specifically, define g′(n, 1) = bnϕ2c, h′(n, k) = bnϕc,
and for k ≥ 2, g′(n, k) = bg′(n, k−1)ϕ2c, h′(n, k) = bg′(n, k−1)ϕ2c. If we define
G′i,H

′
i in the obvious way, it’s straightforward to see that then the first item of

Theorem 1, is preserved, namely G′k,H ′
k, H ′

k−1, . . . ,H
′
2,H

′
1 partition Z≥1. What

games can be spawned from this partition?
More generally, it would be well to investigate which of the above results

hold for which classes of positive reals beyond ϕ. For example, Lemma 1 and
Theorem 1(a) clearly hold if we replace ϕ by any irrational α ∈ (1, 2) and ϕ2 by
β = α/(α−1). Perhaps large parts of Theorem 1 can be generalized for the case
where α = (2− t +

√
t2 + 4)/2, β = α + t, where t is any given positive integer,

since then the simple continued fraction of α is [1, t, t, t, . . .], so the numeration
system arguments used in the proof of (c) and (d) of Theorem 1 carry over in
a simple way. What games are induced by these relationships?

The notion of arbitrary iterations of the floor function appeared in [17] and
[13] and perhaps in other papers I was unable to locate. In the former, the
iterations are with rational numbers whose sizes depend on the iteration depth;
in the latter, the aim is to represent the positive integers in the form of iterated
floor functions involving ϕ and ϕ2.

The Raleigh game [8] is an extension — not generalization — of Wythoff’s
game. Flora is an extension of Raleigh. Although Flora appears not to be de-
composable into sums of more elementary games, we were able to formulate for
it three polynomial-time winning strategies. The one based on the Fibonacci
numeration system is of particular interest. It demonstrates once again that nu-
meration systems can make strategies of games in PrimGame efficient, similarly
to appropriate data structures (see [16]).

We can also define a 5-pile extension of Flora, but in the sequence of games
with increasing number of piles, both the definition of the games and the validity
proof of their strategies seem to become more difficult. For example, whereas the
union of the differences ∆ between the 3 columns of theP -positions of Raleigh
covers all of Z≥1, the same union for the four columns of the P -positions of
Flora leaves out V2. But perhaps a pattern for these games will emerge. This
possibility may not be so far-fetched, since, as we saw, e.g., in §4.3, the general
behavior begins only with k = 3 (corresponding to a game with 4 piles).
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