\newcount\pointnum \pointnum = 0 \setbox0\hbox{1111.\enspace} \newdimen\thehangindent \thehangindent=\wd0 \def\point{\par\global\advance\pointnum by 1 \noindent\hangindent \thehangindent \hbox to \thehangindent{\hfill\the\pointnum .\enspace}\ignorespaces} \section{The Bibliography} \frenchspacing \expandafter\ifx\csname url\endcsname\relax \def\url#1{#1}\fi \expandafter\ifx\csname urlprefix\endcsname\relax\def\urlprefix{}\fi \point S.~Abbasi and N.~Sheikh [2007], Some hardness results for question/answer games, {\em Integers, Electr. J of Combinat. Number Theory\/} {\bf 7}, \#G08, 29 pp., MR2342186. \newline\urlprefix\url{http://www.integers-ejcnt.org/vol7.html} \point S.~Abbasi and N.~Sheikh [2008], Complexity of question/answer games, {\em Theoret. Comput. Sci.\/} {\bf 409}, 364--381, 2473911 (2010i:68049). \newline\urlprefix\url{http://dx.doi.org/10.1016/j.tcs.2008.08.034} \point S.~Abbasi and N.~Sheikh [2008], Question/answer games on towers and pyramids, in: {\em Mathematical foundations of computer science 2008\/}, Vol. 5162 of {\em Lecture Notes in Comput. Sci.\/}, Springer, Berlin, pp. 83--95, 2539361 (2011c:68157). \newline\urlprefix\url{http://dx.doi.org/10.1007/978-3-540-85238-4_6} \point B.~Abramson and M.~Yung [1989], Divide and conquer under global constraints: a solution to the $n$-queens problem, {\em J. Parallel Distrib. Comput.\/} {\bf 6}, 649--662. \point A.~Adachi, S.~Iwata and T.~Kasai [1981], Low level complexity for combinatorial games, {\em Proc. 13th Ann. ACM Symp. Theory of Computing (Milwaukee, WI, 1981)\/}, Assoc. Comput. Mach., New York, NY, pp. 228--237. \point A.~Adachi, S.~Iwata and T.~Kasai [1984], Some combinatorial game problems require {$\Omega(n^k)$} time, {\em J. Assoc. Comput. Mach.\/} {\bf 31}(2), 361--376, 819145. \newline\urlprefix\url{http://dx.doi.org/10.1145/62.322433} \point H.~Adachi, H.~Kamekawa and S.~Iwata [1987], Shogi on $n\times n$ board is complete in exponential time, {\em Trans. IEICE\/} {\bf J70-D}, 1843--1852 {(in Japanese)}. \point E.~W. Adams and D.~C. Benson [1956], Nim-Type Games, {\em Technical Report No. 31\/}, Department of Mathematics, Pittsburgh, PA. \point W.~Ahrens [1910], {\em Mathematische Unterhaltungen und Spiele\/}, Vol.~I, Teubner, Leipzig, Zweite vermehrte und verbesserte Auflage. (There are further editions and related game-books of Ahrens). \point O.~Aichholzer, D.~Bremner, E.~D. Demaine, F.~Hurtado, E.~Kranakis, H.~Krasser, S.~Ramaswami, S.~Sethia and J.~Urrutia [2005], Games on triangulations, {\em Theoret. Comput. Sci.\/} {\bf 343}(1-2), 42--71, 2168844 (2006d:91037). \newline\urlprefix\url{http://dx.doi.org/10.1016/j.tcs.2005.05.007} \point S.~Aida, M.~Crasmaru, K.~Regan and O.~Watanabe [2004], Games with uniqueness properties, {\em Theory Comput. Syst.\/} {\bf 37}, 29--47, Symposium on Theoretical Aspects of Computer Science (Antibes-Juan les Pins, 2002), MR2038401 (2004m:68055). \point M.~Aigner [1995], Ulams Millionenspiel, {\em Math. Semesterber.\/} {\bf 42}, 71--80. \point M.~Aigner [1996], Searching with lies, {\em J. Combin. Theory \emph{(Ser.~A)}\/} {\bf 74}, 43--56. \point M.~Aigner and M.~Fromme [1984], A game of cops and robbers, {\em Discrete Appl. Math.\/} {\bf 8}, 1--11, MR739593 (85f:90124). \point M.~Ajtai, L.~Csirmaz and Z.~Nagy [1979], On a generalization of the game Go-Moku I, {\em Studia Sci. Math. Hungar.\/} {\bf 14}, 209--226. \point E.~Akin and M.~Davis [1985], Bulgarian solitaire, {\em Amer. Math. Monthly\/} {\bf 92}, 237--250, MR786523 (86m:05014). \point D.~J. Albers and G.~L. Alexanderson [1993], A conversation with Richard Guy, {\em College Math. J.\/} {\bf 24}, 123--148. \point M.~H. Albert, R.~E.~L. Aldred, M.~D. Atkinson, C.~C. Handley, D.~A. Holton, D.~J. McCaughan and B.~E. Sagan [2008], Monotonic sequence games, in: {\em Games of No Chance 3, \emph{Proc. BIRS Workshop on Combinatorial Games, July, 2005, Banff, Alberta, Canada, MSRI Publ.}\/} (M.~H. Albert and R.~J. Nowakowski, eds.), Vol.~56, Cambridge University Press, Cambridge, pp. 309--327. \point M.~H. Albert, J.~P. Grossman, R.~J. Nowakowski and D.~Wolfe [2005], An introduction to clobber, {\em Integers\/} {\bf 5}(2), A1, 12, 2192079 (2006k:91055). \point M.~H. Albert and R.~J. Nowakowski [2001], The game of {E}nd-{N}im, {\em Electron. J. Combin.\/} {\bf 8}(2), Research Paper 1, 12 pp. (electronic), In honor of Aviezri Fraenkel on the occasion of his 70th birthday, 1853252 (2002g:91044). \newline\urlprefix\url{http://www.combinatorics.org/Volume_8/Abstracts/v8i2r1.% html} \point M.~H. Albert and R.~J. Nowakowski [2004], N{IM} restrictions, {\em Integers\/} {\bf 4}, G1, 10, 2056015. \point M.~H. Albert and R.~J. Nowakowski [2011], Lattices of games, {\em Order\/} {\bf 16}, 1--10. \point M.~Albert, R.~J. Nowakowski and D.~Wolfe [2007], {\em Lessons in Play: An Introduction to Combinatorial Game Theory\/}, A K Peters, Wellesley, MA. \point R.~E. Allardice and A.~Y. Fraser [1884], La tour d'Hano\" {\i}, {\em Proc. Edinburgh Math. Soc.\/} {\bf 2}, 50--53. \point D.~T. Allemang [1984], Machine computation with finite games, M.Sc. Thesis, Cambridge University. \point D.~T. Allemang [2001], Generalized genus sequences for mis\`ere octal games, {\em Internat. J. Game Theory\/} {\bf 30}(4), 539--556 (2002), 1907264 (2003h:91003). \newline\urlprefix\url{http://dx.doi.org/10.1007/s001820200097} \point J.~D. Allen [1989], A note on the computer solution of Connect-Four, {\em Heuristic Programming in Artificial Intelligence \emph{1:} The First Computer Olympiad\/} (D.~N.~L. Levy and D.~F. Beal, eds.), Ellis Horwood, Chichester, England, pp. 134--135. \point M.~R. Allen [2007], On the periodicity of genus sequences of quaternary games, {\em Integers, Electr. J. of Combinat. Number Theory\/} {\bf 7}, \#G04, 11 pp., MR2299810 (2007k:91050). \newline\urlprefix\url{http://www.integers-ejcnt.org/vol7.html} \point N.~L. Alling [1985], Conway's field of surreal numbers, {\em Trans. Amer. Math. Soc.\/} {\bf 287}, 365--386. \point N.~L. Alling [1987], {\em Foundations of Analysis Over Surreal Number Fields\/}, North-Holland, Amsterdam. \point N.~L. Alling [1989], Fundamentals of analysis over surreal number fields, {\em Rocky Mountain J. Math.\/} {\bf 19}, 565--573. \point N.~L. Alling and P.~Ehrlich [1986], An abstract characterization of a full class of surreal numbers, {\em C. R. Math. Rep. Acad. Sci.\/} {\bf 8}, 303--308. \point N.~L. Alling and P.~Ehrlich [1986], An alternative construction of Conway's surreal numbers, {\em C. R. Math. Rep. Acad. Sci.\/} {\bf 8}, 241--246. \point L.~V. Allis [1994], Searching for solutions in games and artificial intelligence, Ph.D. Thesis, University of Limburg. \newline\urlprefix\url{ftp://ftp.cs.vu.nl/pub/victor/PhDthesis/thesis.ps.Z} \point L.~V. Allis and P.~N.~A. Schoo [1992], Qubic solved again, {\em Heuristic Programming in Artificial Intelligence \emph{3:} The Third Computer Olympiad\/} (H.~J. van~den Herik and L.~V. Allis, eds.), Ellis Horwood, New York, pp. 192--204. \point L.~V. Allis, H.~J. van~den Herik and M.~P.~H. Huntjens [1993], Go-Moku solved by new search techniques, {\em Proc. 1993 AAAI Fall Symp. on Games: Planning and Learning\/}, AAAI Press Tech. Report FS93--02, Menlo Park, CA, pp. 1--9. \point J.-P. Allouche, D.~Astoorian, J.~Randall and J.~Shallit [1994], Morphisms, squarefree strings, and the tower of Hanoi puzzle, {\em Amer. Math. Monthly\/} {\bf 101}, 651--658, MR1289274 (95g:68090). \point J.-P. Allouche and A.~Sapir [2005], Restricted towers of {H}anoi and morphisms, in: {\em Developments in Language Theory\/}, Vol. 3572 of {\em Lecture Notes in Comput. Sci.\/}, Springer, Berlin, pp. 1--10, MR2187246 (2006g:68266). \point N.~Alon, J.~Balogh, B.~Bollob\'{a}s and T.~Szab\'{o} [2002], Game domination number, {\em Discrete Math.\/} {\bf 256}, 23--33, MR1927054 (2003f:05086). \point N.~Alon, M.~Krivelevich, J.~Spencer and T.~Szab\'{o} [2005], Discrepancy games, {\em Electr. J. Combin.\/} {\bf 12(1)}, \#R51, 9 pp., MR2176527. \newline\urlprefix\url{http://www.combinatorics.org/} \point N.~Alon and A.~Mehrabian [2011], On a generalization of {M}eyniel's conjecture on the {C}ops and {R}obbers game, {\em Electron. J. Combin.\/} {\bf 18}(1), Paper 19, 7, 2770124 (2012c:05205). \point N.~Alon and Z.~Tuza [1995], The acyclic orientation game on random graphs, {\em Random Structures Algorithms\/} {\bf 6}, 261--268. \point S.~Alpern and A.~Beck [1991], Hex games and twist maps on the annulus, {\em Amer. Math. Monthly\/} {\bf 98}, 803--811. \point B.~Alspach [2004], Searching and sweeping graphs: a brief survey, {\em Matematiche (Catania)\/} {\bf 59}(1-2), 5--37 (2006), 2243023 (2008e:05061). \point I.~Alth\"ofer [1988], Nim games with arbitrary periodic moving orders, {\em Internat. J. Game Theory\/} {\bf 17}, 165--175. \point I.~Alth\"ofer [1988], On the complexity of searching game trees and other recursion trees, {\em J. Algorithms\/} {\bf 9}, 538--567. \point I.~Alth\"ofer [1989], Generalized minimax algorithms are no better error correctors than minimax is itself, in: {\em Advances in Computer Chess\/} (D.~F. Beal, ed.), Vol.~5, Elsevier, Amsterdam, pp. 265--282. \point I.~Alth{\"o}fer [1994], On sparse approximations to randomized strategies and convex combinations, {\em Linear Algebra Appl.\/} {\bf 199}, 339--355, 1274423 (95m:90156). \newline\urlprefix\url{http://dx.doi.org/10.1016/0024-3795(94)90357-3} \point I.~Alth\"ofer and J.~B\"ultermann [1995], Superlinear period lengths in some subtraction games, {\em Theoret. Comput. Sci. \emph{(Math Games)}\/} {\bf 148}, 111--119. \point G.~Ambrus and J.~Bar{\'a}t [2006], A contribution to queens graphs: a substitution method, {\em Discrete Math.\/} {\bf 306}(12), 1105--1114, MR2245636 (2007b:05174). \point M.~Anderson and T.~Feil [1998], Turning lights out with linear algebra, {\em Math. Mag.\/} {\bf 71}, 300--303. \point M.~Anderson and F.~Harary [1987], Achievement and avoidance games for generating abelian groups, {\em Internat. J. Game Theory\/} {\bf 16}, 321--325. \point R.~Anderson, L.~Lov{\'a}sz, P.~Shor, J.~Spencer, {\'E}.~Tardos and S.~Winograd [1989], Disks, balls, and walls: analysis of a combinatorial game, {\em Amer. Math. Monthly\/} {\bf 96}(6), 481--493, 999411 (90e:90169). \newline\urlprefix\url{http://dx.doi.org/10.2307/2323970} \point W.~N. Anderson, Jr. [1974], Maximum matching and the game of {S}lither, {\em J. Combinatorial Theory Ser. B\/} {\bf 17}, 234--239, 0364014 (51 \#269). \point T.~Andreae [1984], Note on a pursuit game played on graphs, {\em Discrete Appl. Math.\/} {\bf 9}, 111--115. \point T.~Andreae [1986], On a pursuit game played on graphs for which a minor is excluded, {\em J. Combin. Theory Ser. B\/} {\bf 41}(1), 37--47, 854602 (87i:05179). \newline\urlprefix\url{http://dx.doi.org/10.1016/0095-8956(86)90026-2} \point T.~Andreae, F.~Hartenstein and A.~Wolter [1999], A two-person game on graphs where each player tries to encircle his opponent's men, {\em Theoret. Comput. Sci. \emph{(Math Games)}\/} {\bf 215}, 305--323. \point V.~Andreji{\'c} [2009], On a combinatorial game, {\em Publ. Inst. Math. (Beograd) (N.S.)\/} {\bf 86(100)}, 21--25, 2567763 (2011a:91085). \newline\urlprefix\url{http://dx.doi.org/10.2298/PIM0900021A} \point S.~D. Andres [2003], The game chromatic index of forests of maximum degree 5, in: {\em 2nd Cologne-Twente Workshop on Graphs and Combinatorial Optimization\/}, Vol.~13 of {\em Electron. Notes Discrete Math.\/}, Elsevier, Amsterdam, p. 4 pp. (electronic), MR2153344. \point S.~D. Andres [2006], Game-perfect graphs with clique number 2, in: {\em CTW2006---Cologne-Twente Workshop on Graphs and Combinatorial Optimization\/}, Vol.~25 of {\em Electron. Notes Discrete Math.\/}, Elsevier, Amsterdam, pp. 13--16 (electronic), MR2301125 (2008a:05080). \point S.~D. Andres [2006], The game chromatic index of forests of maximum degree {$\Delta\geq 5$}, {\em Discrete Appl. Math.\/} {\bf 154}(9), 1317--1323, 2221551 (2007b:05066). \newline\urlprefix\url{http://dx.doi.org/10.1016/j.dam.2005.05.031} \point S.~D. Andres [2009], Asymmetric directed graph coloring games, {\em Discrete Math.\/} {\bf 309}(18), 5799--5802, 2567985 (2010m:05194). \newline\urlprefix\url{http://dx.doi.org/10.1016/j.disc.2008.03.022} \point S.~D. Andres [2009], Game-perfect graphs, {\em Math. Methods Oper. Res.\/} {\bf 69}(2), 235--250, 2491810 (2011a:05124). \newline\urlprefix\url{http://dx.doi.org/10.1007/s00186-008-0256-3} \point S.~D. Andres [2009], Lightness of digraphs in surfaces and directed game chromatic number, {\em Discrete Math.\/} {\bf 309}(11), 3564--3579, 2528070 (2011a:05126). \newline\urlprefix\url{http://dx.doi.org/10.1016/j.disc.2007.12.060} \point S.~D. Andres [2009], The incidence game chromatic number, {\em Discrete Appl. Math.\/} {\bf 157}(9), 1980--1987, 2522464 (2010i:05108). \newline\urlprefix\url{http://dx.doi.org/10.1016/j.dam.2007.10.021} \point S.~D. Andres [2010], Directed defective asymmetric graph coloring games, {\em Discrete Appl. Math.\/} {\bf 158}, 251--260, 2588109 (2011c:05223). \newline\urlprefix\url{http://dx.doi.org/10.1016/j.dam.2009.04.025} \point S.~D. Andres [2010], Erratum to: {T}he incidence game chromatic number [{D}iscrete {A}ppl. {M}ath. 157 (9) (2009) 1980--1987] [MR2522464], {\em Discrete Appl. Math.\/} {\bf 158}(6), 728, 2594489 (2011c:05120). \newline\urlprefix\url{http://dx.doi.org/10.1016/j.dam.2009.11.017} \point S.~D. Andres [2010], Note on the number of rooted complete {$N$}-ary trees, {\em Ars Combin.\/} {\bf 94}, 465--469, 2599757 (2010m:05150). \point S.~D. Andres and W.~Hochst{\"a}ttler [2011], The game chromatic number and the game colouring number of classes of oriented cactuses, {\em Inform. Process. Lett.\/} {\bf 111}(5), 222--226, 2790744 (2012b:05109). \newline\urlprefix\url{http://dx.doi.org/10.1016/j.ipl.2010.11.020} \point S.~D. Andres, W.~Hochst{\"a}ttler and C.~Schall{\"u}ck [2011], The game chromatic index of wheels, {\em Discrete Appl. Math.\/} {\bf 159}(16), 1660--1665, 2825608. \newline\urlprefix\url{http://dx.doi.org/10.1016/j.dam.2010.05.003} \point V.~V. Anshelevich [2000], The Game of Hex: an automatic theorem proving approach to game programming, {\em Proc. 17-th National Conference on Artificial Intelligence {\rm (}AAAI-2000{\rm )}\/}, AAAI Press, Menlo Park, CA, pp. 189--194, MR1973011 (2004b:91039). \point V.~V. Anshelevich [2002], The game of Hex: the hierarchical approach, in: {\em More Games of No Chance, \emph{Proc. MSRI Workshop on Combinatorial Games, July, 2000, Berkeley, CA, MSRI Publ.}\/} (R.~J. Nowakowski, ed.), Vol.~42, Cambridge University Press, Cambridge, pp. 151--165. \point R.~P. Anstee and M.~Farber [1988], On bridged graphs and cop-win graphs, {\em J. Combin. Theory \emph{(Ser.~B)}\/} {\bf 44}, 22--28. \point A.~Apartsin, E.~Ferapontova and V.~Gurvich [1998], A circular graph---counterexample to the {D}uchet kernel conjecture, {\em Discrete Math.\/} {\bf 178}, 229--231, MR1483752 (98f:05122). \point D.~Applegate, G.~Jacobson and D.~Sleator [1999], Computer analysis of Sprouts, {\em {\rm in:} The Mathemagician and Pied Puzzler{\rm ,}\/} honoring Martin Gardner; E. Berlekamp and T. Rodgers, eds., A K Peters, Natick, MA, pp. 199-201. \point A.~A. Arakelyan [1982], $D$-products and compositions of Nim games, {\em Akad. Nauk Armyan. SSR Dokl.\/} {\bf 74}, 3--6, (Russian). \point J.~C.~S. Ara{\'u}jo and C.~L. Sales [2009], Grundy number of {$P_4$}-classes, in: {\em L{AGOS}'09---{V} {L}atin-{A}merican {A}lgorithms, {G}raphs and {O}ptimization {S}ymposium\/}, Vol.~35 of {\em Electron. Notes Discrete Math.\/}, Elsevier Sci. B. V., Amsterdam, pp. 21--27, 2579402. \newline\urlprefix\url{http://dx.doi.org/10.1016/j.endm.2009.11.005} \point S.~Aravamuthan and S.~Lodha [2006], Covering codes for {H}ats-on-a-line, {\em Electron. J. Combin.\/} {\bf 13}, Research Paper 21, 12 pp. (electronic), MR2212494 (2006j:91072). \newline\urlprefix\url{http://www.combinatorics.org/Volume_13/Abstracts/v13i1r% 21.html} \point A.~F. Archer [1999], A modern treatment of the $15$ puzzle, {\em Amer. Math. Monthly\/} {\bf 106}, 793--799. \point P.~Arnold, ed. [1993], {\em The Book of Games\/}, Hamlyn, Chancellor Press. \point A.~A. Arratia-Quesada and I.~A. Stewart [1997], Generalized Hex and logical characterizations of polynomial space, {\em Inform. Process. Lett.\/} {\bf 63}, 147--152. \point A.~A. Arratia and I.~A. Stewart [2003], A note on first-order projections and games, {\em Theoret. Comput. Sci.\/} {\bf 290}, 2085--2093, MR1937766 (2003i:68034). \point M.~Ascher [1987], Mu Torere: An analysis of a Maori game, {\em Math. Mag.\/} {\bf 60}, 90--100. \point I.~M. Asel'derova [1974], On a certain discrete pursuit game on graphs, {\em Cybernetics\/} {\bf 10}, 859--864, trans. of {\it Kibernetika} {\bf 10} (1974) 102--105. \point J.~A. Aslam and A.~Dhagat [1993], On-line algorithms for 2-coloring hypergraphs via chip games, {\em Theoret. Comput. Sci. \emph{(Math Games)}\/} {\bf 112}, 355--369. \point M.~Ast{\'e}, F.~Havet and C.~Linhares-Sales [2010], Grundy number and products of graphs, {\em Discrete Math.\/} {\bf 310}(9), 1482--1490, 2601252 (2011g:05090). \newline\urlprefix\url{http://dx.doi.org/10.1016/j.disc.2009.09.020} \point M.~D. Atkinson [1981], The cyclic towers of Hanoi, {\em Inform. Process. Lett.\/} {\bf 13}, 118--119. \point J.~M. Auger [1991], An infiltration game on $k$ arcs, {\em Naval Res. Logistics\/} {\bf 38}, 511--529. \point V.~Auletta, A.~Negro and G.~Parlati [1992], Some results on searching with lies, {\em Proc. 4th Italian Conf. on Theoretical Computer Science\/}, L'Aquila, Italy, pp. 24--37. \point J.~Auslander, A.~T. Benjamin and D.~S. Wilkerson [1993], Optimal leapfrogging, {\em Math. Mag.\/} {\bf 66}, 14--19. \point R.~Austin [1976], Impartial and partisan games, M.Sc. Thesis, Univ. of Calgary. \point D.~Avis and A.~Deza [2001], On the binary solitaire cone, {\em Discrete Appl. Math.\/} {\bf 115}(1-3), 3--14, 1st Japanese-Hungarian Symposium for Discrete Mathematics and its Applications (Kyoto, 1999), 1869344 (2002i:05016). \newline\urlprefix\url{http://dx.doi.org/10.1016/S0166-218X(01)00211-6} \point D.~Avis and A.~Deza [2001], On the solitaire cone and its relationship to multi-commodity flows, {\em Math. Program.\/} {\bf 90}(1, Ser. A), 27--57, 1819785 (2002c:91033). \newline\urlprefix\url{http://dx.doi.org/10.1007/PL00011419} \point J.~O.~A. Ayeni and H.~O.~D. Longe [1985], Game people play: Ayo, {\em Internat. J. Game Theory\/} {\bf 14}, 207--218. \point D.~Azriel and D.~Berend [2006], On a question of {L}eiss regarding the {H}anoi {T}ower problem, {\em Theoret. Comput. Sci.\/} {\bf 369}(1-3), 377--383, MR2277583 (2007h:68226). \point L.~Babai [1985], Trading group theory for randomness, {\em Proc. 17th Ann. ACM Symp. Theory of Computing, \emph{Assoc. Comput. Mach., New York, NY}\/}, pp. 421 -- 429. \point L.~Babai and S.~Moran [1988], Arthur--Merlin games: a randomized proof system, and a hierarchy of complexity classes, {\em J. Comput. System Sci.\/} {\bf 36}, 254--276. \point R.~J.~R. Back and J.~von Wright [1995], Games and winning strategies, {\em Inform. Process. Lett.\/} {\bf 53}, 165--172. \point R.~Backhouse and D.~Michaelis [2004], {\em {\rm Fixed-point characterisation of winning strategies in impartial games in:} Relational and Kleene-Algebraic Methods in Computer Science\/}, Vol. 3051/2004, Lecture Notes in Computer Scienc, Springer Berlin, Heidelberg, pp. 34--47. \point F.~Bagemihl [1956], Transfinitely endless chess, {\em Z. Math. Logik Grundlagen Math.\/} {\bf 2}, 215--217, 0083934 (18,783e). \point C.~K. Bailey [1986], A combinatorial card game, {\em Proceedings of the seventeenth {S}outheastern international conference on combinatorics, graph theory, and computing ({B}oca {R}aton, {F}la., 1986)\/}, Vol.~53, pp. 75--78, 885236 (88c:05007). \point C.~K. Bailey and M.~E. Kidwell [1985], A king's tour of the chessboard, {\em Math. Mag.\/} {\bf 58}, 285--286. \point W.~W.~R. Ball and H.~S.~M. Coxeter [1987], {\em Mathematical Recreations and Essays\/}, Dover, New York, NY, 13th edn. \point B.~A. Balof and J.~J. Watkins [1996], Knight's tours and magic squares, {\em Congr. Numer.\/} {\bf 120}, 23--32, Proc. 27th Southeastern Internat. Conf. on Combinatorics, Graph Theory and Computing (Baton Rouge, LA, 1996), MR1431952. \point J.~Balogh and W.~Samotij [2011], On the {C}hv\'atal-{E}rd{\H o}s triangle game, {\em Electron. J. Combin.\/} {\bf 18}(1), Paper 72, 15, 2788689 (2012c:05206). \point B.~Banaschewski and A.~Pultr [1990/91], Tarski's fixpoint lemma and combinatorial games, {\em Order\/} {\bf 7}(4), 375--386, 1120984 (92f:90090). \newline\urlprefix\url{http://dx.doi.org/10.1007/BF00383202} \point R.~B. Banerji [1971], Similarities in games and their use in strategy construction, {\em Proc. Symp. Computers and Automata\/} (J.~Fox, ed.), Polytechnic Press, Brooklyn, NY, pp. 337--357. \point R.~B. Banerji [1980], {\em Artificial Intelligence, A Theoretical Approach\/}, Elsevier, North-Holland, New York, NY. \point R.~B. Banerji and C.~A. Dunning [1992], On misere games, {\em Cybernetics and Systems\/} {\bf 23}, 221--228. \point R.~B. Banerji and G.~W. Ernst [1972], Strategy construction using homomorphisms between games, {\em Artificial Intelligence\/} {\bf 3}, 223--249. \point R.~Bar~Yehuda, T.~Etzion and S.~Moran [1993], Rotating-table games and derivatives of words, {\em Theoret. Comput. Sci. \emph{(Math Games)}\/} {\bf 108}, 311--329. \point A.~Barabash, A.~S. Fraenkel and B.~Weiss [1992/93], Iterated {B}eatty functions, {\em Random Comput. Dynam.\/} {\bf 1}, 333--348, MR1214102 (94g:11010). \point I.~B{\'a}r{\'a}ny [1979], On a class of balancing games, {\em J. Combin. Theory Ser. A\/} {\bf 26}(2), 115--126, 530283 (81a:90159). \newline\urlprefix\url{http://dx.doi.org/10.1016/0097-3165(79)90061-X} \point J.~Bar{\'a}t and M.~Stojakovi{\'c} [2010], On winning fast in avoider-enforcer games, {\em Electron. J. Combin.\/} {\bf 17}(1), Research Paper 56, 12, 2644843 (2011d:91058). \newline\urlprefix\url{http://www.combinatorics.org/Volume_17/Abstracts/v17i1r% 56.html} \point J.~G. Baron [1974], The game of nim --- a heuristic approach, {\em Math. Mag.\/} {\bf 47}, 23--28. \point T.~Bartnicki, B.~Bre{\v{s}}ar, J.~Grytczuk, M.~Kov{\v{s}}e, Z.~Miechowicz and I.~Peterin [2008], Game chromatic number of {C}artesian product graphs, {\em Electron. J. Combin.\/} {\bf 15(1)}, Research Paper 72, 13, MR2411449 (2009c:05069). \newline\urlprefix\url{http://www.combinatorics.org/Volume_15/Abstracts/v15i1r% 72.html} \point T.~Bartnicki, J.~A. Grytczuk and H.~A. Kierstead [2008], The game of arboricity, {\em Discrete Math.\/} {\bf 308}(8), 1388--1393, MR2392056 (2008m:05094). \newline\urlprefix\url{http://dx.doi.org/10.1016/j.disc.2007.07.066} \point T.~Bartnicki, J.~Grytczuk, H.~A. Kierstead and X.~Zhu [2007], The map-coloring game, {\em Amer. Math. Monthly\/} {\bf 114}, 793--803, MR2360907. \point R.~Barua and S.~Ramakrishnan [1996], $\sigma$-game, $\sigma^+$-game and two-dimen\-sional additive cellular automata, {\em Theoret. Comput. Sci. \emph{(Math Games)}\/} {\bf 154}, 349--366. \point V.~J.~D. Baston and F.~A. Bostock [1985], A game locating a needle in a cirular haystack, {\em J. Optimization Theory and Applications\/} {\bf 47}, 383--391. \point V.~J.~D. Baston and F.~A. Bostock [1986], A game locating a needle in a square haystack, {\em J. Optimization Theory and Applications\/} {\bf 51}, 405--419. \point V.~J.~D. Baston and F.~A. Bostock [1987], Discrete hamstrung squad car games, {\em Internat. J. Game Theory\/} {\bf 16}, 253--261. \point V.~J.~D. Baston and F.~A. Bostock [1988], A simple cover-up game, {\em Amer. Math. Monthly\/} {\bf 95}, 850--854. \point V.~J.~D. Baston and F.~A. Bostock [1989], A one-dimensional helicopter-sub\-mar\-ine game, {\em Naval Res. Logistics\/} {\bf 36}, 479--490. \point V.~J.~D. Baston and F.~A. Bostock [1993], Infinite deterministic graphical games, {\em SIAM J. Control Optim.\/} {\bf 31}, 1623--1629. \point J.~Baumgartner, F.~Galvin, R.~Laver and R.~McKenzie [1975], Game theoretic versions of partition relations, in: {\em Colloquia Mathematica Societatis J\'anos Bolyai {\bf 10}, Proc. Internat. Colloq. on Infinite and Finite Sets, \emph{Vol.~1, Keszthely, Hungary, 1973}\/} (A.~Hajnal, R.~Rado and V.~T. S\'os, eds.), North-Holland, pp. 131--135. \point J.~D. Beasley [1985], {\em The Ins \& Outs of Peg Solitaire\/}, Oxford University Press, Oxford. \point J.~D. Beasley [1989], {\em The Mathematics of Games\/}, Oxford University Press, Oxford. \point S.~Beatty [1926], Problem 3173, {\em Amer. Math. Monthly\/} {\bf 33}, 159, Solution [to Problem 3177, numbering in {\bf 33} was erroneous] in {\bf 34} (1927) 159-160. \point L.~Beaudou, E.~Duch\^ene and S.~Gravier [2013], A survey about Solitaire Clobber, in: {\em Games of No Chance 4\/}, Cambridge University Press, to appear. \point P.~Beaver [1995], {\em Victorian Parlour Games\/}, Magna Books. \point A.~Beck [1969], Games, in: {\em Excursions into Mathematics\/} (A.~Beck, M.~N. Bleicher and D.~W. Crowe, eds.), A K Peters, Natick, MA, millennium edn., Chap.~5, pp. 317--387, With a foreword by Martin Gardner; first appeared in 1969, Worth Publ., MR1744676 (2000k:00002). \point J.~Beck [1981], On positional games, {\em J. Combin. Theory \emph{(Ser.~A)}\/} {\bf 30}, 117--133. \point J.~Beck [1981], Van der Waerden and Ramsey type games, {\em Combinatorica\/} {\bf 1}, 103--116. \point J.~Beck [1982], On a generalization of Kaplansky's game, {\em Discrete Math.\/} {\bf 42}, 27--35. \point J.~Beck [1982], Remarks on positional games, I, {\em Acta Math. Acad. Sci. Hungar.\/} {\bf 40}(1--2), 65--71. \point J.~Beck [1983], Biased {Ramsey} type games, {\em Studia Sci. Math. Hung.\/} {\bf 18}, 287--292. \point J.~Beck [1985], Random graphs and positional games on the complete graph, {\em Ann. Discrete Math.\/} {\bf 28}, 7--13. \point J.~Beck [1993], Achievement games and the probabilistic method, in: {\em Combinatorics, Paul Erd\H os is Eighty\/}, Vol.~1, Bolyai Soc. Math. Stud., J\'anos Bolyai Math. Soc., Budapest, pp. 51--78. \point J.~Beck [1994], Deterministic graph games and a probabilistic intuition, {\em Combin. Probab. Comput.\/} {\bf 3}, 13--26. \point J.~Beck [1996], Foundations of positional games, {\em Random Structures Algorithms\/} {\bf 9}, 15--47, appeared first in: Proc. Seventh International Conference on Random Structures and Algorithms, Atlanta, GA, 1995. \point J.~Beck [1997], Games, randomness and algorithms, in: {\em The Mathematics of Paul Erd\H os\/} (R.~L. Graham and J.~Ne\v{s}et\v{r}il, eds.), Vol.~I, Springer, pp. 280--310. \point J.~Beck [1997], Graph games, {\em Proc. Int. Coll. Extremal Graph Theory\/}, Balatonlelle, Hungary. \point J.~Beck [2002], Positional games and the second moment method, {\em Combinatorica\/} {\bf 22}, 169--216, special issue: Paul Erd\"{o}s and his mathematics, MR1909083 (2003i:91027). \point J.~Beck [2002], Ramsey games, {\em Discrete Math.\/} {\bf 249}, 3--30, MR1898254 (2003e:05084). \point J.~Beck [2002], The Erd\"{o}s-Selfridge theorem in positional game theory, {\em Bolyai Soc. Math. Stud.\/} {\bf 11}, 33--77, Paul Erd\"{o}s and his mathematics, II, J\'{a}nos Bolyai Math. Soc., Budapest, MR1954724 (2004a:91028). \point J.~Beck [2002], Tic-Tac-Toe, {\em Bolyai Soc. Math. Stud.\/} {\bf 10}, 93--137, J\'{a}nos Bolyai Math. Soc., Budapest, MR1919569 (2003e:05137). \point J.~Beck [2005], Positional games, {\em Combin. Probab. Comput.\/} {\bf 14}(5-6), 649--696, MR2174650 (2006f:91030). \point J.~Beck [2008], {\em Combinatorial games: Tic-tac-toe theory\/}, Vol. 114 of {\em Encyclopedia of Mathematics and its Applications\/}, Cambridge University Press, Cambridge, MR2402857 (2009g:91038). \point J.~Beck and L.~Csirmaz [1982], Variations on a game, {\em J. Combin. Theory \emph{(Ser.~A)}\/} {\bf 33}, 297--315. \point R.~A. Beeler and D.~Paul~Hoilman [2011], Peg solitaire on graphs, {\em Discrete Math.\/} {\bf 311}(20), 2198--2202, 2825664. \newline\urlprefix\url{http://dx.doi.org/10.1016/j.disc.2011.07.006} \point R.~Beigel and W.~I. Gasarch [1991], The mapmaker's dilemma, {\em Discrete Appl. Math.\/} {\bf 34}, 37--48. \point L.~W. Beineke, I.~Broereand and M.~A. Henning [1999], Queens graphs, {\em Discrete Math.\/} {\bf 206}, 63--75, Combinatorics and number theory (Tiruchirappalli, 1996), MR1665386 (2000f:05066). \point A.~Bekmetjev, G.~Brightwell, A.~Czygrinow and G.~Hurlbert [2003], Thresholds for families of multisets, with an application to graph pebbling, {\em Discrete Math.\/} {\bf 269}, 21--34, MR1989450 (2004i:05152). \point G.~I. Bell [2007], A fresh look at peg solitaire, {\em Math. Mag.\/} {\bf 80}(1), 16--28, MR2286485. \point G.~I. Bell [2007], Diagonal peg solitaire, {\em Integers, Electr. J. of Combinat. Number Theory\/} {\bf 7}, \#G01, 20 pp., MR2282183 (2007j:05018). \newline\urlprefix\url{http://www.integers-ejcnt.org/vol7.html} \point G.~I. Bell [2008], Solving triangular peg solitaire, {\em J. Integer Seq.\/} {\bf 11}, Article 08.4.8, 22, 2457078 (2009h:91050). \point G.~I. Bell [2009], The shortest game of {C}hinese checkers and related problems, {\em Integers\/} {\bf 9}, G01, 22, MR2475631 (2010a:91035). \newline\urlprefix\url{http://dx.doi.org/10.1515/INTEG.2009.003} \point G.~I. Bell, D.~S. Hirschberg and P.~Guerrero-Garc{\'{\i}}a [2007], The minimum size required of a solitaire army, {\em Integers, Electr. J. of Combinat. Number Theory\/} {\bf 7}, \#G07, 22 pp., MR2342185. \newline\urlprefix\url{http://www.integers-ejcnt.org/vol7.html} \point J.~Bell and B.~Stevens [2007], Constructing orthogonal pandiagonal {L}atin squares and panmagic squares from modular {$n$}-queens solutions, {\em J. Combin. Des.\/} {\bf 15}, 221--234, 2311190 (2008c:05022). \newline\urlprefix\url{http://dx.doi.org/10.1002/jcd.20143} \point J.~Bell and B.~Stevens [2008], Results for the {$n$}-queens problem on the {M}\"obius board, {\em Australas. J. Combin.\/} {\bf 42}, 21--34, 2445795 (2009h:05049). \point J.~Bell and B.~Stevens [2009], A survey of known results and research areas for {$n$}-queens, {\em Discrete Math.\/} {\bf 309}, 1--31, 2474997 (2010a:05002). \newline\urlprefix\url{http://dx.doi.org/10.1016/j.disc.2007.12.043} \point R.~C. Bell [1960, 1969], {\em Board and Table Games from Many Civilisations\/}, Vol. I \& II, Oxford University Press, revised in 1979, Dover. \point R.~Bell and M.~Cornelius [1988], {\em Board Games Round the World: A Resource Book for Mathematical Investigations\/}, Cambridge University Press, Cambridge, reprinted 1990. \point A.~J. Benjamin, M.~T. Fluet and M.~L. Huber [2001], Optimal Token Allocations in Solitaire Knock 'm Down, {\em Electr. J. Combin.\/} {\bf 8(2)}, \#R2, 8 pp., Volume in honor of Aviezri S. Fraenkel, MR1853253 (2002g:91048). \newline\urlprefix\url{http://www.combinatorics.org/} \point S.~J. Benkoski, M.~G. Monticino and J.~R. Weisinger [1991], A survey of the search theory literature, {\em Naval Res. Logistics\/} {\bf 38}, 469--494. \point G.~Bennett [1994], Double dipping: the case of the missing binomial coefficient identities, {\em Theoret. Comput. Sci. \emph{(Math Games)}\/} {\bf 123}, 351--375. \point H.-J. Bentz [1987], Proof of the {B}ulgarian {S}olitaire conjectures, {\em Ars Combin.\/} {\bf 23}, 151--170, MR886950 (88k:05018). \point A.~Berarducci and B.~Intrigila [1993], On the cop number of a graph, {\em Adv. in Appl. Math.\/} {\bf 14}, 389--403, 1246413 (94g:05079). \newline\urlprefix\url{http://dx.doi.org/10.1006/aama.1993.1019} \point E.~Berkove, J.~Van~Sickle, B.~Hummon and J.~Kogut [2008], An analysis of the (colored cubes){$^3$} puzzle, {\em Discrete Math.\/} {\bf 308}(7), 1033--1045, MR2382343. \point D.~Berend and A.~Sapir [2006], The cyclic multi-peg tower of {H}anoi, {\em ACM Trans. Algorithms\/} {\bf 2}, 297--317, MR2253783. \point D.~Berend and A.~Sapir [2006], The diameter of {H}anoi graphs, {\em Inform. Process. Lett.\/} {\bf 98}, 79--85, MR2207581 (2006m:68187). \point D.~Berengut [1981], A random hopscotch problem or how to make Johnny read more, in: {\em The Mathematical Gardner\/} (D.~A. Klarner, ed.), Wadsworth Internat., Belmont, CA, pp. 51--59. \point B.~Berezovskiy and A.~Gnedin [1984], The best choice problem, {\em Akad. Nauk, USSR, Moscow \emph{(in Russian)}\/} . \point C.~Berge [1956], La fonction de {G}rundy d'un graphe infini, {\em C. R. Acad. Sci. Paris\/} {\bf 242}, 1404--1407, MR0089115 (19,621d). \point C.~Berge [1957], {\em Th\'eorie g\'en\'erale des jeux \`a {$n$} personnes\/}, M\'emor. Sci. Math., no. 138, Gauthier-Villars, Paris, MR0099259 (20 \#5700). \point C.~Berge [1976], Sur les jeux positionnels, {\em Cahiers du Centre \'Etudes Rech. Op\'er.\/} {\bf 18}, 91--107. \point C.~Berge [1977], Vers une th\'eorie g\'en\'erale des jeux positionnels, in: {\em Mathematical Economics and Game Theory, Essays in Honor of Oskar Morgenstern, \emph{Lecture Notes in Economics}\/} (R.~Henn and O.~Moeschlin, eds.), Vol. 141, Springer Verlag, Berlin, pp. 13--24. \point C.~Berge [1981], Some remarks about a Hex problem, in: {\em The Mathematical Gardner\/} (D.~A. Klarner, ed.), Wadsworth Internat., Belmont, CA, pp. 25--27. \point C.~Berge [1982], Les jeux combinatoires, {\em Cahiers Centre \'Etudes Rech. Op\'er.\/} {\bf 24}, 89--105, MR687875 (84d:90112). \point C.~Berge [1985], {\em Graphs\/}, North-Holland, Amsterdam, Chap.~14. \point C.~Berge [1989], {\em Hypergraphs\/}, Elsevier (French: Gauthier Villars 1988), Chap.~4. \point C.~Berge [1992], Les jeux sur un graphe, {\em Cahiers Centre \'Etudes Rech. Op\'er.\/} {\bf 34}, 95--101, MR1226531 (94h:05089). \point C.~Berge [1996], Combinatorial games on a graph, {\em Discrete Math.\/} {\bf 151}(1-3), 59--65, Graph theory and combinatorics (Manila, 1991), 1391251 (97c:90159). \newline\urlprefix\url{http://dx.doi.org/10.1016/0012-365X(94)00081-S} \point C.~Berge and P.~Duchet [1988], Perfect graphs and kernels, {\em Bull. Inst. Math. Acad. Sinica\/} {\bf 16}, 263--274. \point C.~Berge and P.~Duchet [1990], Recent problems and results about kernels in directed graphs, {\em Discrete Math.\/} {\bf 86}, 27--31, appeared first under the same title in {\it Applications of Discrete Mathematics} (Clemson, SC, 1986), 200--204, SIAM, Philadelphia, PA, 1988. \point C.~Berge and M.~{Las Vergnas} [1976], Un nouveau jeu positionnel, le ``Match-It", ou une construction dialectique des couplages parfaits, {\em Cahiers du Centre \'Etudes Rech. Op\'er.\/} {\bf 18}, 83--89. \point C.~Berge and M.~P. Sch\"{u}tzenberger [1956], Jeux de Nim et solutions, {\em Acad. Sci. Paris\/} {\bf 242}, 1672--1674, (French). \point E.~R. Berlekamp [1972], Some recent results on the combinatorial game called Welter's Nim, {\em Proc. 6th Ann. Princeton Conf. Information Science and Systems\/}, pp. 203--204. \point E.~R. Berlekamp [1974], The Hackenbush number system for compression of numerical data, {\em Inform. and Control\/} {\bf 26}, 134--140. \point E.~R. Berlekamp [1988], Blockbusting and domineering, {\em J. Combin. Theory \emph{(Ser.~A)}\/} {\bf 49}, 67--116, an earlier version, entitled Introduction to blockbusting and domineering, appeared in: {\it The Lighter Side of Mathematics}, Proc. E. Strens Memorial Conf. on Recr. Math. and its History, Calgary, 1986, Spectrum Series (R. K. Guy and R. E. Woodrow, eds.), Math. Assoc. of America, Washington, DC, 1994, pp. 137--148. \point E.~Berlekamp [1990], Two-person, perfect-information games, in: {\em The Le\-ga\-cy of John von Neumann \emph{(Hempstead NY, 1988)}, Proc. Sympos. Pure Math.\/}, Vol.~50, Amer. Math. Soc., Providence, RI, pp. 275--287. \point E.~R. Berlekamp [1991], Introductory overview of mathematical Go end\-games, in: {\em Combinatorial Games, \emph{Proc. Symp. Appl. Math.}\/} (R.~K. Guy, ed.), Vol.~43, Amer. Math. Soc., Providence, RI, pp. 73--100. \point E.~Berlekamp [1996], The economist's view of combinatorial games, in: {\em Games of no chance ({B}erkeley, {CA}, 1994)\/}, Vol.~29 of {\em Math. Sci. Res. Inst. Publ.\/}, Cambridge Univ. Press, Cambridge, pp. 365--405, 1427978 (97j:90098). \point E.~R. Berlekamp [2000], Sums of {$N \times 2$} Amazons, in: {\em Institute of Mathematical Statistics Lecture Notes--Monograph Series\/} ({F.T. Bruss} and {L.M. Le Cam}, eds.), Vol.~35, Beechwood, Ohio: Institute of Mathematical Statistics, pp. 1--34, Papers in honor of Thomas S. Ferguson, MR1833848 (2002e:91033). \point E.~R. Berlekamp [2000], {\em The Dots-and-Boxes Game: Sophisticated Child's Play\/}, A K Peters, Natick, MA, MR1780088 (2001i:00005). \point E.~R. Berlekamp [2002], Four games for Gardner, {\em {\rm in:} Puzzler's Tribute: a Feast for the Mind{\rm ,}\/} pp. 383--386, honoring Martin Gardner (D. Wolfe and T. Rodgers, eds.), A K Peters, Natick, MA. \point E.~R. Berlekamp [2002], Idempotents among partisan games, in: {\em More Games of No Chance, \emph{Proc. MSRI Workshop on Combinatorial Games, July, 2000, Berkeley, CA, MSRI Publ.}\/} (R.~J. Nowakowski, ed.), Vol.~42, Cambridge University Press, Cambridge, pp. 3--23. \point E.~R. Berlekamp [2002], The 4G4G4G4G4 problems and solutions, in: {\em More Games of No Chance, \emph{Proc. MSRI Workshop on Combinatorial Games, July, 2000, Berkeley, CA, MSRI Publ.}\/} (R.~J. Nowakowski, ed.), Vol.~42, Cambridge University Press, Cambridge, pp. 231--241. \point E.~R. Berlekamp [2009], Yellow-brown Hackenbush, in: {\em Games of No Chance 3, \emph{Proc. BIRS Workshop on Combinatorial Games, July, 2005, Banff, Alberta, Canada, MSRI Publ.}\/} (M.~H. Albert and R.~J. Nowakowski, eds.), Vol.~56, Cambridge University Press, Cambridge, pp. 413--418. \point E.~R. Berlekamp, J.~H. Conway and R.~K. Guy [2001-2004], {\em Winning Ways for your Mathematical Plays\/}, Vol. 1-4, A K Peters, Wellesley, MA, 2nd edition: vol. 1 (2001), vols. 2, 3 (2003), vol. 4 (2004); translation of 1st edition (1982) into German: {\it Gewinnen, Strategien f\"ur Mathematische Spiele} by G. Seiffert, Foreword by K. Jacobs, M. Rem\'enyi and Seiffert, Friedr. Vieweg \& Sohn, Braunschweig (four volumes), 1985. \point E.~R. Berlekamp and Y.~Kim [1996], Where is the ``Thousand-Dollar Ko?'', in: {\em Games of No Chance, \emph{Proc. MSRI Workshop on Combinatorial Games, July, 1994, Berkeley, CA, MSRI Publ.}\/} (R.~J. Nowakowski, ed.), Vol.~29, Cambridge University Press, Cambridge, pp. 203--226. \point E.~Berlekamp and T.~Rodgers, eds. [1999], {\em The Mathemagician and Pied Puzzler\/}, A K Peters, Natick, MA, A collection in tribute to Martin Gardner. Papers from the Gathering for Gardner Meeting (G4G1) held in Atlanta, GA, January 1993. \point E.~Berlekamp and K.~Scott [2002], Forcing your opponent to stay in control of a loony dots-and-boxes endgame, in: {\em More Games of No Chance, \emph{Proc. MSRI Workshop on Combinatorial Games, July, 2000, Berkeley, CA, MSRI Publ.}\/} (R.~J. Nowakowski, ed.), Vol.~42, Cambridge University Press, Cambridge, pp. 317--330, MR1973020. \point E.~Berlekamp and D.~Wolfe [1994], {\em Mathematical {G}o\/}, A K Peters Ltd., Wellesley, MA, Chilling gets the last point, With a foreword by James Davies, 1274921 (95i:90131). \point P.~Berloquin [1976], {\em 100 Jeux de Table\/}, Flammarion, Paris. \point P.~Berloquin [1995], {\em 100 Games of Logic\/}, Barnes \& Noble. \point {P. Berloquin and D. Dugas (Illustrator)} [1999], {\em 100 Perceptual Puzzles\/}, Barnes \& Noble. \point A.~M. Bersani [2010], Reformed permutations in {M}ousetrap and its generalizations, {\em Integers\/} {\bf 10}, G01, 575--622, 2797780 (2012d:05021). \newline\urlprefix\url{http://dx.doi.org/10.1515/INTEG.2010.101} \point S.~Bhattacharya, G.~Paul and S.~Sanyal [2010], A cops and robber game in multidimensional grids, {\em Discrete Appl. Math.\/} {\bf 158}(16), 1745--1751, 2679773 (2012b:05178). \newline\urlprefix\url{http://dx.doi.org/10.1016/j.dam.2010.06.014} \point T.~C. Biedl, E.~D. Demaine, M.~L. Demaine, R.~Fleischer, L.~Jacobsen and I.~Munro [2002], The complexity of Clickomania, in: {\em More Games of No Chance, \emph{Proc. MSRI Workshop on Combinatorial Games, July, 2000, Berkeley, CA, MSRI Publ.}\/} (R.~J. Nowakowski, ed.), Vol.~42, Cambridge University Press, Cambridge, pp. 389--404, MR1973107 (2004b:91041). \point N.~L. Biggs [1999], Chip-firing and the critical group of a graph, {\em J. Algebr. Comb.\/} {\bf 9}, 25--45. \point K.~Binmore [1992], {\em Fun and Games: a Text on Game Theory\/}, D.C. Heath, Lexington. \point J.~Bitar and E.~Goles [1992], Parallel chip firing games on graphs, {\em Theoret. Comput. Sci.\/} {\bf 92}, 291--300. \point J.~Bj\"orklund and C.~Holmgren [2012], Counterexamples to a monotonicity conjecture for the threshold pebbling number, {\em Discrete Math.\/} {\bf 312}, 2401--2405. \point A.~Bj\"orner and L.~Lov\'asz [1992], Chip-firing games on directed graphs, {\em J. Algebraic Combin.\/} {\bf 1}, 305--328. \point A.~Bj{\"o}rner, L.~Lov{\'a}sz and P.~W. Shor [1991], Chip-firing games on graphs, {\em European J. Combin.\/} {\bf 12}(4), 283--291, 1120415 (92g:90193). \point Y.~Bj{\"o}rnsson, R.~Hayward, M.~Johanson and J.~van Rijswijck [2007], Dead cell analysis in {H}ex and the {S}hannon game, in: {\em Graph theory in Paris\/}, Trends Math., Birkh\"auser, Basel, pp. 45--59, MR2279166 (2007j:91023). \point N.~M. Blachman and D.~M. Kilgour [2001], Elusive optimality in the box problem, {\em Math. Mag.\/} {\bf 74}(3), 171--181, MR2104911. \point D.~Blackwell and M.~A. Girshick [1954], {\em Theory of Games and Statistical Decisions\/}, Wiley, New York, NY. \point L.~Blanc, E.~Duch\^{e}ne and S.~Gravier [2006], A deletion game on graphs: ôle pic ar\^{e}teö, {\em Integers, Electr. J. of Combinat. Number Theory\/} {\bf 6}, \#G02, 10 pp., Comb. Games Sect., MR2215359. \newline\urlprefix\url{http://www.integers-ejcnt.org/vol5.html} \point S.~Blanco and A.~S. Fraenkel [2011], Tromping games: tiling with trominoes, {\em Integers, Electr. J of Combinat. Number Theory\/} {\bf 11A}, \#6, 29 pp., Proc. INTEGERS Conference in honor of the birthdays of Melvyn Nathanson and Carl Pomeranc, Carrollton, GA, Oct. 14-17, 2009. \point U.~Blass and A.~S. Fraenkel [1990], The {S}prague-{G}rundy function for {W}ythoff's game, {\em Theoret. Comput. Sci.\/} {\bf 75}(3), 311--333, MR1080539 (92a:90101). \point U.~Blass, A.~S. Fraenkel and R.~Guelman [1998], How far can nim in diguise be stretched?, {\em J. Combin. Theory Ser. A\/} {\bf 84}(2), 145--156, 1652900 (2000d:91029). \newline\urlprefix\url{http://dx.doi.org/10.1006/jcta.1998.2882} \point M.~Blidia [1986], A parity digraph has a kernel, {\em Combinatorica\/} {\bf 6}, 23--27. \point M.~Blidia, P.~Duchet, H.~Jacob, F.~Maffray and H.~Meyniel [1999], Some operations preserving the existence of kernels, {\em Discrete Math.\/} {\bf 205}, 211--216. \point M.~Blidia, P.~Duchet and F.~Maffray [1993], On kernels in perfect graphs, {\em Combinatorica\/} {\bf 13}, 231--233. \point V.~D. Blondel, J.~M. Hendrickx and R.~M. Jungers [2008], Solitaire {C}lobber as an optimization problem on words, {\em Integers\/} {\bf 8}, G04, 12, MR2425633 (2009d:91038). \point G.~Bloom, M.~Lampis, F.~A. Muntaner-Batle and M.~Rius-Font [2011], Queen labelings, {\em AKCE Int. J. Graphs Comb.\/} {\bf 8}(1), 13--22, 2839172 (2012f:05252). \point J.-P. Bode and H.~Harborth [1998], Achievement games on Platonic solids, {\em Bull. Inst. Combin. Appl.\/} {\bf 23}, 23--32, MR1621748 (99d:05020). \point J.-P. Bode and H.~Harborth [2000], Hexagonal polyomino achievement, {\em Discrete Math.\/} {\bf 212}, 5--18, MR1748669 (2000k:05082). \point J.-P. Bode and H.~Harborth [2000], Independent chess pieces on Euclidean boards, {\em J. Combin. Math. Combin. Comput.\/} {\bf 33}, 209--223, MR1772763 (2001c:05105). \point J.-P. Bode and H.~Harborth [2000], Triangular mosaic polyomino achievement, {\em Congr. Numer.\/} {\bf 144}, 143--152, Proc. 31st Southeastern Internat. Conf. on Combinatorics, Graph Theory and Computing (Boca Raton, FL, 2000), MR1817929 (2001m:05082). \point J.-P. Bode and H.~Harborth [2001], Triangle polyomino set achievement, {\em Congr. Numer.\/} {\bf 148}, 97--101, Proc.32nd Southeastern Internat. Conf. on Combinatorics, Graph Theory and Computing (Boca Raton, FL, 2002), MR1887377 (2002k:05057). \point J.-P. Bode and H.~Harborth [2002], Triangle and hexagon gameboard Ramsey numbers, {\em Congr. Numer.\/} {\bf 158}, 93--98, Proc.33rd Southeastern Internat. Conf. on Combinatorics, Graph Theory and Computing (Boca Raton, FL, 2002), MR1985149 (2004d:05129). \point J.-P. Bode and H.~Harborth [2003], Independence for knights on hexagon and triangle boards, {\em Discrete Math.\/} {\bf 272}, 27--35, MR2019197 (2004i:05115). \point J.-P. Bode, H.~Harborth and M.~Harborth [2003], King independence on triangle boards, {\em Discrete Math.\/} {\bf 266}, 101--107, Presented at 18th British Combinatorial Conference (Brighton, 2001), MR1991709 (2004f:05129). \point J.-P. Bode, H.~Harborth and M.~Harborth [2004], King graph Ramsey numbers, {\em J. Combin. Math. Combin. Comput.\/} {\bf 50}, 47--55, MR2075855. \point J.-P. Bode, H.~Harborth and H.~Weiss [1999], Independent knights on hexagon boards, {\em Congr. Numer.\/} {\bf 141}, 31--35, Proc. 30th Southeastern Internat. Conf. on Combinatorics, Graph Theory, and Computing (Boca Raton, FL, 1999), MR1745222 (2000k:05201). \point J.-P. Bode and A.~M. Hinz [1999], Results and open problems on the Tower of Hanoi, {\em Congr. Numer.\/} {\bf 139}, 113--122, Proc.30th Southeastern Internat. Conf. on Combinatorics, Graph Theory, and Computing (Boca Raton, FL, 1999). \point H.~L. Bodlaender [1991], On the complexity of some coloring games, {\em Internat. J. Found. Comput. Sci.\/} {\bf 2}, 133--147, MR1143920 (92j:68042). \point H.~L. Bodlaender [1993], Complexity of path forming games, {\em Theoret. Comput. Sci. \emph{(Math Games)}\/} {\bf 110}, 215--245. \point H.~L. Bodlaender [1993], Kayles on special classes of graphs---an application of Sprague-Grundy theory, in: {\em Graph-Theoretic Concepts in Computer Science \emph{(Wiesbaden-Naurod, 1992)}, \emph{Lecture Notes in Comput. Sci.}\/}, Vol. 657, Springer, Berlin, pp. 90--102, MR1244129 (94i:90189). \point H.~L. Bodlaender and D.~Kratsch [1992], The complexity of coloring games on perfect graphs, {\em Theoret. Comput. Sci. \emph{(Math Games)}\/} {\bf 106}, 309--326. \point H.~L. Bodlaender and D.~Kratsch [2002], Kayles and nimbers, {\em J. Algorithms\/} {\bf 43}, 106--119, MR1900711 (2003d:05201). \point H.~L. Bodlaender, S.~Thomass{\'e} and A.~Yeo [2011], Kernel bounds for disjoint cycles and disjoint paths, {\em Theoret. Comput. Sci.\/} {\bf 412}(35), 4570--4578, 2850415. \newline\urlprefix\url{http://dx.doi.org/10.1016/j.tcs.2011.04.039} \point T.~Bohman, R.~Holzman and D.~Kleitman [2001], Six Lonely Runners, {\em Electr. J. Combin.\/} {\bf 8(2)}, \#R3, 49 pp., Volume in honor of Aviezri S. Fraenkel, MR1853254 (2002g:11095). \newline\urlprefix\url{http://www.combinatorics.org/} \point T.~Bohman, O.~Pikhurko, A.~Frieze and D.~Sleator, Hat problems, The Puzzle Toad. \newline\urlprefix\url{http://www.cs.cmu.edu/puzzle/solution15.pdf} \point K.~D. Boklan [1984], The $n$-number game, {\em Fibonacci Quart.\/} {\bf 22}, 152--155. \point B.~Bollob{\'a}s and I.~Leader [2006], The angel and the devil in three dimensions, {\em J. Combin. Theory Ser. A\/} {\bf 113}(1), 176--184, 2192775 (2006h:05030). \newline\urlprefix\url{http://dx.doi.org/10.1016/j.jcta.2005.03.009} \point B.~Bollob\'as and T.~Szab\'o [1998], The oriented cycle game, {\em Discrete Math.\/} {\bf 186}, 55--67. \point A.~Bonato, E.~Chiniforooshan and P.~Pra{\l}at [2010], Cops and {R}obbers from a distance, {\em Theoret. Comput. Sci.\/} {\bf 411}(43), 3834--3844, 2779754 (2012d:05251). \newline\urlprefix\url{http://dx.doi.org/10.1016/j.tcs.2010.07.003} \point A.~Bonato, P.~Golovach, G.~Hahn and J.~Kratochv{\'{\i}}l [2009], The capture time of a graph, {\em Discrete Math.\/} {\bf 309}(18), 5588--5595, 2567962 (2010j:05273). \newline\urlprefix\url{http://dx.doi.org/10.1016/j.disc.2008.04.004} \point A.~Bonato, G.~Hahn and C.~Tardif [2010], Large classes of infinite {$k$}-cop-win graphs, {\em J. Graph Theory\/} {\bf 65}(4), 334--342, 2744858 (2011k:05157). \newline\urlprefix\url{http://dx.doi.org/10.1002/jgt.20484} \point A.~Bonato, G.~Hahn and C.~Wang [2007], The cop density of a graph, {\em Contrib. Discrete Math.\/} {\bf 2}(2), 133--144 (electronic), 2358266 (2009b:05224). \point A.~Bonato, G.~Kemkes and P.~Pra{\l}at [2012], Almost all cop-win graphs contain a universal vertex, {\em Discrete Math.\/} {\bf 312}, 1652--1657. \point A.~Bonato and R.~J. Nowakowski [2011], {\em The game of cops and robbers on graphs\/}, Vol.~61 of {\em Student Mathematical Library\/}, American Mathematical Society, Providence, RI, 2830217. \point A.~Bonato, P.~Pra{\l}at and C.~Wang [2007], Pursuit-evasion in models of complex networks, {\em Internet Math.\/} {\bf 4}(4), 419--436, 2522951 (2011d:68008). \newline\urlprefix\url{http://projecteuclid.org/getRecord?id=euclid.im/1243430% 813} \point D.~L. Book [1998, Sept. 9-th], What the Hex, {\em The Washington Post\/} p. H02. \point E.~Borel [1921], La th\'eorie du jeu et les \'equations integrales \`a noyau symmetrique gauche, {\em C. R. Acad. Sci. Paris\/} {\bf 173}, 1304--1308. \point E.~Boros and V.~Gurvich [1996], Perfect graphs are kernel solvable, {\em Discrete Math.\/} {\bf 159}, 35--55. \point E.~Boros and V.~Gurvich [1998], A corrected version of the Duchet kernel conjecture, {\em Discrete Math.\/} {\bf 179}, 231--233. \point E.~Boros and V.~Gurvich [2006], Perfect graphs, kernels, and cores of cooperative games, {\em Discrete Math.\/} {\bf 306}(19-20), 2336--2354, MR2261906 (2007g:05069). \point M.~Borowiecki, S.~Jendrol', D.~Kr{\'a}l and J.~Mi{\v{s}}kuf [2006], List coloring of {C}artesian products of graphs, {\em Discrete Math.\/} {\bf 306}, 1955--1958, MR2251575 (2007b:05067). \point M.~Borowiecki and E.~Sidorowicz [2007], Generalised game colouring of graphs, {\em Discrete Math.\/} {\bf 307}(11-12), 1225--1231, MR2311092. \point M.~Borowiecki, E.~Sidorowicz and Z.~Tuza [2007], Game list colouring of graphs, {\em Electron. J. Combin.\/} {\bf 14}(1), \#R26, 11 pp., MR2302533. \point E.~Boudreau, B.~Hartnell, K.~Schmeisser and J.~Whiteley [2004], A game based on vertex-magic total labelings, {\em Australas. J. Combin.\/} {\bf 29}, 67--73, MR2037334 (2004k:91059). \point C.~L. Bouton [1902], Nim, a game with a complete mathematical theory, {\em Ann. of Math.\/} {\bf 3}(2), 35--39. \point B.~H. Bowditch [2007], The angel game in the plane, {\em Combin. Probab. Comput.\/} {\bf 16}, 345--362, MR2312431 (2008a:91036). \point J.~Boyce [1981], A Kriegspiel endgame, in: {\em The Mathematical Gardner\/} (D.~A. Klarner, ed.), Wadsworth Internat., Belmont, CA, pp. 28--36. \point S.~J. Brams and D.~M. Kilgour [1995], The box problem: to switch or not to switch, {\em Math. Mag.\/} {\bf 68}(1), 27--34. \point G.~Brandreth [1981], {\em The Bumper Book of Indoor Games\/}, Victorama, Chancellor Press. \point B.~Bre{\v{s}}ar, S.~Klav{\v{z}}ar and D.~F. Rall [2010], Domination game and an imagination strategy, {\em SIAM J. Discrete Math.\/} {\bf 24}(3), 979--991, 2680228 (2011g:05202). \newline\urlprefix\url{http://dx.doi.org/10.1137/100786800} \point D.~M. Breuker, J.~W. H.~M. Uiterwijk and H.~J. van~den Herik [2000], Solving $8\times 8$ Domineering, {\em Theoret. Comput. Sci. \emph{(Math Games)}\/} {\bf 230}, 195--206, MR1725637 (2001i:68148). \point D.~M. Broline and D.~E. Loeb [1995], The combinatorics of Mancala-type games: Ayo, Tchoukaillon, and $1/\pi$, {\em UMAP J.\/} {\bf 16}(1), 21--36. \point A.~Brousseau [1976], Tower of Hanoi with more pegs, {\em J. Recr. Math.\/} {\bf 8}, 169--176. \point A.~E. Brouwer, G.~Horv\'{a}th, I.~Moln\'{a}r-S\'{a}ska and C.~Szab\'{o} [2005], On three-rowed chomp, {\em Integers, Electr. J. of Combinat. Number Theory\/} {\bf 5}, \#G07, 11 pp., Comb. Games Sect., MR2192255 (2006g:11051). \newline\urlprefix\url{http://www.integers-ejcnt.org/vol5.html} \point C.~Browne [2000], {\em HEX Strategy: Making the Right Connections\/}, A K Peters, Natick, MA. \point C.~Browne [2005], {\em Connection Games: Variations on a Theme\/}, A K Peters, Natick, MA. \point C.~Browne [2006], Fractal board games., {\em Computers {\&} Graphics\/} {\bf 30}(1), 126--133. \point R.~A. Brualdi and V.~S. Pless [1993], Greedy codes, {\em J. Combin. Theory \emph{(Ser.~A)}\/} {\bf 64}, 10--30. \point A.~A. Bruen and R.~Dixon [1975], The $n$-queen problem, {\em Discrete Math.\/} {\bf 12}, 393--395. \point J.~Bruno and L.~Weinberg [1970], A constructive graph-theoretic solution of the Shannon switching game, {\em IEEE Trans. Circuit Theory\/} {\bf CT-17}, 74--81. \point G.~P. Bucan and L.~P. Varvak [1966], On the question of games on a graph, in: {\em Algebra and Math. Logic: Studies in Algebra (Russian)\/}, Izdat. Kiev. Univ., Kiev, pp. 122--138, MR0207584 (34 \#7399). \point J.~P. Buhler [2002], Hat tricks, {\em Math. Intelligencer\/} {\bf 24}, 44--49, MR1930867 (2003g:00006). \newline\urlprefix\url{http://dx.doi.org/10.1007/BF03025323} \point B.~Bukh [2006], Maximum pebbling number of graphs of diameter three, {\em J. Graph Theory\/} {\bf 52}, 353--357, MR2242834 (2007i:05090). \point P.~Buneman and L.~Levy [1980], The towers of Hanoi problem, {\em Inform. Process. Lett.\/} {\bf 10}, 243--244. \point A.~P. Burger, E.~J. Cockayne and C.~M. Mynhardt [1997], Domination and irredundance in the queen's graph, {\em Discrete Math.\/} {\bf 163}, 47--66, MR1428557 (97m:05130). \point A.~P. Burger and C.~M. Mynhardt [1999], Queens on hexagonal boards, {\em J. Combin. Math. Combin. Comput.\/} {\bf 31}, 97--111, paper in honour of Stephen T. Hedetniemi, MR1726950 (2000h:05158). \point A.~P. Burger and C.~M. Mynhardt [2000], Properties of dominating sets of the queens graph $Q\sb {4k+3}$, {\em Util. Math.\/} {\bf 57}, 237--253, MR1760187 (2000m:05166). \point A.~P. Burger and C.~M. Mynhardt [2000], Small irredundance numbers for queens graphs, {\em J. Combin. Math. Combin. Comput.\/} {\bf 33}, 33--43, paper in honour of Ernest J. Cockayne, MR1772752 (2001c:05106). \point A.~P. Burger and C.~M. Mynhardt [2000], Symmetry and domination in queens graphs, {\em Bull. Inst. Combin. Appl.\/} {\bf 29}, 11--24. \point A.~P. Burger and C.~M. Mynhardt [2002], An upper bound for the minimum number of queens covering the $n\times n$ chessboard, {\em Discrete Appl. Math.\/} {\bf 121}, 51--60. \point A.~P. Burger and C.~M. Mynhardt [2003], An improved upper bound for queens domination numbers, {\em Discrete Math.\/} {\bf 266}, 119--131. \point A.~P. Burger, C.~M. Mynhardt and E.~J. Cockayne [1994], Domination numbers for the queen's graph, {\em Bull. Inst. Combin. Appl.\/} {\bf 10}, 73--82. \point A.~P. Burger, C.~M. Mynhardt and E.~J. Cockayne [2001], Queens graphs for chessboards on the torus, {\em Australas. J. Combin.\/} {\bf 24}, 231--246. \point K.~W. Burke and S.-H. Teng [2008], Atropos: a {PSPACE}-complete {S}perner triangle game, {\em Internet Math.\/} {\bf 5}(4), 477--492 (2009), 2604973 (2011d:05240). \newline\urlprefix\url{http://projecteuclid.org/getRecord?id=euclid.im/1265033% 176} \point M.~Buro [2001], Simple Amazon endgames and their connection to Hamilton circuits in cubic subgrid graphs, {\em Proc.\ 2nd Intern.\ Conference on Computers and Games CG'2000\/} (T.~Marsland and I.~Frank, eds.), Vol. 2063, Hamamatsu, Japan, Oct.\ 2000, Lecture Notes in Computer Science, Springer, pp. 251--261, MR1909614. \point D.~W. Bushaw [1967], On the name and history of Nim, \emph{Washington Math.} {\bf 11}, Oct. 1966. Reprinted in: {\it NY State Math. Teachers J.}, {\bf 17}, pp. 52--55. \point S.~Butler, M.~T. Hajiaghayi, R.~D. Kleinberg and T.~Leighton [2008], Hat guessing games, {\em SIAM J. Discrete Math.\/} {\bf 22}(2), 592--605, Reprinted in SIAM Rev. 51 (2009), 399--413, MR2399367 (2009f:91016). \newline\urlprefix\url{http://dx.doi.org/10.1137/060652774} \point P.~J. Byrne and R.~Hesse [1996], A Markov chain analysis of jai alai, {\em Math. Mag.\/} {\bf 69}, 279--283. \point S.~Byrnes [2003], Poset game periodicity, {\em Integers, Electr. J. of Combinat. Number Theory\/} {\bf 3}, \#G3, 16 pp., Comb. Games Sect., MR2036487 (2005c:91031). \newline\urlprefix\url{http://www.integers-ejcnt.org/vol3.html} \point J.-Y. Cai, A.~Condon and R.~J. Lipton [1992], On games of incomplete information, {\em Theoret. Comput. Sci.\/} {\bf 103}, 25--38. \point L.~Cai and X.~Zhu [2001], Game chromatic index of $k$-degenerate graphs, {\em J. Graph Theory\/} {\bf 36}, 144--155, MR1814531 (2002b:05058). \point G.~Cairns [2002], Pillow chess, {\em Math. Mag.\/} {\bf 75}, 173--186, MR2075210 (2005b:91011). \point G.~Cairns and N.~B. Ho [2010], Min, a combinatorial game having a connection with prime numbers, {\em Integers\/} {\bf 10}, G03, 765--770, 2797778. \newline\urlprefix\url{http://dx.doi.org/10.1515/INTEG.2010.103} \point G.~Cairns and N.~B. Ho [2010], Ultimately bipartite subtraction games, {\em Australas. J. Combin.\/} {\bf 48}, 213--220, 2732114 (2011m:05199). \point G.~Cairns and N.~B. Ho [2011], Some remarks on {E}nd-{N}im, {\em Int. J. Comb.\/} pp. Art. ID 824742, 9, 2861127. \point G.~Cairns, N.~B. Ho and T.~Lengyel [2011], The {S}prague-{G}rundy function of the real game {E}uclid, {\em Discrete Math.\/} {\bf 311}(6), 457--462, 2799898. \newline\urlprefix\url{http://dx.doi.org/10.1016/j.disc.2010.12.011} \point D.~Calistrate [1996], The reduced canonical form of a game, in: {\em Games of No Chance, \emph{Proc. MSRI Workshop on Combinatorial Games, July, 1994, Berkeley, CA, MSRI Publ.}\/} (R.~J. Nowakowski, ed.), Vol.~29, Cambridge University Press, Cambridge, pp. 409--416, MR1427979 (97m:90122). \point D.~Calistrate, M.~Paulhus and D.~Wolfe [2002], On the lattice structure of finite games, in: {\em More Games of No Chance, \emph{Proc. MSRI Workshop on Combinatorial Games, July, 2000, Berkeley, CA, MSRI Publ.}\/} (R.~J. Nowakowski, ed.), Vol.~42, Cambridge University Press, Cambridge, pp. 25--30, MR1973001. \point N.~J. Calkin, K.~James, J.~E. Janoski, S.~Leggett, B.~Richards, N.~Sitaraman and S.~M. Thomas [2010], Computing strategies for graphical {N}im, {\em Proceedings of the {F}orty-{F}irst {S}outheastern {I}nternational {C}onference on {C}ombinatorics, {G}raph {T}heory and {C}omputing\/}, Vol. 202, pp. 171--185, 2762470 (2011j:05222). \point N.~J. Calkin, K.~James, S.~Purvis, S.~Race, K.~Schneider and M.~Yancey [2006], Counting kings: explicit formulas, recurrence relations, and generating functions! {O}h my!, {\em Proceedings of the {T}hirty-{S}eventh {S}outheastern {I}nternational {C}onference on {C}ombinatorics, {G}raph {T}heory and {C}omputing\/}, Vol. 182, pp. 41--51, 2311287. \point N.~J. Calkin, K.~James, S.~Purvis, S.~Race, K.~Schneider and M.~Yancey [2006], Counting kings: as easy as {$\lambda_1,\lambda_2,\lambda_3\dots$}, {\em Proceedings of the {T}hirty-{S}eventh {S}outheastern {I}nternational {C}onference on {C}ombinatorics, {G}raph {T}heory and {C}omputing\/}, Vol. 183, pp. 83--95, 2311471. \point G.~Campbell [2004], On optimal play in the game of Hex, {\em Integers, Electr. J. of Combinat. Number Theory\/} {\bf 4}, \#G2, 23 pp., Comb. Games Sect., MR2056016 (2005c:91032). \newline\urlprefix\url{http://www.integers-ejcnt.org/vol4.html} \point C.~Cannings and J.~Haigh [1992], Montreal solitaire, {\em J. Combin. Theory \emph{(Ser.~A)}\/} {\bf 60}, 50--66. \point J.~Carlson and D.~Stolarski [2004], The correct solution to Berlekamp's switching game, {\em Discrete Math.\/} {\bf 287}, 145--150, MR2094708 (2005d:05005). \point J.~Carraher, I.~Choi, M.~Delcourt, L.~H. Erickson and D.~B. West [2012], Locating a robber on a graph via distance queries, {\em Theoret. Comput. Sci.\/} {\bf 463}, 54--61, 2992497. \newline\urlprefix\url{http://dx.doi.org/10.1016/j.tcs.2012.06.035} \point A.~Carvalho and C.~Pereira~dos Santos [2010], Chess and mathematics, in: {\em Recreational {M}athematics {C}olloquium {I}\/}, Assoc. Ludus, Lisbon, pp. 3--26, 2807390. \point A.~Carvalho, C.~Santos, C.~Dias, F.~Coelho, J.~Neto, and S.~Vinagre [2012], A recursive process related to a partizan version of Wythoff, {\em Integers, Electr. J. of Combinat. Number Theory\/} {\bf 12}, \#G3, 15 pp., Comb. Games Sect. \newline\urlprefix\url{http://www.integers-ejcnt.org/vol12.html} \point J.~Chalopin, V.~Chepoi, N.~Nisse and Y.~Vax{\`e}s [2011], Cop and robber games when the robber can hide and ride, {\em SIAM J. Discrete Math.\/} {\bf 25}(1), 333--359, 2801232. \newline\urlprefix\url{http://dx.doi.org/10.1137/100784035} \point M.~Chan and A.~P. Godbole [2008], Improved pebbling bounds, {\em Discrete Math.\/} {\bf 308}, 2301--2306, MR2404560. \point A.~Chan and A.~Tsai [2002], $1\times n$ Konane: a summary of results, in: {\em More Games of No Chance, \emph{Proc. MSRI Workshop on Combinatorial Games, July, 2000, Berkeley, CA, MSRI Publ.}\/} (R.~J. Nowakowski, ed.), Vol.~42, Cambridge University Press, Cambridge, pp. 331--339, MR1973021. \point T.-H. Chan [1989], A statistical analysis of the towers of Hanoi problem, {\em Intern. J. Computer Math.\/} {\bf 28}, 57--65. \point A.~K. Chandra, D.~C. Kozen and L.~J. Stockmeyer [1981], Alternation, {\em J. Assoc. Comput. Mach.\/} {\bf 28}, 114--133. \point A.~K. Chandra and L.~J. Stockmeyer [1976], Alternation, {\em Proc. 17th Ann. Symp. Foundations of Computer Science \emph{(Houston, TX, Oct. 1976)}\/}, IEEE Computer Soc., Long Beach, CA, pp. 98--108. \point H.~Chang and X.~Zhu [2006], The {$d$}-relaxed game chromatic index of {$k$}-degenerated graphs, {\em Australas. J. Combin.\/} {\bf 36}, 73--82, MR2262608. \point H.~Chang and X.~Zhu [2009], Colouring games on outerplanar graphs and trees, {\em Discrete Math.\/} {\bf 309}(10), 3185--3196, 2526737 (2011a:05097). \newline\urlprefix\url{http://dx.doi.org/10.1016/j.disc.2008.09.015} \point G.~Chartrand, F.~Harary, M.~Schultz and D.~W. VanderJagt [1995], Achievement and avoidance of a strong orientation of a graph, {\em Congr. Numer.\/} {\bf 108}, 193--203. \point S.~M. Chase [1972], An implemented graph algorithm for winning Shannon switching games, {\em Commun. Assoc. Comput. Mach.\/} {\bf 15}, 253--256. \point M.~Chastand, F.~Laviolette and N.~Polat [2000], On constructible graphs, infinite bridged graphs and weakly cop-win graphs, {\em Discrete Math.\/} {\bf 224}, 61--78, MR1781285 (2002g:05152). \point V.~Chatelain and J.~L. Ram{\'{\i}}rez~Alfons{\'{\i}}n [2012], The switching game on unions of oriented matroids, {\em European J. Combin.\/} {\bf 33}(2), 215--219, 2854642. \newline\urlprefix\url{http://dx.doi.org/10.1016/j.ejc.2011.08.006} \point G.~Chen, R.~H. Schelp and W.~E. Shreve [1997], A new game chromatic number, {\em European J. Combin.\/} {\bf 18}(1), 1--9, 1427601 (97k:05071). \newline\urlprefix\url{http://dx.doi.org/10.1006/eujc.1994.0071} \point L.-J. Chen, J.-J. Lin, M.-Z. Shieh and S.-C. Tsai [2011], More on the {M}agnus-{D}erek game, {\em Theoret. Comput. Sci.\/} {\bf 412}(4-5), 339--344, 2778466 (2012c:91059). \newline\urlprefix\url{http://dx.doi.org/10.1016/j.tcs.2010.09.031} \point R.~W. Chen, A.~Zame and B.~Rosenberg [2009], On the first occurrence of strings, {\em Electron. J. Combin.\/} {\bf 16}(1), Research Paper 29, 16, MR2482097 (2010h:91058). \newline\urlprefix\url{http://www.combinatorics.org/Volume_16/Abstracts/v16i1r% 29.html} \point X.~Chen, X.~Deng and S.-H. Teng [2009], Settling the complexity of computing two-player {N}ash equilibria, {\em J. ACM\/} {\bf 56}(3), Art. 14, 57, 2536129 (2010i:68040). \newline\urlprefix\url{http://dx.doi.org/10.1145/1516512.1516516} \point V.~Chepoi [1997], Bridged graphs are cop-win graphs: an algorithmic proof, {\em J. Combin. Theory \emph{(Ser.~B)}\/} {\bf 69}, 97--100. \point S.-H. Chiang, I.-C. Wu and P.-H. Lin [2011], Drawn {$k$}-in-a-row games, {\em Theoret. Comput. Sci.\/} {\bf 412}(35), 4558--4569, 2850414. \newline\urlprefix\url{http://dx.doi.org/10.1016/j.tcs.2011.04.033} \point B.~S. Chlebus [1986], Domino-tiling games, {\em J. Comput. System Sci.\/} {\bf 32}, 374--392. \point C.-Y. Chou, W.~Wang and X.~Zhu [2003], Relaxed game chromatic number of graphs, {\em Discrete Math.\/} {\bf 262}, 89--98, MR1951379 (2003m:05062). \point T.~Y. Chow, H.~Eriksson and C.~K. Fan [2004/06], Chess tableaux, {\em Electron. J. Combin.\/} {\bf 11}(2), Article 3, 18 pp. (electronic), 2195434 (2006i:05172). \newline\urlprefix\url{http://www.combinatorics.org/Volume_11/Abstracts/v11i2a% 3.html} \point J.~D. Christensen and M.~Tilford [1997], Unsolved Problems: David Gale's subset take-away game, {\em Amer. Math. Monthly\/} {\bf 104}, 762--766, Unsolved Problems Section. \point F.~R.~K. Chung [1989], Pebbling in hypercubes, {\em SIAM J. Disc. Math.\/} {\bf 2}, 467--472. \point F.~R.~K. Chung, J.~E. Cohen and R.~L. Graham [1988], Pursuit-evasion games on graphs, {\em J. Graph Theory\/} {\bf 12}, 159--167. \point F.~Chung and R.~B. Ellis [2002], A chip-firing game and Dirichlet eigenvalues, {\em Discrete Math.\/} {\bf 257}, 341--355, MR1935732 (2003i:05087). \point F.~Chung, R.~Graham, J.~Morrison and A.~Odlyzko [1995], Pebbling a chessboard, {\em Amer. Math. Monthly\/} {\bf 102}, 113--123. \point V.~Chv\'atal [1973], On the computational complexity of finding a kernel, Report No. CRM-300, Centre de Recherches Math\'ematiques, Universit\'e de Montr\'eal. \point V.~Chv\'atal [1981], Cheap, middling or dear, in: {\em The Mathematical Gardner\/} (D.~A. Klarner, ed.), Wadsworth Internat., Belmont, CA, pp. 44--50. \point V.~Chv\'atal [1983], Mastermind, {\em Combinatorica\/} {\bf 3}, 325--329. \point V.~Chv\'atal and P.~Erd\H{o}s [1978], Biased positional games, {\em Ann. Discrete Math.\/} {\bf 2}, 221--229, Algorithmic Aspects of Combinatorics, (B. Alspach, P. Hell and D. J. Miller, eds.), Qualicum Beach, BC, Canada, 1976, North-Holland. \point P.~Ciancarini and G.~P. Favini [2010], Monte {C}arlo tree search in {K}riegspiel, {\em Artificial Intelligence\/} {\bf 174}(11), 670--684, 2723431 (2011j:91060). \newline\urlprefix\url{http://dx.doi.org/10.1016/j.artint.2010.04.017} \point P.~Ciancarini and G.~P. Favini [2010], Playing the perfect {K}riegspiel endgame, {\em Theoret. Comput. Sci.\/} {\bf 411}(40-42), 3563--3577, 2724085 (2011h:91055). \newline\urlprefix\url{http://dx.doi.org/10.1016/j.tcs.2010.05.019} \point J.~Cibulka, J.~Kyn{\v{c}}l, V.~M{\'e}sz{\'a}ros, R.~Stola{\v{r}} and P.~Valtr [2009], Solution of {P}eter {W}inkler's pizza problem, in: {\em Combinatorial algorithms\/}, Vol. 5874 of {\em Lecture Notes in Comput. Sci.\/}, Springer, Berlin, pp. 356--367, 2577951. \newline\urlprefix\url{http://dx.doi.org/10.1007/978-3-642-10217-2_35} \point J.~Cibulka, J.~Kyn{\v{c}}l, V.~M{\'e}sz{\'a}ros, R.~Stola{\v{r}} and P.~Valtr [2010], Graph sharing games: complexity and connectivity, in: {\em Theory and applications of models of computation\/}, Vol. 6108 of {\em Lecture Notes in Comput. Sci.\/}, Springer, Berlin, pp. 340--349, 2755359 (2012d:91049). \newline\urlprefix\url{http://dx.doi.org/10.1007/978-3-642-13562-0_31} \point F.~Cicalese and C.~Deppe [2003], Quasi-perfect minimally adaptive {$q$}-ary search with unreliable tests, in: {\em Algorithms and Computation\/}, Vol. 2906 of {\em Lecture Notes in Comput. Sci.\/}, Springer, Berlin, pp. 527--536, MR2088232 (2005d:68101). \point F.~Cicalese, C.~Deppe and D.~Mundici [2004], {$Q$}-ary {U}lam-{R}\'enyi game with weighted constrained lies, in: {\em Computing and Combinatorics\/}, Vol. 3106 of {\em Lecture Notes in Comput. Sci.\/}, Springer, Berlin, pp. 82--91, MR2162023 (2006c:68037). \point F.~Cicalese and D.~Mundici [1999], Optimal binary search with two unreliable tests and minimum adaptiveness, in: {\em Algorithms---ESA '99 (Prague)\/}, Vol. 1643 of {\em Lecture Notes in Comput. Sci.\/}, Springer, Berlin, pp. 257--266, MR1729129 (2000i:68035). \point F.~Cicalese, D.~Mundici and U.~Vaccaro [2000], Least adaptive optimal search with unreliable tests, in: {\em Algorithm Theory---SWAT 2000 (Bergen)\/}, Vol. 1851 of {\em Lecture Notes in Comput. Sci.\/}, Springer, Berlin, pp. 549--562, MR1793099 (2001k:91005). \point F.~Cicalese, D.~Mundici and U.~Vaccaro [2002], Least adaptive optimal search with unreliable tests, {\em Theoret. Comput. Sci. \emph{(Math Games)}\/} {\bf 270}, 877--893, MR1871101 (2003g:94052). \point F.~Cicalese and U.~Vaccaro [2000], An improved heuristic for the ``{U}lam-{R}\'enyi game'', {\em Inform. Process. Lett.\/} {\bf 73}, 119--124, MR1741817 (2000m:91026). \point F.~Cicalese and U.~Vaccaro [2000], Optimal strategies against a liar, {\em Theoret. Comput. Sci.\/} {\bf 230}, 167--193, MR1725636 (2001g:91040). \point F.~Cicalese and U.~Vaccaro [2003], Binary search with delayed and missing answers, {\em Inform. Process. Lett.\/} {\bf 85}, 239--247, MR1952901 (2003m:68031). \point A.~Cincotti [2005], Three-player partizan games, {\em Theoret. Comput. Sci.\/} {\bf 332}(1-3), 367--389, MR2122510 (2005j:91018). \newline\urlprefix\url{http://dx.doi.org/10.1016/j.tcs.2004.12.001} \point A.~Cincotti [2008], The game of {C}utblock, {\em Integers\/} {\bf 8}, G06, 12, MR2425635 (2009g:91039). \point A.~Cincotti [2009], Further results on three-player domineering, {\em Int. J. Comput. Math. Sci.\/} {\bf 3}(6), 286--288, 2735641 (2011j:91061). \point A.~Cincotti [2009], On the complexity of {$N$}-player {H}ackenbush, {\em Integers\/} {\bf 9}, G03, 621--627, 2592546 (2011b:91078). \newline\urlprefix\url{http://dx.doi.org/10.1515/INTEG.2009.049} \point A.~Cincotti [2010], {$n$}-player partizan games, {\em Theoret. Comput. Sci.\/} {\bf 411}(34-36), 3224--3234, 2676865 (2011f:91035). \newline\urlprefix\url{http://dx.doi.org/10.1016/j.tcs.2010.05.018} \point A.~Cincotti [2010], The game of synchronized quadromineering, {\em Int. J. Comput. Math. Sci.\/} {\bf 4}(4), 183--187, 2646201 (2011f:91034). \point A.~Cincotti [2011], The game of {$n$}-player {C}utcake, {\em Theoret. Comput. Sci.\/} {\bf 412}(41), 5678--5683, 2866564. \newline\urlprefix\url{http://dx.doi.org/10.1016/j.tcs.2011.06.036} \point A.~Cincotti [2011], The lattice structure of three-player games, in: {\em Computers and games\/}, Vol. 6515 of {\em Lecture Notes in Comput. Sci.\/}, Springer, Berlin, pp. 230--237, 2804004. \newline\urlprefix\url{http://dx.doi.org/10.1007/978-3-642-17928-0_21} \point A.~Cincotti [2012], The lattice structure of {$n$}-player games, {\em Theoret. Comput. Sci.\/} {\bf 459}, 113--119. \point A.~Cincotti and H.~Iida [2006], Outcome uncertainty and interestedness in game-playing: a case study using synchronized {H}ex, {\em New Math. Nat. Comput.\/} {\bf 2}(2), 173--181, 2250132. \newline\urlprefix\url{http://dx.doi.org/10.1142/S1793005706000440} \point A.~Cincotti, S.~Komori and H.~Iida [2008], The game of synchronized triomineering and synchronized tridomineering, {\em Int. J. Comput. Math. Sci.\/} {\bf 2}(3), 143--148, 2461334 (2011a:91087). \point C.~Clark [1996], On achieving channels in a bipolar game, in: {\em African Americans in Mathematics \emph{(Piscataway, NJ, 1996), DIMACS Ser. Discrete Math. Theoret. Comput. Sci.}\/}, Vol.~34, Amer. Math. Soc., Providence, RI, pp. 23--27. \point D.~S. Clark [1986], Fibonacci numbers as expected values in a game of chance, {\em Fibonacci Quart.\/} {\bf 24}, 263--267. \point S.~Clark, P.~Johnson and M.~Walsh [2011], Edge-sensitivity of the {G}rundy number, {\em Proceedings of the {F}orty-{S}econd {S}outheastern {I}nternational {C}onference on {C}ombinatorics, {G}raph {T}heory and {C}omputing\/}, Vol. 207, pp. 171--180, 2856318. \point N.~E. Clarke [2004], A game of cops and robber played with partial information, {\em Proceedings of the {T}hirty-{F}ifth {S}outheastern {I}nternational {C}onference on {C}ombinatorics, {G}raph {T}heory and {C}omputing\/}, Vol. 166, pp. 145--159, 2122009 (2006f:05152). \point N.~E. Clarke [2009], A witness version of the cops and robber game, {\em Discrete Math.\/} {\bf 309}, 3292--3298, 2526747 (2011a:91080). \newline\urlprefix\url{http://dx.doi.org/10.1016/j.disc.2008.09.032} \point N.~E. Clarke and E.~L. Connon [2006], Cops, robber, and alarms, {\em Ars Combin.\/} {\bf 81}, 283--296, 2267819 (2007k:91049). \point N.~E. Clarke, S.~L. Fitzpatrick, A.~Hill and R.~J. Nowakowski [2010], Edge critical cops and robber, {\em Discrete Math.\/} {\bf 310}, 2299--2309, 2659181 (2011k:05057). \newline\urlprefix\url{http://dx.doi.org/10.1016/j.disc.2010.05.004} \point T.~A. Clarke, R.~A. Hochberg and G.~H. Hurlbert [1997], Pebbling in diameter two graphs and products of paths, {\em J. Graph Theory\/} {\bf 25}, 119--128. \point N.~E. Clarke and R.~J. Nowakowski [2000], Cops, robber, and photo radar, {\em Ars Combin.\/} {\bf 56}, 97--103, MR1768605 (2001e:91040). \point N.~E. Clarke and R.~J. Nowakowski [2001], Cops, robber and traps, {\em Util. Math.\/} {\bf 60}, 91--98, MR1863432 (2002i:91014). \point N.~E. Clarke and R.~J. Nowakowski [2005], A tandem version of the cops and robber game played on products of graphs, {\em Discuss. Math. Graph Theory\/} {\bf 25}(3), 241--249, 2232750 (2007f:05170). \point N.~E. Clarke and R.~J. Nowakowski [2005], Tandem-win graphs, {\em Discrete Math.\/} {\bf 299}, 56--64, MR2168695. \point {N. Claus (=E. Lucas)} [1884], La tour d'Hanoi, jeu de calcul, {\em Science et Nature\/} {\bf 1}, 127--128. \point A.~Clausing [2001], Das Trisentis Spiel (The Trisentis game), {\em Math. Semesterberichte\/} {\bf 48}, 49--66, MR1950212 (2003k:91045). \point E.~J. Cockayne [1990], Chessboard domination problems, {\em Discrete Math.\/} {\bf 86}, 13--20. \point E.~J. Cockayne and S.~T. Hedetniemi [1986], On the diagonal queens domination problem, {\em J. Combin. Theory \emph{(Ser.~A)}\/} {\bf 42}, 137--139. \point E.~J. Cockayne and C.~M. Mynhardt [2001], Properties of queens graphs and the irredundance number of $Q\sb 7$, {\em Australas. J. Combin.\/} {\bf 23}, 285--299, MR1815019 (2002a:05189). \point A.~J. Cole and A.~J.~T. Davie [1969], A game based on the Euclidean algorithm and a winning strategy for it, {\em Math. Gaz.\/} {\bf 53}, 354--357. \point D.~B. Coleman [1978], Stretch: a geoboard game, {\em Math. Mag.\/} {\bf 51}, 49--54. \point S.~Collette, E.~D. Demaine, M.~L. Demaine and S.~Langerman [2013], Narrow Mis\`ere Dots-and-Boxes, in: {\em Games of No Chance 4\/}, Cambridge University Press, to appear. \point D.~Collins [2005], Variations on a theme of Euclid, {\em Integers, Electr. J. of Combinat. Number Theory\/} {\bf 5}, \#G3, 12 pp., Comb. Games Sect., MR2139166 (2005k:91080). \newline\urlprefix\url{http://www.integers-ejcnt.org/vol5.html} \point D.~Collins and T.~Lengyel [2008], The game of 3-{E}uclid, {\em Discrete Math.\/} {\bf 308}(7), 1130--1136, 2382351 (2008k:91050). \newline\urlprefix\url{http://dx.doi.org/10.1016/j.disc.2007.03.064} \point A.~Condon [1989], {\em Computational Models of Games\/}, ACM Distinguished Dissertation, MIT Press, Cambridge, MA. \point A.~Condon [1991], Space-bounded probabilistic game automata, {\em J. Assoc. Comput. Mach.\/} {\bf 38}, 472--494. \point A.~Condon [1992], The complexity of Stochastic games, {\em Information and Computation\/} {\bf 96}, 203--224. \point A.~Condon [1993], On algorithms for simple stochastic games, in: {\em Advances in Computational Complexity Theory \emph{(New Brunswick, NJ, 1990), DIMACS Ser. Discrete Math. Theoret. Comput. Sci.}\/}, Vol.~13, Amer. Math. Soc., Providence, RI, pp. 51--71. \point A.~Condon, J.~Feigenbaum, C.~Lund and P.~Shor [1993], Probabilistically checkable debate systems and approximation algorithms for PSPACE-hard functions, {\em Proc. 25th Ann. ACM Symp. Theory of Computing, \emph{Assoc. Comput. Mach., New York, NY}\/}, pp. 305--314. \point A.~Condon and R.~E. Ladner [1988], Probabilistic game automata, {\em J. Comput. System Sci.\/} {\bf 36}, 452--489, preliminary version in: Proc. Structure in complexity theory (Berkeley, CA, 1986), Lecture Notes in Comput. Sci., Vol. 223, Springer, Berlin, pp. 144--162. \point I.~G. Connell [1959], A generalization of {W}ythoff's game, {\em Canad. Math. Bull.\/} {\bf 2}, 181--190, MR0109092 (21 \#7804). \point I.~G. Connell [1959], Some properties of {B}eatty sequences {I}, {\em Canad. Math. Bull.\/} {\bf 2}, 190--197, MR0109093 (21 \#7805). \point I.~G. Connell [1960], Some propertis of {B}eatty squences. {II}, {\em Canad. Math. Bull.\/} {\bf 3}, 17--22, 0110683 (22 \#1558). \point J.~H. Conway [1972], All numbers great and small, Res. Paper No. 149, Univ. of Calgary Math. Dept. \point J.~H. Conway [1977], All games bright and beautiful, {\em Amer. Math. Monthly\/} {\bf 84}, 417--434. \point J.~H. Conway [1978], A gamut of game theories, {\em Math. Mag.\/} {\bf 51}, 5--12. \point J.~H. Conway [1978], Loopy Games, {\em Ann. Discrete Math.\/} {\bf 3}, 55--74, Proc. Symp. Advances in Graph Theory, Cambridge Combinatorial Conf. (B. Bollob\'as, ed.), Cambridge, May 1977. \point J.~H. Conway [1990], Integral lexicographic codes, {\em Discrete Math.\/} {\bf 83}, 219--235. \point J.~H. Conway [1991], More ways of combining games, in: {\em Combinatorial Games, \emph{Proc. Symp. Appl. Math.}\/} (R.~K. Guy, ed.), Vol.~43, Amer. Math. Soc., Providence, RI, pp. 57--71. \point J.~H. Conway [1991], Numbers and games, in: {\em Combinatorial Games, \emph{Proc. Symp. Appl. Math.}\/} (R.~K. Guy, ed.), Vol.~43, Amer. Math. Soc., Providence, RI, pp. 23--34. \point J.~H. Conway [1994], The surreals and the reals. Real numbers, generalizations of the reals, and theories of continua, in: {\em Synthese Lib.\/}, Vol. 242, Kluwer Acad. Publ., Dordrecht, pp. 93--103. \point J.~H. Conway [1996], The angel problem, in: {\em Games of No Chance, \emph{Proc. MSRI Workshop on Combinatorial Games, July, 1994, Berkeley, CA, MSRI Publ.}\/} (R.~J. Nowakowski, ed.), Vol.~29, Cambridge University Press, Cambridge, pp. 3--12. \point J.~H. Conway [1997], $M\sb {13}$, in: {\em Surveys in combinatorics\/}, London Math. Soc., Lecture Note Ser. 241, Cambridge Univ. Press, Cambridge, pp. 1--11. \point J.~H. Conway [2001], {\em On Numbers and Games\/}, A K Peters, Natick, MA, 2nd edition; translation of 1st edition (1976) into German: {\it \"Uber Zahlen und Spiele} by Brigitte Kunisch, Friedr. Vieweg \& Sohn, Braunschweig, 1983. \point J.~H. Conway [2002], More infinite games, in: {\em More Games of No Chance, \emph{Proc. MSRI Workshop on Combinatorial Games, July, 2000, Berkeley, CA, MSRI Publ.}\/} (R.~J. Nowakowski, ed.), Vol.~42, Cambridge University Press, Cambridge, pp. 31--36, MR1973002. \point J.~H. Conway [2003], Integral lexicographic codes, in: {\em MASS selecta\/} (S.~Katok and S.~Tabachnikov, eds.), Amer. Math. Soc., pp. 185--189, MR2027176. \point J.~H. Conway and H.~S.~M. Coxeter [1973], Triangulated polygons and frieze patterns, {\em Math. Gaz.\/} {\bf 57}, 87--94; 175--183. \point J.~H. Conway and N.~J.~A. Sloane [1986], Lexicographic codes: error-cor\-rec\-ting codes from game theory, {\em IEEE Trans. Inform. Theory\/} {\bf IT-32}, 337--348. \point M.~L. Cook and L.~E. Shader [1979], A strategy for the {R}amsey game ``{TRITIP}'', {\em Congr. Numer.\/} {\bf 23}, 315--324, Utilitas Math., Proc. 10th Southeastern Conf. on Combinatorics, Graph Theory and Computing (Florida Atlantic Univ., Boca Raton, Fla., 1979), MR561058 (83e:90167). \point M.~Copper [1993], Graph theory and the game of sprouts, {\em Amer. Math. Monthly\/} {\bf 100}, 478--482. \point M.~Cornelius and A.~Parr [1991], {\em What's Your Game?\/}, Cambridge University Press, Cambridge. \point T.~Cover [1987], Pick the largest number, {\em Open Problems in Communication and Computation\/} (T.~M. Cover and B.~Gopinath, eds.), Springer-Verlag, New York, p. 152. \point H.~S.~M. Coxeter [1953], The golden section, phyllotaxis and Wythoff's game, {\em Scripta Math.\/} {\bf 19}, 135--143. \point D.~Craft, Z.~Miller and D.~Pritikin [2009], A solitaire game played on 2-colored graphs, {\em Discrete Math.\/} {\bf 309}, 188--201, 2475010 (2010a:91030). \newline\urlprefix\url{http://dx.doi.org/10.1016/j.disc.2007.12.069} \point M.~Cr\^{a}\c{s}maru [2001], On the complexity of Tsume-Go, {\em Proc. Intern. Conference on Computers and Games CG'1998, Tsukuba, Japan, Nov.\ 1998\/} (H.~J. van~den Herik, ed.), Vol. LNCS 1558, Lecture Notes in Computer Science, Springer, pp. 222--231. \point M.~Cr\^{a}\c{s}maru and J.~Tromp [2001], Ladders are PSPACE-complete, {\em Proc.\ 2nd Intern.\ Conference on Computers and Games CG'2000\/} (T.~Marsland and I.~Frank, eds.), Vol. 2063, Hamamatsu, Japan, Oct.\ 2000, Lecture Notes in Computer Science, Springer, pp. 241--249, MR1909613. \point J.~W. Creely [1987], The length of a two-number game, {\em Fibonacci Quart.\/} {\bf 25}, 174--179. \point J.~W. Creely [1988], The length of a three-number game, {\em Fibonacci Quart.\/} {\bf 26}, 141--143. \point H.~T. Croft [1964], `Lion and man': a postscript, {\em J. London Math. Soc.\/} {\bf 39}, 385--390. \point D.~W. Crowe [1956], The $n$-dimensional cube and the tower of Hanoi, {\em Amer. Math. Monthly\/} {\bf 63}, 29--30. \point B.~Crull, T.~Cundiff, P.~Feltman, G.~H. Hurlbert, L.~Pudwell, Z.~Szaniszlo and Z.~Tuza [2005], The cover pebbling number of graphs, {\em Discrete Math.\/} {\bf 296}, 15--23, MR2148478. \point A.~Csernenszky, C.~I. M{\'a}ndity and A.~Pluh{\'a}r [2009], On {C}hooser-{P}icker positional games, {\em Discrete Math.\/} {\bf 309}, 5141--5146, 2548915 (2011e:05171). \newline\urlprefix\url{http://dx.doi.org/10.1016/j.disc.2009.03.051} \point A.~Csernenszky, R.~R. Martin and A.~Pluh{\'a}r [2011], On the complexity of chooser-picker positional games, {\em Integers, Electr. J. of Combinat. Number Theory\/} {\bf 11}, \#G02, 16 pp., Comb. Games Sect. \newline\urlprefix\url{http://www.integers-ejcnt.org/vol11.html} \point L.~Csirmaz [1980], On a combinatorial game with an application to {G}o-moku, {\em Discrete Math.\/} {\bf 29}(1), 19--23, 553645 (81a:05013). \newline\urlprefix\url{http://dx.doi.org/10.1016/0012-365X(90)90282-M} \point L.~Csirmaz [2002], Connected graph game, {\em Studia Sci. Math. Hungar.\/} {\bf 39}, 129--136, MR1909151 (2003d:91028). \point L.~Csirmaz and Z.~Nagy [1979], On a generalization of the game Go-Moku II, {\em Studia Sci. Math. Hung.\/} {\bf 14}, 461--469. \point P.~Csorba [2005], On the biased $n$-in-a-row game, {\em Discrete Math.\/} {\bf 503}, 100--111. \point J.~Culberson [1999], Sokoban is PSPACE complete, in: {\em Fun With Algorithms\/}, Vol.~4 of {\em Proceedings in Informatics\/}, Carleton Scientific, University of Waterloo, Waterloo, Ont., pp. 65--76, Conference took place on the island of Elba, June 1998. \point P.~Cull and E.~F. Ecklund, Jr. [1982], On the towers of Hanoi and generalized towers of Hanoi problems, {\em Congr. Numer.\/} {\bf 35}, 229--238. \point P.~Cull and E.~F. Ecklund, Jr. [1985], Towers of Hanoi and analysis of algorithms, {\em Amer. Math. Monthly\/} {\bf 92}, 407--420. \point P.~Cull and C.~Gerety [1985], Is towers of Hanoi really hard?, {\em Congr. Numer.\/} {\bf 47}, 237--242. \point P.~Cull and I.~Nelson [1999], Error-correcting codes on the towers of Hanoi graphs, {\em Discrete Math.\/} {\bf 208/209}, 157--175. \point P.~Cull and I.~Nelson [1999], Perfect codes, NP-completeness, and towers of Hanoi graphs, {\em Bull. Inst. Combin. Appl.\/} {\bf 26}, 13--38. \point D.~Curtis, T.~Hines, G.~Hurlbert and T.~Moyer [2009], On pebbling graphs by their blocks, {\em Integers\/} {\bf 9}, G02, 411--422, 2592545 (2011b:05169). \newline\urlprefix\url{http://dx.doi.org/10.1515/INTEG.2009.033} \point A.~Czygrinow, N.~Eaton, G.~Hurlbert and P.~M. Kayll [2002], On pebbling threshold functions for graph sequences, {\em Discrete Math.\/} {\bf 247}, 93--105, MR1877652 (2002m:05058). \point A.~Czygrinow and G.Hurlbert [2003], Pebbling in dense graphs, {\em Australas. J. Combin.\/} {\bf 28}, 201--208. \point A.~Czygrinow, G.~Hurlbert, H.~A. Kierstead and W.~T. Trotter [2002], A note on graph pebbling, {\em Graphs Combin.\/} {\bf 18}, 219--225, MR1913664 (2004d:05170). \point J.~Czyzowicz, K.~B. Lakshmanan and A.~Pelc [1991], Searching with a forbidden lie pattern in responses, {\em Inform. Process. Lett.\/} {\bf 37}, 127--132, MR1095694 (92e:68027). \point J.~Czyzowicz, K.~B. Lakshmanan and A.~Pelc [1994], Searching with local constraints on error patterns, {\em European J. Combin.\/} {\bf 15}, 217--222, MR1273940 (95a:05005). \point J.~Czyzowicz, D.~Mundici and A.~Pelc [1989], Ulam's searching game with lies, {\em J. Combin. Theory Ser. A\/} {\bf 52}, 62--76, MR1008160 (90k:94026). \point J.~Czyzowicz, A.~Pelc and D.~Mundici [1988], Solution of {U}lam's problem on binary search with two lies, {\em J. Combin. Theory Ser. A\/} {\bf 49}, 384--388, MR964397 (90k:94025). \point G.~Danaraj and V.~Klee [1977], The connectedness game and the $c$-comp\-le\-xi\-ty of certain graphs, {\em SIAM J. Appl. Math.\/} {\bf 32}, 431--442. \point C.~Darby and R.~Laver [1998], Countable length {R}amsey games, {\em Set Theory: Techniques and Applications. \emph{Proc. of the conferences, Curacao, Netherlands Antilles, June 26--30, 1995 and Barcelona, Spain, June 10--14, 1996}\/} (C.~A. {Di Prisco} et~al., eds.), Kluwer, Dordrecht, pp. 41--46. \point C.~Daskalakis, P.~W. Goldberg and C.~H. Papadimitriou [2009], The complexity of computing a {N}ash equilibrium, {\em SIAM J. Comput.\/} {\bf 39}(1), 195--259, 2506524 (2010e:91006). \newline\urlprefix\url{http://dx.doi.org/10.1137/070699652} \point C.~Daskalakis, A.~Mehta and C.~Papadimitriou [2009], A note on approximate {N}ash equilibria, {\em Theoret. Comput. Sci.\/} {\bf 410}(17), 1581--1588, 2510264 (2010g:68303). \newline\urlprefix\url{http://dx.doi.org/10.1016/j.tcs.2008.12.031} \point A.~L. Davies [1970], Rotating the fifteen puzzle, {\em Math. Gaz.\/} {\bf 54}, 237--240. \point M.~Davis [1963], Infinite games of perfect information, {\em Ann. of Math. Stud., Princeton\/} {\bf 52}, 85--101. \point R.~W. Dawes [1992], Some pursuit-evasion problems on grids, {\em Inform. Process. Lett.\/} {\bf 43}, 241--247. \point T.~R. Dawson [1934], Problem 1603, {\em Fairy Chess Review\/} p.~94, Dec. \point T.~R. Dawson [1935], Caissa's Wild Roses, reprinted in: {\it Five Classics of Fairy Chess}, Dover, 1973. \point N.~G. de~Bruijn [1972], A solitaire game and its relation to a finite field, {\em J. Recr. Math.\/} {\bf 5}, 133--137. \point N.~G. de~Bruijn [1981], Pretzel Solitaire as a pastime for the lonely mathematician, in: {\em The Mathematical Gardner\/} (D.~A. Klarner, ed.), Wadsworth Internat., Belmont, CA, pp. 16--24. \point F.~de~Carteblanche [1970], The princess and the roses, {\em J. Recr. Math.\/} {\bf 3}, 238--239. \point F.~deCarte Blanche [1974], The roses and the princes, {\em J. Recr. Math.\/} {\bf 7}, 295--298. \point A.~P. DeLoach [1971], Some investigations into the game of SIM, {\em J. Recr. Math.\/} {\bf 4}, 36--41. \point E.~D. Demaine [2001], Playing games with algorithms: algorithmic combinatorial game theory, {\em Mathematical Foundations of Computer Science\/} (J.~Sgall, A.~Pultr and P.~Kolman, eds.), Vol. 2136 of {\em Lecture Notes in Comput. Sci.\/}, Springer, Berlin, pp. 18--32, MR1906998 (2003d:68076). \point E.~D. Demaine, M.~L. Demaine and D.~Eppstein [2002], Phutball Endgames are Hard, in: {\em More Games of No Chance, \emph{Proc. MSRI Workshop on Combinatorial Games, July, 2000, Berkeley, CA, MSRI Publ.}\/} (R.~J. Nowakowski, ed.), Vol.~42, Cambridge University Press, Cambridge, pp. 351--360, MR1973023 (2004b:91042). \point E.~D. Demaine, M.~L. Demaine and R.~Fleischer [2004], Solitaire clobber, {\em Theoret. Comp. Sci.\/} {\bf 313}, 325--338, special issue of Dagstuhl Seminar ``Algorithmic Combinatorial Game Theory'', Feb. 2002, MR2056930. \point E.~D. Demaine, M.~L. Demaine, R.~Fleischer, R.~A. Hearn and T.~von Oertzen [2009], The complexity of the Dyson {T}elescopes puzzle, in: {\em Games of No Chance 3, \emph{Proc. BIRS Workshop on Combinatorial Games, July, 2005, Banff, Alberta, Canada, MSRI Publ.}\/} (M.~H. Albert and R.~J. Nowakowski, eds.), Vol.~56, Cambridge University Press, Cambridge, pp. 271--285. \point E.~Demaine, M.~L. Demaine and J.~O'Rourke [2000], PushPush and Push-1 are NP-hard in 2D, {\em Proc. 12th Annual Canadian Conf. on Computational Geometry\/}, Fredericton, New Brunswick, Canada, pp. 17--20. \point E.~D. Demaine, M.~L. Demaine and H.~A. Verrill [2002], Coin-moving puzzles, in: {\em More Games of No Chance, \emph{Proc. MSRI Workshop on Combinatorial Games, July, 2000, Berkeley, CA, MSRI Publ.}\/} (R.~J. Nowakowski, ed.), Vol.~42, Cambridge University Press, Cambridge, pp. 405--431, MR1973108 (2004b:91043). \point E.~D. Demaine, R.~Fleischer, A.~Fraenkel and R.~J. Nowakowski [2004], Appendix {B}: {O}pen problems at the 2002 {D}agstuhl {S}eminar on {A}lgorithmic {C}ombinatorial {G}ame {T}heory, {\em Theoret. Comput. Sci.\/} {\bf 313}(3), 539--543, Algorithmic combinatorial game theory, 2056945. \newline\urlprefix\url{http://dx.doi.org/10.1016/j.tcs.2003.09.012} \point E.~D. Demaine and R.~A. Hearn [2008], Constraint logic: a uniform framework for modeling computation as games, in: {\em Twenty-{T}hird {A}nnual {IEEE} {C}onference on {C}omputational {C}omplexity\/}, IEEE Computer Soc., Los Alamitos, CA, pp. 149--162, 2513497 (2010d:68039). \newline\urlprefix\url{http://dx.doi.org/10.1109/CCC.2008.35} \point E.~D. Demaine and R.~A. Hearn [2009], Playing games with algorithms: algorithmic combinatorial game theory, in: {\em Games of No Chance 3, \emph{Proc. BIRS Workshop on Combinatorial Games, July, 2005, Banff, Alberta, Canada, MSRI Publ.}\/} (M.~H. Albert and R.~J. Nowakowski, eds.), Vol.~56, Cambridge University Press, Cambridge, pp. 3--56, an updated version of E.D. Demaine's paper of the same title, 2001. \point E.~D. Demaine, R.~A. Hearn and M.~Hoffmann [2002], Push-2-f is PSPACE-Complete, {\em Proc. 14th Canad. Conf. Computational Geometry\/}, Lethbridge, Alberta, Canada, pp. 31--35. \point J.~DeMaio [2007], Which chessboards have a closed knight's tour within the cube?, {\em Electr. J. Combin.\/} {\bf 14}, \#R32, 9 pp. \newline\urlprefix\url{http://www.combinatorics.org/} \point J.~DeMaio and B.~Mathew [2011], Which chessboards have a closed knight's tour within the rectangular prism?, {\em Electron. J. Combin.\/} {\bf 18}(1), Paper 8, 14, 2770113 (2012d:05210). \point H.~de~Parville [1884], La tour d'Hano\" {\i} et la question du Tonkin, {\em La Nature\/} {\bf 12}, 285--286. \point C.~Deppe [2000], Solution of Ulam's searching game with three lies or an optimal adaptive strategy for binary three-error-correcting codes, {\em Discrete Math.\/} {\bf 224}, 79--98, MR1781286 (2001j:94054). \point C.~Deppe [2004], Strategies for the Renyi-Ulam game with fixed number of lies, {\em Theoret. Comput. Sci.\/} {\bf 314}, 45--55, MR2033744 (2004k:05012). \point D.~Dereniowski [2010], Phutball is {PSPACE}-hard, {\em Theoret. Comput. Sci.\/} {\bf 411}, 3971--3978, 2768776 (2011h:91056). \newline\urlprefix\url{http://dx.doi.org/10.1016/j.tcs.2010.08.019} \point D.~Dereniowski [2011], The complexity of node blocking for dags, {\em J. Combin. Theory Ser. A\/} {\bf 118}, 248--256, 2737198. \newline\urlprefix\url{http://dx.doi.org/10.1016/j.jcta.2010.03.011} \point B.~Descartes [1953], Why are series musical?, {\em Eureka\/} {\bf 16}, 18--20, reprinted {\it ibid.} {\bf 27} (1964) 29--31. \point W.~Deuber and S.~Thomass\'e [1996], Grundy Sets of Partial Orders, {\em Technical Report No. 96-123\/}, Diskrete Strukturen in der Mathematik, Universit\"at Bielefeld. \point M.~Develin and S.~Payne [2010], Discrete bidding games, {\em Electron. J. Combin.\/} {\bf 17}(1), Research Paper 85, 40, 2661388 (2011j:91062). \newline\urlprefix\url{http://www.combinatorics.org/Volume_17/Abstracts/v17i1r% 85.html} \point A.~K. Dewdney [1984 -- 1991$\ $], Computer Recreations, a column in Scientific American (May, 1984 -- September 1991). \point A.~K. Dewdney [1988], {\em The Armchair Universe: An Exploration of Computer Worlds\/}, W. H. Freeman and Company, New York. \point A.~K. Dewdney [1989], {\em The Turing Omnibus: 61 Excursions in Computer Science\/}, Computer Science Press, Rockville, MD. \point A.~K. Dewdney [1993], {\em The $($new$)$ Turing Omnibus: 66 Excursions in Computer Science\/}, Computer Science Press, New York. \point A.~Dhagat, P.~G\'{a}cs and P.~Winkler [1992], On playing "twenty questions" with a liar, {\em Proc.\ Third Annual ACM-SIAM Sympos.\ on Discrete Algorithms\/}, (Orlando, FL, 1992), ACM, New York, pp. 16--22. \point C.~S. Dibley and W.~D. Wallis [1981], The effect of starting position in jai-alai, {\em Congr. Numer.\/} {\bf 32}, 253--259, Proc. 12-th Southeastern Conf. on Combinatorics, Graph Theory and Computing, Vol. I (Baton Rouge, LA, 1981). \point C.~G. Diderich [1995], Bibliography on minimax game theory, sequential and parallel algorithms. \newline\urlprefix\url{http://diwww.epfl.ch/$\sim$diderich/bibliographies.html} \point R.~Diestel and I.~Leader [1994], Domination games on infinite graphs, {\em Theoret. Comput. Sci. \emph{(Math Games)}\/} {\bf 132}, 337--345. \point T.~Dinski and X.~Zhu [1999], A bound for the game chromatic number of graphs, {\em Discrete Math.\/} {\bf 196}(1-3), 109--115, MR1664506 (99k:05077). \point Y.~Dodis and P.~Winkler [2001], Universal configurations in light-flipping games, {\em Proc.\ 12th Annual ACM-SIAM Sympos.\ on Discrete Algorithms\/}, (Washington, DC, 2001), ACM, New York, pp. 926--927. \point B.~Doerr [2001], Vector balancing games with aging, {\em J. Combin. Theory Ser. A\/} {\bf 95}(2), 219--233, 1845142 (2002f:91018). \newline\urlprefix\url{http://dx.doi.org/10.1006/jcta.2000.3163} \point A.~P. Domoryad [1964], {\em Mathematical Games and Pastimes\/}, Pergamon Press, Oxford, translated by H. Moss. \point R.~G. Donnelly [2008], Eriksson's numbers game and finite {C}oxeter groups, {\em European J. Combin.\/} {\bf 29}(7), 1764--1781, 2431767 (2009d:05259). \newline\urlprefix\url{http://dx.doi.org/10.1016/j.ejc.2007.06.029} \point D.~Dor and U.~Zwick [1999], SOKOBAN and other motion planning problems, {\em Comput. Geom.\/} {\bf 13}, 215--228. \point P.~Dorbec, E.~Duch{\^e}ne and S.~Gravier [2008], Solitaire {C}lobber played on {H}amming graphs, {\em Integers, Electr. J of Combinat. Number Theory\/} {\bf 8}, G3, 21, MR2393376 (2009b:91037). \point I.~Douglas and N.~Sieben [2012], Edge animal weak $(1,2)$-achievement games, {\em Integers, Electr. J of Combinat. Number Theory\/} {\bf 12}, G5, 13. \point M.~Dresher [1951], Games of strategy, {\em Math. Mag.\/} {\bf 25}, 93--99. \point A.~Dress, A.~Flammenkamp and N.~Pink [1999], Additive periodicity of the Sprague-Grundy function of certain Nim games, {\em Adv. in Appl. Math.\/} {\bf 22}, 249--270. \point G.~C. Drummond-Cole [2005], Positions of value {${}^*2$} in generalized domineering and chess, {\em Integers\/} {\bf 5}(1), G6, 13, 2192254 (2006g:11043). \point Y.~Du [2008], On the complexity of deciding bimatrix games similarity, {\em Theoret. Comput. Sci.\/} {\bf 407}(1-3), 583--586, 2463040 (2010g:91008). \newline\urlprefix\url{http://dx.doi.org/10.1016/j.tcs.2008.07.021} \point E.~Duch{\^e}ne, A.~S. Fraenkel, S.~Gravier and R.~J. Nowakowski [2009], Another bridge between {NIM} and {WYTHOFF}, {\em Australas. J. Combin.\/} {\bf 44}, 43--56, 2526997 (2010h:91056). \point E.~Duch{\^e}ne, A.~S. Fraenkel, R.~J. Nowakowski and M.~Rigo [2010], Extensions and restrictions of {W}ythoff's game preserving its {$P$} positions, {\em J. Combin. Theory Ser. A\/} {\bf 117}(5), 545--567, 2600974 (2011d:91073). \newline\urlprefix\url{http://dx.doi.org/10.1016/j.jcta.2009.07.010} \point E.~Duch{\^e}ne and S.~Gravier [2009], Geometrical extensions of {W}ythoff's game, {\em Discrete Math.\/} {\bf 309}, 3595--3608, 2528073 (2010k:91051). \newline\urlprefix\url{http://dx.doi.org/10.1016/j.disc.2007.12.089} \point E.~Duch{\^e}ne, S.~Gravier and M.~Mhalla [2009], Combinatorial graph games, {\em Ars Combin.\/} {\bf 90}, 33--44, 2473164 (2010b:05123). \point E.~Duch{\^e}ne, S.~Gravier and J.~Moncel [2009], New results about impartial solitaire clobber, {\em RAIRO Oper. Res.\/} {\bf 43}, 463--482, 2573994 (2011b:91079). \newline\urlprefix\url{http://dx.doi.org/10.1051/ro/2009029} \point E.~Duch{\^e}ne and M.~Rigo [2008], A morphic approach to combinatorial games: the {T}ribonacci case, {\em Theor. Inform. Appl.\/} {\bf 42}(2), 375--393, 2401268 (2009b:91038). \newline\urlprefix\url{http://dx.doi.org/10.1051/ita:2007039} \point E.~Duch{\^e}ne and M.~Rigo [2008], Cubic {P}isot unit combinatorial games, {\em Monatsh. Math.\/} {\bf 155}(3-4), 217--249, 2461578 (2009m:68199). \newline\urlprefix\url{http://dx.doi.org/10.1007/s00605-008-0006-x} \point E.~Duch{\^e}ne and M.~Rigo [2010], Invariant games, {\em Theoret. Comput. Sci.\/} {\bf 411}, 3169--3180, 2676861 (2011i:91038). \newline\urlprefix\url{http://dx.doi.org/10.1016/j.tcs.2010.05.007} \point P.~Duchet [1980], Graphes noyau-parfaits, {\em Ann. Discrete Math.\/} {\bf 9}, 93--101. \point P.~Duchet [1987], A sufficient condition for a digraph to be kernel-perfect, {\em J. Graph Theory\/} {\bf 11}, 81--85. \point P.~Duchet [1987], Parity graphs are kernel-M-solvable, {\em J. Combin. Theory \emph{(Ser.~B)}\/} {\bf 43}, 121--126. \point P.~Duchet and H.~Meyniel [1981], A note on kernel-critical graphs, {\em Discrete Math.\/} {\bf 33}, 103--105. \point P.~Duchet and H.~Meyniel [1983], Une g\'en\'eralisation du th\'eor\`eme de Ri\-chard\-son sur l'existence de noyaux dans le graphes orient\'es, {\em Discrete Math.\/} {\bf 43}, 21--27. \point P.~Duchet and H.~Meyniel [1993], Kernels in directed graphs: a poison game, {\em Discrete Math.\/} {\bf 115}, 273--276. \point H.~E. Dudeney [1958], {\em The Canterbury Puzzles and Other Curious Problems\/}, Dover, Mineola, NY, 4th edn., 1st edn: W. Heinemann, 1907. \point H.~E. Dudeney [1970], {\em Amusements in Mathematics\/}, Dover, Mineola, NY, 1st edn: Dover, 1917, reprinted by Dover in 1959. \point A.~Duffy, G.~Kolpin and D.~Wolfe [2009], Ordinal partizan End Nim, in: {\em Games of No Chance 3, \emph{Proc. BIRS Workshop on Combinatorial Games, July, 2005, Banff, Alberta, Canada, MSRI Publ.}\/} (M.~H. Albert and R.~J. Nowakowski, eds.), Vol.~56, Cambridge University Press, Cambridge, pp. 419--425. \point I.~Dumitriu and J.~Spencer [2004], A halfliar's game, {\em Theoret. Comp. Sci.\/} {\bf 313}, 353--369, special issue of Dagstuhl Seminar ``Algorithmic Combinatorial Game Theory'', Feb. 2002, MR2056932. \point I.~Dumitriu and J.~Spencer [2005], The liar game over an arbitrary channel, {\em Combinatorica\/} {\bf 25}(5), 537--559, MR2176424 (2006m:91003). \point I.~Dumitriu and J.~Spencer [2005], The two-batch liar game over an arbitrary channel, {\em SIAM J. Discrete Math.\/} {\bf 19}(4), 1056--1064 (electronic), MR2206379 (2006m:91037). \point C.~Dunn [2007], The relaxed game chromatic index of {$k$}-degenerate graphs, {\em Discrete Math.\/} {\bf 307}(14), 1767--1775, MR2316815 (2007m:05085). \point C.~Dunn and H.~A. Kierstead [2004], A simple competitive graph coloring algorithm. {II}, {\em J. Combin. Theory Ser. B\/} {\bf 90}(1), 93--106, Dedicated to Adrian Bondy and U. S. R. Murty, MR2041319 (2005h:05072). \point C.~Dunn and H.~A. Kierstead [2004], A simple competitive graph coloring algorithm. {III}, {\em J. Combin. Theory Ser. B\/} {\bf 92}(1), 137--150, MR2078498 (2007b:05069). \point C.~Dunn and H.~A. Kierstead [2004], The relaxed game chromatic number of outerplanar graphs, {\em J. Graph Theory\/} {\bf 46}(1), 69--78, MR2051470 (2004m:05097). \point N.~Duvdevani and A.~S. Fraenkel [1989], Properties of {$k$}-{W}elter's game, {\em Discrete Math.\/} {\bf 76}(3), 197--221, 1009869 (91a:90182). \newline\urlprefix\url{http://dx.doi.org/10.1016/0012-365X(89)90320-8} \point S.~Dyrkolbotn and M.~Walicki [2012], Kernels in digraphs that are not kernel perfect, {\em Discrete Math.\/} {\bf 312}, 2498--2505. \point J.~Edmonds [1965], Lehman's switching game and a theorem of Tutte and Nash--Williams, {\em J. Res. Nat. Bur. Standards\/} {\bf 69B}, 73--77. \point B.~Effantin and H.~Kheddouci [2007], Grundy number of graphs, {\em Discuss. Math. Graph Theory\/} {\bf 27}(1), 5--18, 2321417 (2008a:05089). \newline\urlprefix\url{http://dx.doi.org/10.7151/dmgt.1339} \point R.~Ehrenborg and E.~Steingr{\'{\i}}msson [1996], Playing {N}im on a simplicial complex, {\em Electron. J. Combin.\/} {\bf 3}(1), Research Paper 9, approx.\ 33 pp.\ (electronic), 1376659 (97c:90158). \newline\urlprefix\url{http://www.combinatorics.org/Volume_3/Abstracts/v3i1r9.% html} \point A.~Ehrenfeucht and J.~Mycielski [1979], Positional strategies for mean payoff games, {\em Internat. J. Game Theory\/} {\bf 8}, 109--113. \point N.~D. Elkies [1996], On numbers and endgames: combinatorial game theory in chess endgames, in: {\em Games of no chance ({B}erkeley, {CA}, 1994)\/}, Vol.~29 of {\em Math. Sci. Res. Inst. Publ.\/}, Cambridge Univ. Press, Cambridge, pp. 135--150, 1427963. \point N.~D. Elkies [2002], Higher nimbers in pawn endgames on large chessboards, in: {\em More Games of No Chance, \emph{Proc. MSRI Workshop on Combinatorial Games, July, 2000, Berkeley, CA, MSRI Publ.}\/} (R.~J. Nowakowski, ed.), Vol.~42, Cambridge University Press, Cambridge, pp. 61--78, MR1973005 (2004c:91029). \point N.~D. Elkies [2004/06], New directions in enumerative chess problems, {\em Electron. J. Combin.\/} {\bf 11}(2), Article 4, 14 pp. (electronic), 2195435 (2006i:05004). \newline\urlprefix\url{http://www.combinatorics.org/Volume_11/Abstracts/v11i2a% 4.html} \point N.~D. Elkies and R.~P. Stanley [2003], The mathematical knight, {\em Math. Intelligencer\/} {\bf 25}(1), 22--34, 1962924 (2004c:05113). \newline\urlprefix\url{http://dx.doi.org/10.1007/BF02985635} \point R.~B. Ellis and K.~L. Nyman [2009], Two-batch liar games on a general bounded channel, {\em J. Combin. Theory Ser. A\/} {\bf 116}(8), 1253--1270, 2568798 (2011j:91054). \newline\urlprefix\url{http://dx.doi.org/10.1016/j.jcta.2009.03.005} \point R.~B. Ellis, V.~Ponomarenko and C.~H. Yan [2005], The {R}\'enyi-{U}lam pathological liar game with a fixed number of lies, {\em J. Combin. Theory Ser. A\/} {\bf 112}, 328--336, MR2177490 (2006g:91040). \point R.~B. Ellis and C.~H. Yan [2004], Ulam's pathological liar game with one half-lie, {\em Int. J. Math. Math. Sci.\/} pp. 1523--1532, MR2085073 (2005c:91033). \point J.~W. Emert, R.~B. Nelson and F.~W. Owens [2007], Multiple towes of Hanoi with a path transition graph, {\em Congr. Numer.\/} {\bf 188}, 59--64, Proc. 38-th Southeastern Intern. Conf. on Combinatorics, Graph Theory and Computing (Boca Raton, Fl, 2007). \point D.~Engel [1972], {DIM}: three-dimensional {S}im, {\em J. Recr. Math.\/} {\bf 5}, 274--275. \point M.~R. Engelhardt [2007], A group-based search for solutions of the {$n$}-queens problem, {\em Discrete Math.\/} {\bf 307}, 2535--2551, MR2359600 (2008g:05204). \point B.~Engels and T.~Kamphans [2006], Randolph's robot game is {NP}-hard!, in: {\em CTW2006---Cologne-Twente Workshop on Graphs and Combinatorial Optimization\/}, Vol.~25 of {\em Electron. Notes Discrete Math.\/}, Elsevier, Amsterdam, pp. 49--53 (electronic), MR2301136. \point R.~J. Epp and T.~S. Ferguson [1980], A note on take-away games, {\em Fibonacci Quart.\/} {\bf 18}, 300--303. \point D.~Eppstein [2002], Searching for spaceships, in: {\em More Games of No Chance, \emph{Proc. MSRI Workshop on Combinatorial Games, July, 2000, Berkeley, CA, MSRI Publ.}\/} (R.~J. Nowakowski, ed.), Vol.~42, Cambridge University Press, Cambridge, pp. 433--453. \point R.~A. Epstein [1977], {\em Theory of Gambling and Statistial Logic\/}, Academic Press, New York, NY. \point M.~C. Er [1982], A representation approach to the tower of Hanoi problem, {\em Comput. J.\/} {\bf 25}, 442--447. \point M.~C. Er [1983], An analysis of the generalized towers of Hanoi problem, {\em BIT\/} {\bf 23}, 429--435. \point M.~C. Er [1983], An iterative solution to the generalized towers of Hanoi problem, {\em BIT\/} {\bf 23}, 295--302. \point M.~C. Er [1984], A generalization of the cyclic towers of Hanoi, {\em Intern. J. Comput. Math.\/} {\bf 15}, 129--140. \point M.~C. Er [1984], The colour towers of Hanoi: a generalization, {\em Comput. J.\/} {\bf 27}, 80--82. \point M.~C. Er [1984], The cyclic towers of Hanoi: a representation approach, {\em Comput. J.\/} {\bf 27}, 171--175. \point M.~C. Er [1984], The generalized colour towers of Hanoi: an iterative algorithm, {\em Comput. J.\/} {\bf 27}, 278--282. \point M.~C. Er [1984], The generalized towers of Hanoi problem, {\em J. Inform. Optim. Sci.\/} {\bf 5}, 89--94. \point M.~C. Er [1985], The complexity of the generalized cyclic towers of Hanoi problem, {\em J. Algorithms\/} {\bf 6}, 351--358. \point M.~C. Er [1987], A general algorithm for finding a shortest path between two $n$-configurations, {\em Information Sciences\/} {\bf 42}, 137--141. \point M.~C. Er [1987], A time and space efficient algorithm for the cyclic Towers of Hanoi problem, {\em J. Inform. Process.\/} {\bf 9}, 163--165. \point M.~C. Er [1988], A minimal space algorithm for solving the towers of Hanoi problem, {\em J. Inform. Optim. Sci.\/} {\bf 9}, 183--191. \point M.~C. Er [1989], A linear space algorithm for solving the Towers of Hanoi problem by using a virtual disc., {\em Inform. Sci.\/} {\bf 47}, 47--52. \point C.~Erbas, S.~Sarkeshik and M.~M. Tanik [1992], Different perspectives of the $N$-queens problem, {\em Proc. ACM Computer Science Conf., \emph{Kansas City, MO}\/}, pp. 99--108. \point C.~Erbas and M.~M. Tanik [1994], Parallel memory allocation and data alignment in SIMD machines, {\em Parallel Algorithms and Applications\/} {\bf 4}, 139--151, preliminary version appeared under the title: Storage schemes for parallel memory systems and the $N$-queens problem, in: Proc. 15th Ann. Energy Tech. Conf., Houston, TX, Amer. Soc. Mech. Eng., Vol. 43, 1992, pp. 115--120. \point C.~Erbas, M.~M. Tanik and Z.~Aliyazicioglu [1992], Linear conguence equations for the solutions of the $N$-queens problem, {\em Inform. Process. Lett.\/} {\bf 41}, 301--306. \point J.~Erde [1989], The closed knight tour problem in higher dimensions, {\em Electron. J. Combin.\/} {\bf 19(4)}, \#P9, 17 pp. (electronic). \point P.~Erd\H{o}s, W.~R. Hare, S.~T. Hedetniemi and R.~C. Laskar [1987], On the equality of the Grundy and ochromatic numbers of a graph, {\em J. Graph Theory\/} {\bf 11}, 157--159. \point P.~Erd\H{o}s, S.~T. Hedetniemi, R.~C. Laskar and G.~C.~E. Prins [2003], On the equality of the partial Grundy and upper ochromatic numbers of graphs, {\em Discrete Math.\/} {\bf 272}, 53--64, MR2019200 (2004i:05048). \point P.~Erd{\H{o}}s and J.~L. Selfridge [1973], On a combinatorial game, {\em J. Combinatorial Theory Ser. A\/} {\bf 14}, 298--301, 0327313 (48 \#5655). \point P.~L. Erd\"{o}s, U.~Faigle, W.~Hochst\"{a}ttler and W.~Kern [2004], Note on the game chromatic index of trees, {\em Theoret. Comp. Sci.\/} {\bf 313}, 371--376, special issue of Dagstuhl Seminar ``Algorithmic Combinatorial Game Theory'', Feb. 2002, MR2056933. \point P.~L. Erd{\H{o}}s and L.~Soukup [2009], Quasi-kernels and quasi-sinks in infinite graphs, {\em Discrete Math.\/} {\bf 309}(10), 3040--3048, 2526721 (2010i:05243). \newline\urlprefix\url{http://dx.doi.org/10.1016/j.disc.2008.08.006} \point J.~Erickson [1996], New toads and frogs results, in: {\em Games of No Chance, \emph{Proc. MSRI Workshop on Combinatorial Games, July, 1994, Berkeley, CA, MSRI Publ.}\/} (R.~J. Nowakowski, ed.), Vol.~29, Cambridge University Press, Cambridge, pp. 299--310. \point J.~Erickson [1996], Sowing games, in: {\em Games of No Chance, \emph{Proc. MSRI Workshop on Combinatorial Games, July, 1994, Berkeley, CA, MSRI Publ.}\/} (R.~J. Nowa\-kowski, ed.), Vol.~29, Cambridge University Press, Cambridge, pp. 287--297. \point M.~Erickson and F.~Harary [1983], Picasso animal achievement games, {\em Bull. Malaysian Math. Soc.\/} {\bf 6}, 37--44. \point N.~Eriksen, H.~Eriksson and K.~Eriksson [2000], Diagonal checker-jumping and Eulerian numbers for color-signed permutations, {\em Electr. J. Combin.\/} {\bf 7}, \#R3, 11 pp. \newline\urlprefix\url{http://www.combinatorics.org/} \point H.~Eriksson [1995], Pebblings, {\em Electr. J. Combin.\/} {\bf 2}, \#R7, 18 pp. \newline\urlprefix\url{http://www.combinatorics.org/} \point H.~Eriksson, K.~Eriksson, J.~Karlander, L.~Svensson and J.~W\"{a}stlund [2001], Sorting a bridge hand, {\em Discrete Math.\/} {\bf 241}, 289--300, Selected papers in honor of Helge Tverberg. \point H.~Eriksson, K.~Eriksson and J.~Sj{\"o}strand [2001], Note on the lamp lighting problem, {\em Adv. in Appl. Math.\/} {\bf 27}, 357--366, Special issue in honor of Dominique Foata's 65th birthday (Philadelphia, PA, 2000), MR1868970 (2002i:68082). \point H.~Eriksson and B.~Lindstr{\"o}m [1995], Twin jumping checkers in {${\bf Z}^d$}, {\em European J. Combin.\/} {\bf 16}, 153--157, 1324425 (96c:05011). \newline\urlprefix\url{http://dx.doi.org/10.1016/0195-6698(95)90054-3} \point K.~Eriksson [1991], No polynomial bound for the chip firing game on directed graphs, {\em Proc. Amer. Math. Soc.\/} {\bf 112}(4), 1203--1205, 1065944 (91j:90110). \newline\urlprefix\url{http://dx.doi.org/10.2307/2048674} \point K.~Eriksson [1992], Convergence of {M}ozes's game of numbers, {\em Linear Algebra Appl.\/} {\bf 166}, 151--165, 1152492 (92m:90073). \newline\urlprefix\url{http://dx.doi.org/10.1016/0024-3795(92)90274-E} \point K.~Eriksson [1994], Node firing games on graphs, in: {\em Jerusalem combinatorics '93\/}, Vol. 178 of {\em Contemp. Math.\/}, Amer. Math. Soc., Providence, RI, pp. 117--127, 1310579 (95i:90129). \newline\urlprefix\url{http://dx.doi.org/10.1090/conm/178/01896} \point K.~Eriksson [1994], Reachability is decidable in the numbers game, {\em Theoret. Comput. Sci.\/} {\bf 131}(2), 431--439, 1288949 (95i:90122). \newline\urlprefix\url{http://dx.doi.org/10.1016/0304-3975(94)90182-1} \point K.~Eriksson [1995], The numbers game and {C}oxeter groups, {\em Discrete Math.\/} {\bf 139}(1-3), 155--166, Formal power series and algebraic combinatorics (Montreal, PQ, 1992), 1336838 (96f:05184). \newline\urlprefix\url{http://dx.doi.org/10.1016/0012-365X(94)00131-2} \point K.~Eriksson [1996], Chip-firing games on mutating graphs, {\em SIAM J. Discrete Math.\/} {\bf 9}(1), 118--128, 1375419 (97c:90160). \newline\urlprefix\url{http://dx.doi.org/10.1137/S0895480192240287} \point K.~Eriksson [1996], Strong convergence and a game of numbers, {\em European J. Combin.\/} {\bf 17}(4), 379--390, 1387469 (97d:05267). \newline\urlprefix\url{http://dx.doi.org/10.1006/eujc.1996.0031} \point K.~Eriksson [1996], Strong convergence and the polygon property of {$1$}-player games, {\em Proceedings of the 5th {C}onference on {F}ormal {P}ower {S}eries and {A}lgebraic {C}ombinatorics ({F}lorence, 1993)\/}, Vol. 153, pp. 105--122, 1394949 (97d:90132). \newline\urlprefix\url{http://dx.doi.org/10.1016/0012-365X(95)00131-F} \point M.~D. Ernst [1995], Playing {K}onane mathematically: a combinatorial game-theoretic analysis, {\em UMAP J.\/} {\bf 16}(2), 95--121, MR1439041. \point L.~Esperet and X.~Zhu [2009], Game colouring of the square of graphs, {\em Discrete Math.\/} {\bf 309}(13), 4514--4521, 2519190 (2010j:05134). \newline\urlprefix\url{http://dx.doi.org/10.1016/j.disc.2009.02.014} \point K.~Etessami and M.~Yannakakis [2010], On the complexity of {N}ash equilibria and other fixed points, {\em SIAM J. Comput.\/} {\bf 39}(6), 2531--2597, 2644357 (2011i:91013). \newline\urlprefix\url{http://dx.doi.org/10.1137/080720826} \point G.~Etienne [1991], Tableaux de {Y}oung et solitaire bulgare, {\em J. Combin. Theory \rm({Ser. A})\/} {\bf 58}, 181--197, MR1129115 (93a:05134). \point J.~M. Ettinger [2000], A metric for positional games, {\em Theoret. Comput. Sci. \emph{(Math Games)}\/} {\bf 230}, 207--219, MR1725638 (2001g:91041). \point M.~Euwe [1929], Mengentheoretische Betrachtungen \"{u}ber das Schachspiel, {\em Proc. Konin. Akad. Wetenschappen\/} {\bf 32}, 633--642. \point R.~J. Evans [1974], A winning opening in reverse Hex, {\em J. Recr. Math.\/} {\bf 7}, 189--192. \point R.~J. Evans [1975--76], Some variants of Hex, {\em J. Recr. Math.\/} {\bf 8}, 120--122. \point R.~J. Evans [1979], Silverman's game on intervals, {\em Amer. Math. Monthly\/} {\bf 86}, 277--281. \point R.~J. Evans and G.~A. Heuer [1992], Silverman's game on discrete sets, {\em Linear Algebra Appl.\/} {\bf 166}, 217--235. \point S.~Even and R.~E. Tarjan [1976], A combinatorial problem which is complete in polynomial space, {\em J. Assoc. Comput. Mach.\/} {\bf 23}, 710--719, also appeared in Proc. 7th Ann. ACM Symp. Theory of Computing (Albuquerque, NM, 1975), Assoc. Comput. Mach., New York, NY, 1975, pp. 66--71. \point L.~Euler [1759], Solution d'une question curieuse que ne paroit soumise \`a aucune analyse, {\em Mיmoires de l'Academie Royale des Sciences et Belles Lettres, Berlin 1766\/} {\bf 15}, 310--337, Publication also listed as Histoire de l'Academie Royale des Sciences et des Belles-Lettres de Berlin, 1759. \point G.~Exoo [1980-81], A new way to play {R}amsey games, {\em J. Recr. Math.\/} {\bf 13}(2), 111--113. \point U.~Faigle, U.~Kern, H.~Kierstead and W.~T. Trotter [1993], On the game chromatic number of some classes of graphs, {\em Ars Combin.\/} {\bf 35}, 143--150, 1220515 (94b:05079). \point U.~Faigle, W.~Kern and J.~Kuipers [1998], Computing the nucleolus of min-cost spanning tree games is NP-hard, {\em Internat. J. Game Theory\/} {\bf 27}, 443--450. \point E.~Falkener [1961], {\em Games Ancient and Oriental and How to Play Them\/}, Dover, New York, NY. (Published previously by Longmans Green, 1892.). \point B.-J. Falkowski and L.~Schmitz [1986], A note on the queens' problem, {\em Inform. Process. Lett.\/} {\bf 23}, 39--46. \point G.~E. Farr [2003], The Go polynomials of a graph, {\em Theoret. Comp. Sci.\/} {\bf 306}, 1--18, MR2000162 (2004e:05074). \point G.~Farr and J.~Schmidt [2008], On the number of {G}o positions on lattice graphs, {\em Inform. Process. Lett.\/} {\bf 105}(4), 124--130, MR2381402. \newline\urlprefix\url{http://dx.doi.org/10.1016/j.ipl.2007.08.018} \point J.~Farrell, M.~Gardner and T.~Rodgers [2005], Configuration games, {\em {\rm in:} Tribute to a Mathemagician{\rm ,}\/} honoring Martin Gardner (B. Cipra, E. D. Demaine, M. L. Demaine and T. Rodgers, eds.), A K Peters, Wellesley, MA, pp. 93-99. \point T.~Feder [1990], Toetjes, {\em Amer. Math. Monthly\/} {\bf 97}, 785--794. \point T.~Feder and C.~Subi [2005], Disks on a tree: analysis of a combinatorial game, {\em SIAM J. Discrete Math.\/} {\bf 19}, 543--552 (electronic), MR2191279 (2006i:05022). \point S.~P. Fekete, R.~Fleischer, A.~S. Fraenkel and M.~Schmitt [2004], Traveling salesmen in the presence of competition, {\em Theoret. Comp. Sci.\/} {\bf 313}, 377--392, special issue of Dagstuhl Seminar ``Algorithmic Combinatorial Game Theory'', Feb. 2002, MR2056934 (2005a:90168). \point A.~Ferber and D.~Hefetz [2011], Winning strong games through fast strategies for weak games, {\em Electron. J. Combin.\/} {\bf 18}(1), Paper 144, 13, 2817794. \point T.~S. Ferguson [1974], On sums of graph games with last player losing, {\em Internat. J. Game Theory\/} {\bf 3}, 159--167. \point T.~S. Ferguson [1984], Mis\`ere annihilation games, {\em J. Combin. Theory Ser. A\/} {\bf 37}(3), 205--230, 769214 (86h:05055). \newline\urlprefix\url{http://dx.doi.org/10.1016/0097-3165(84)90046-3} \point T.~S. Ferguson [1989], Who solved the secretary problem?, {\em Statistical Science\/} {\bf 4}, 282--296. \point T.~S. Ferguson [1992], Mate with bishop and knight in kriegspiel, {\em Theoret. Comput. Sci. \emph{(Math Games)}\/} {\bf 96}, 389--403. \point T.~S. Ferguson [1998], Some chip transfer games, {\em Theoret. Comp. Sci. \emph{(Math Games)}\/} {\bf 191}, 157--171. \point T.~S. Ferguson [2001], Another form of matrix Nim, {\em Electr. J. Combin.\/} {\bf 8(2)}, \#R9, 9 pp., Volume in honor of Aviezri S. Fraenkel, MR1853260 (2002g:91046). \newline\urlprefix\url{http://www.combinatorics.org/} \point A.~S. Finbow and B.~L. Hartnell [1983], A game related to covering by stars, {\em Ars Combinatoria\/} {\bf 16-A}, 189--198. \point A.~Fink [2012], Lattice games without rational strategies, {\em J. Combin. Theory Ser. A\/} {\bf 119}(2), 450--459, 2860605. \newline\urlprefix\url{http://dx.doi.org/10.1016/j.jcta.2011.10.005} \point A.~Fink and R.~Guy [2007], The number-pad game, {\em College Math. J.\/} {\bf 38}(4), 260--264, 2340919. \point A.~Fink and R.~Guy [2009], Rick's tricky six puzzle: {$S_5$} sits specially in {$S_6$}, {\em Math. Mag.\/} {\bf 82}, 83--102, 2512593. \newline\urlprefix\url{http://dx.doi.org/10.4169/193009809X468896} \point M.~J. Fischer and R.~N. Wright [1993], An application of game-theoretic techniques to cryptography, {\em Advances in Computational Complexity Theory \emph{(New Brunswick, NJ, 1990), DIMACS Ser. Discrete Math. Theoret. Comput. Sci.}\/}, Vol.~13, pp. 99--118. \point P.~C. Fishburn and N.~J.~A. Sloane [1989], The solution to Berlekamp's switching game, {\em Discrete Math.\/} {\bf 74}, 263--290. \point D.~C. Fisher and J.~Ryan [1992], Optimal strategies for a generalized ``scissors, paper, and stone" game, {\em Amer. Math. Monthly\/} {\bf 99}, 935--942. \point D.~C. Fisher and J.~Ryan [1995], Probabilities within optimal strategies for tournament games, {\em Discrete Appl. Math.\/} {\bf 56}, 87--91. \point D.~C. Fisher and J.~Ryan [1995], Tournament games and positive tournaments, {\em J. Graph Theory\/} {\bf 19}, 217--236. \point E.~Fisher and N.~Sieben [2008], Rectangular polyomino set weak {$(1,2)$}-achievement games, {\em Theoret. Comput. Sci.\/} {\bf 409}(3), 333--340, MR2473908 (2010a:91036). \newline\urlprefix\url{http://dx.doi.org/10.1016/j.tcs.2008.05.024} \point S.~L. Fitzpatrick and R.~J. Nowakowski [2001], Copnumber of graphs with strong isometric dimension two, {\em Ars Combin.\/} {\bf 59}, 65--73, MR1832198 (2002b:05053). \point G.~W. Flake and E.~B. Baum [2002], {\it Rush Hour\/} is PSPACE-complete, or "Why you should generously tip parking lot attendants", {\em Theoret. Comput. Sci. \emph{(Math Games)}\/} {\bf 270}, 895--911, MR1871102 (2002h:68068). \point A.~Flammenkamp [1996], Lange Perioden in Subtraktions-Spielen, Ph.D. Thesis, University of Bielefeld. \point A.~Flammenkamp, A.~Holshouser and H.~Reiter [2003], Dynamic one-pile blocking {N}im, {\em Electron. J. Combin.\/} {\bf 10}, Note 4, 6 pp. (electronic), MR1975777 (2004b:05027). \newline\urlprefix\url{http://www.combinatorics.org/Volume_10/Abstracts/v10i1n% 4.html} \point J.~A. Flanigan [1978], Generalized two-pile Fibonacci nim, {\em Fibonacci Quart.\/} {\bf 16}, 459--469. \point J.~A. Flanigan [1981], On the distribution of winning moves in random game trees, {\em Bull. Austr. Math. Soc.\/} {\bf 24}, 227--237. \point J.~A. Flanigan [1981], Selective sums of loopy partizan graph games, {\em Internat. J. Game Theory\/} {\bf 10}, 1--10. \point J.~A. Flanigan [1982], A complete analysis of black-white Hackendot, {\em Internat. J. Game Theory\/} {\bf 11}, 21--25. \point J.~A. Flanigan [1982], One-pile time and size dependent take-away games, {\em Fibonacci Quart.\/} {\bf 20}, 51--59. \point J.~A. Flanigan [1983], Slow joins of loopy games, {\em J. Combin. Theory Ser. A\/} {\bf 34}(1), 46--59, 685211 (84b:90106). \newline\urlprefix\url{http://dx.doi.org/10.1016/0097-3165(83)90039-0} \point R.~Fleischer and G.~Trippen [2006], Kayles on the way to the stars, {\em Proc.\ 4th Intern.\ Conference on Computers and Games CG'2004\/} (H.~J. van~den Herik, Y.~Bj\"ornsson and N.~S. Netanyahu, eds.), Bar-Ilan University, Ramat-Gan, Israel, July 2004, Lecture Notes in Computer Science Vol. 3846, Springer, pp. 232--245. \point R.~Fleischer and G.~J. Woeginger [2012], An algorithmic analysis of the Honey-Bee game, {\em Theoret. Comput. Sci.\/} {\bf 452}, 75--87. \point J.~O. Flynn [1973], Lion and man: the boundary constraint, {\em SIAM J. Control\/} {\bf 11}, 397--411. \point J.~O. Flynn [1974], Lion and man: the general case, {\em SIAM J. Control\/} {\bf 12}, 581--597. \point J.~O. Flynn [1974], Some results on max-min pursuit, {\em SIAM J. Control\/} {\bf 12}, 53--69. \point F.~V. Fomin [1998], Helicopter search problems, bandwidth and pathwidth, {\em Discrete Appl. Math.\/} {\bf 85}, 59--70. \point F.~V. Fomin [1999], Note on a helicopter search problem on graphs, {\em Discrete Appl. Math.\/} {\bf 95}, 241--249, Proc. Conf. on Optimal Discrete Structures and Algorithms --- ODSA '97 (Rostock). \point F.~V. Fomin and P.~A. Golovach [2000], Graph searching and interval completion, {\em SIAM J. Discrete Math.\/} {\bf 13}(4), 454--464 (electronic), 1787933 (2001e:05123). \newline\urlprefix\url{http://dx.doi.org/10.1137/S0895480199350477} \point F.~V. Fomin, P.~A. Golovach and J.~Kratochvil [2008], On tractability of cops and robbers game, in: {\em Fifth {IFIP} {I}nternational {C}onference on {T}heoretical {C}omputer {S}cience---{TCS} 2008\/}, Vol. 273 of {\em IFIP Int. Fed. Inf. Process.\/}, Springer, New York, pp. 171--185, 2757374 (2012b:91044). \newline\urlprefix\url{http://dx.doi.org/10.1007/978-0-387-09680-3_12} \point F.~V. Fomin, P.~A. Golovach, J.~Kratochv{\'{\i}}l, N.~Nisse and K.~Suchan [2010], Pursuing a fast robber on a graph, {\em Theoret. Comput. Sci.\/} {\bf 411}(7-9), 1167--1181, 2606052 (2011f:68055). \newline\urlprefix\url{http://dx.doi.org/10.1016/j.tcs.2009.12.010} \point F.~V. Fomin, P.~A. Golovach and D.~Lokshtanov [2011], Guard games on graphs: keep the intruder out!, {\em Theoret. Comput. Sci.\/} {\bf 412}(46), 6484--6497, 2883020. \newline\urlprefix\url{http://dx.doi.org/10.1007/978-3-642-12450-1_14} \point F.~V. Fomin, P.~A. Golovach and N.~N. Petrov [1998], Search problems on {$1$}-skeletons of regular polyhedrons, {\em Int. J. Math. Game Theory Algebra\/} {\bf 7}(2-3), 101--111, 1617256 (99h:90129). \point F.~V. Fomin and N.~N. Petrov [1996], Pursuit-evasion and search problems on graphs, {\em Congr. Numer.\/} {\bf 122}, 47--58, Proc. 27-th Southeastern Intern. Conf. on Combinatorics, Graph Theory and Computing (Baton Rouge, LA, 1996). \point D.~Forge and A.~Vieilleribi{\`e}re [2009], The directed switching game on {L}awrence oriented matroids, {\em European J. Combin.\/} {\bf 30}(8), 1833--1834, 2552665 (2011a:05066). \newline\urlprefix\url{http://dx.doi.org/10.1016/j.ejc.2008.12.002} \point L.~R. Foulds and D.~G. Johnson [1984], An application of graph theory and integer programming: chessboard non-attacking puzzles, {\em Math. Mag.\/} {\bf 57}, 95--104. \point A.~S. Fraenkel [1974], Combinatorial games with an annihilation rule, in: {\em The influence of computing on mathematical research and education ({P}roc. {S}ympos. {A}ppl. {M}ath., {V}ol. 20, {U}niv. {M}ontana, {M}issoula, {M}ont., 1973)\/}, Amer. Math. Soc., Providence, R.I., pp. 87--91, 0354027 (50 \#6509). \point A.~S. Fraenkel [1977], The particles and antiparticles game, {\em Comput. Math. Appl.\/} {\bf 3}, 327--328. \point A.~S. Fraenkel [1980], From {N}im to {G}o, {\em Ann. Discrete Math.\/} {\bf 6}, 137--156, Combinatorial mathematics, optimal designs and their applications (Proc. Sympos. Combin. Math. and Optimal Design, Colorado State Univ., Fort Collins, Colo., 1978), 593528 (82e:90117). \point A.~S. Fraenkel [1981], Planar kernel and {G}rundy with {$d\leq 3$}, {$d_{{\rm out}}\leq 2$}, {$d_{{\rm i}{\rm n}}\leq 2$} are {NP}-complete, {\em Discrete Appl. Math.\/} {\bf 3}(4), 257--262, 675689 (83j:68048). \newline\urlprefix\url{http://dx.doi.org/10.1016/0166-218X(81)90003-2} \point A.~S. Fraenkel [1982], How to beat your {W}ythoff games' opponent on three fronts, {\em Amer. Math. Monthly\/} {\bf 89}(6), 353--361, 660914 (84k:90099). \newline\urlprefix\url{http://dx.doi.org/10.2307/2321643} \point A.~S. Fraenkel [1983], 15 Research problems on games, {\em Discrete Math.\/} in "Research Problems" section, Vols. {\bf 43-46}. \point A.~S. Fraenkel [1984], Wythoff games, continued fractions, cedar trees and Fibonacci searches, {\em Theoret. Comput. Sci.\/} {\bf 29}, 49--73, an earlier version appeared in Proc. 10th Internat. Colloq. on Automata, Languages and Programming (J. Diaz, ed.), Vol. 154, Barcelona, July 1983, Lecture Notes in Computer Science, Springer Verlag, Berlin, 1983, pp. 203--225. \point A.~S. Fraenkel [1988], The complexity of chess, Letter to the Editor, {\em J. Recr. Math.\/} {\bf 20}, 13--14. \point A.~S. Fraenkel [1991], Complexity of games, in: {\em Combinatorial games ({C}olumbus, {OH}, 1990)\/}, Vol.~43 of {\em Proc. Sympos. Appl. Math.\/}, Amer. Math. Soc., Providence, RI, pp. 111--153, 1095543. \point A.~Fraenkel [1994], Even kernels, {\em Electron. J. Combin.\/} {\bf 1}, Research Paper 5, approx.\ 13 pp.\ (electronic), 1269166 (95c:05095). \newline\urlprefix\url{http://www.combinatorics.org/Volume_1/Abstracts/v1i1r5.% html} \point A.~S. Fraenkel [1994], Iterated floor function, algebraic numbers, discrete chaos, {B}eatty subsequences, semigroups, {\em Trans. Amer. Math. Soc.\/} {\bf 341}, 639--664, MR1138949 (94d:11011). \point A.~S. Fraenkel [1994], Recreation and depth in combinatorial games, in: {\em The Lighter Side of Mathematics, \emph{Proc. E. Strens Memorial Conf. on Recr. Math. and its History, Calgary, 1986, Spectrum Series}\/} (R.~K. Guy and R.~E. Woodrow, eds.), Math. Assoc. of America, Washington, DC, pp. 176--194. \point A.~S. Fraenkel [1996], Combinatorial games: selected bibliography with a succinct gourmet introduction, in: {\em Games of No Chance ({B}erkeley, {CA}, 1994)\/}, Vol.~29 of {\em Math. Sci. Res. Inst. Publ.\/}, Cambridge Univ. Press, Cambridge, pp. 493--537, 666 bibliographic items; earlier version in {\it Combinatorial Games}, AMS 1991 (400 items); later versions: {\it More Games of No Chance} (919 items), {\it Games of No Chance 3} (1,360 items). Also in Dynamic Reviews, {\it Electron. J. Combin.}, 1427984. \point A.~S. Fraenkel [1996], Error-correcting codes derived from combinatorial games, in: {\em Games of no chance ({B}erkeley, {CA}, 1994)\/}, Vol.~29 of {\em Math. Sci. Res. Inst. Publ.\/}, Cambridge Univ. Press, Cambridge, pp. 417--431, 1427980 (98h:94023). \point A.~S. Fraenkel [1996], Scenic trails ascending from sea-level {N}im to alpine chess, in: {\em Games of no chance ({B}erkeley, {CA}, 1994)\/}, Vol.~29 of {\em Math. Sci. Res. Inst. Publ.\/}, Cambridge Univ. Press, Cambridge, pp. 13--42, 1427955 (98b:90195). \point A.~S. Fraenkel [1997], Combinatorial game theory foundations applied to digraph kernels, {\em Electron. J. Combin.\/} {\bf 4}(2), Research Paper 10, approx. 17 pp. (electronic), The Wilf Festschrift (Philadelphia, PA, 1996), 1444157 (98d:05138). \newline\urlprefix\url{http://www.combinatorics.org/Volume_4/Abstracts/v4i2r10% .html} \point A.~S. Fraenkel [1998], Heap games, numeration systems and sequences, {\em Ann. Comb.\/} {\bf 2}, 197--210, an earlier version appeared in: {\em Fun With Algorithms\/}, Vol.~4 of {\it Proceedings in Informatics\/} (E. Lodi, L. Pagli and N. Santoro, eds.), Carleton Scientific, University of Waterloo, Waterloo, Ont., pp. 99--113, 1999. Conference took place on the island of Elba, June 1998., MR1681514 (2000b:91001). \point A.~S. Fraenkel [1998], Multivision: an intractable impartial game with a linear winning strategy, {\em Amer. Math. Monthly\/} {\bf 105}(10), 923--928, 1656919 (99j:90134). \newline\urlprefix\url{http://dx.doi.org/10.2307/2589284} \point A.~S. Fraenkel [2000], Recent results and questions in combinatorial game complexities, {\em Theoret. Comput. Sci.\/} {\bf 249}, 265--288, Conference version in: Proc. AWOCA98 --- Ninth Australasian Workshop on Combinatorial Algorithms, C.S. Iliopoulos, ed., Perth, Western Australia, 27--30 July, 1998, special AWOCA98 issue, pp. 124-146, MR1798313 (2001j:91033). \point A.~S. Fraenkel [2002], Virus versus mankind, in: {\em Computers and games ({H}amamatsu, 2000)\/}, Vol. 2063 of {\em Lecture Notes in Comput. Sci.\/}, Springer, Berlin, pp. 204--213, 1909611. \newline\urlprefix\url{http://dx.doi.org/10.1007/3-540-45579-5_13} \point A.~S. Fraenkel [2002], Arrays, numeration systems and Frankenstein games, {\em Theoret. Comput. Sci.\/} {\bf 282}, 271--284, special`` Fun With Algorithms" issue, MR1909052 (2003h:91036). \point A.~S. Fraenkel [2002], Mathematical chats between two physicists, {\em {\rm in:} Puzzler's Tribute: a Feast for the Mind{\rm ,}\/} honoring Martin Gardner (D. Wolfe and T. Rodgers, eds.), A K Peters, Natick, MA, pp. 383-386. \point A.~S. Fraenkel [2002], Two-player games on cellular automata, in: {\em More Games of No Chance, \emph{Proc. MSRI Workshop on Combinatorial Games, July, 2000, Berkeley, CA, MSRI Publ.}\/} (R.~J. Nowakowski, ed.), Vol.~42, Cambridge University Press, Cambridge, pp. 279--306, MR1973018 (2004b:91004). \point A.~S. Fraenkel [2004], Complexity, appeal and challenges of combinatorial games, {\em Theoret. Comp. Sci.\/} {\bf 313}, 393--415, Expanded version of a keynote address at Dagstuhl Seminar ``Algorithmic Combinatorial Game Theory'', Feb. 2002, special issue on Algorithmic Combinatorial Game Theory, MR2056935. \newline\urlprefix\url{http://dx.doi.org/10.1016/j.tcs.2002.11.001} \point A.~S. Fraenkel [2004], New games related to old and new sequences, {\em Integers\/} {\bf 4}, G6, 18, 2116012 (2005h:11048). \point A.~S. Fraenkel [2005], Euclid and Wythoff games, {\em Discrete Math.\/} {\bf 304}, 65--68, MR2184445 (2006f:91006). \point A.~S. Fraenkel [2006], Nim is easy, chess is hard --- but why??, {\em J. Internat. Computer Games Assoc.\/} {\bf 29}(4), 203--206, earlier version appeared in Plus Mag. {\rm (}electronic{\rm )}, pluschat section,\hfill\break http://plus.maths.org/issue40/editorial/index.html. \point A.~S. Fraenkel [2007], {\em The Raleigh game, {\rm in: Combinatorial Number Theory}\/}, de Gruyter, pp. 199--208, Proc.\ Integers Conference, Carrollton, Georgia, October 27-30,2005, in celebration of the 70th birthday of Ronald Graham. B.\ Landman, M.\ Nathanson, J.\ Ne\v{s}et\v{r}il, R.\ Nowakowski, C. Pomerance eds., also appeared in {\it Integers, Electr.\ J.\ of Combinat.\ Number Theory\/} {\bf 7(2)}, special volume in honor of Ron Graham, \#A13, 11 pp., MR2337047 (2008e:91021). \newline\urlprefix\url{http://www.integers-ejcnt.org/vol7(2).html} \point A.~S. Fraenkel [2007], Why are games exciting and stimulating?, {\em Math Horizons\/} pp. 5--7; 32--33, special issue: ``Games, Gambling, and Magic" February. German translation by Niek Neuwahl, poster-displayed at traveling exhibition ``Games \& Science, Science \& Games'', opened in G\"{o}ttingen July 17 -- Aug 21, 2005. \point A.~S. Fraenkel [2008], Games played by {B}oole and {G}alois, {\em Discrete Appl. Math.\/} {\bf 156}, 420--427, 2379074 (2009a:91025). \newline\urlprefix\url{http://dx.doi.org/10.1016/j.dam.2006.06.017} \point A.~S. Fraenkel [2009], {\em The cyclic Butler University game, {\rm in: Mathematical Wizardry for a Gardner, Volume honoring Martin Gardner}\/}, A K Peters, Natick, MA, pp. 97--105, E. Pegg Jr, A. H. Schoen, and T. Rodgers, eds. \point A.~S. Fraenkel [2010], Complementary iterated floor words and the {F}lora game, {\em SIAM J. Discrete Math.\/} {\bf 24}(2), 570--588, 2661423 (2011g:91033). \newline\urlprefix\url{http://dx.doi.org/10.1137/090758994} \point A.~S. Fraenkel [2010], From enmity to amity, {\em Amer. Math. Monthly\/} {\bf 117}(7), 646--648, 2681526. \newline\urlprefix\url{http://dx.doi.org/10.4169/000298910X496787} \point A.~S. Fraenkel [2011], Aperiodic subtraction games, {\em Electron. J. Combin.\/} {\bf 18}(2), Paper 19, 12, 2830984 (2012g:91039). \point A.~S. Fraenkel [2012], The vile, dopey, evil and odious game players, {\em Discrete Math.\/} {\bf 312}, 42--46, special volume in honor of the 80th birthday of Gert Sabidussi, 2852506. \newline\urlprefix\url{http://dx.doi.org/10.1016/j.disc.2011.03.032} \point A.~S. Fraenkel [2012], Ratwyt, {\em The College Math. J.\/} In press. In memory of Martin Gardner. \point A.~S. Fraenkel [2013], The Rat Game and the Mouse Game, in: {\em Games of No Chance 4\/}, Cambridge University Press, to appear. \point A.~S. Fraenkel and I.~Borosh [1973], A generalization of {W}ythoff's game, {\em J. Combinatorial Theory Ser. A\/} {\bf 15}, 175--191, 0339824 (49 \#4581). \point A.~S. Fraenkel, M.~R. Garey, D.~S. Johnson, T.~Schaefer and Y.~Yesha [1978], The complexity of checkers on an $n\times n$ board --- preliminary report, {\em Proc. 19th Ann. Symp. Foundations of Computer Science \emph{(Ann Arbor, MI, Oct. 1978)}\/}, IEEE Computer Soc., Long Beach, CA, pp. 55--64. \point A.~S. Fraenkel and E.~Goldschmidt [1987], P{SPACE}-hardness of some combinatorial games, {\em J. Combin. Theory Ser. A\/} {\bf 46}(1), 21--38, 899900 (88j:68049). \newline\urlprefix\url{http://dx.doi.org/10.1016/0097-3165(87)90074-4} \point A.~S. Fraenkel and F.~Harary [1989], Geodetic contraction games on graphs, {\em Internat. J. Game Theory\/} {\bf 18}(3), 327--338, 1024962 (90m:90309). \newline\urlprefix\url{http://dx.doi.org/10.1007/BF01254296} \point A.~S. Fraenkel and H.~Herda [1980], Never rush to be first in playing {N}imbi, {\em Math. Mag.\/} {\bf 53}(1), 21--26, 560015 (82f:90101). \newline\urlprefix\url{http://dx.doi.org/10.2307/2690025} \point A.~S. Fraenkel, A.~Jaffray, A.~Kotzig and G.~Sabidussi [1995], Modular {N}im, {\em Theoret. Comput. Sci.\/} {\bf 143}(2), 319--333, 1335685 (96f:90137). \newline\urlprefix\url{http://dx.doi.org/10.1016/0304-3975(94)00260-P} \point A.~S. Fraenkel and C.~Kimberling [1994], Generalized {W}ythoff arrays, shuffles and interspersions, {\em Discrete Math.\/} {\bf 126}, 137--149, MR1264482 (95c:11028). \point A.~S. Fraenkel and A.~Kontorovich [2007], {\em The Sierpi\'{n}ski sieve of Nim-varieties and binomial coefficients, {\rm in: Combinatorial Number Theory}\/}, de Gruyter, pp. 209--227, Proc.\ Integers Conference, Carrollton, Georgia, October 27-30,2005, in celebration of the 70th birthday of Ronald Graham. B.\ Landman, M.\ Nathanson, J.\ Ne\v{s}et\v{r}il, R.\ Nowakowski, C. Pomerance eds., appeared also in {\it Integers, Electr.\ J.\ of Combinat.\ Number Theory\/} {\bf 7(2)}, special volume in honor of Ron Graham, \*A14, 19 pp., MR2337048. \newline\urlprefix\url{http://www.integers-ejcnt.org/vol7(2).html} \point A.~S. Fraenkel and A.~Kotzig [1987], Partizan octal games: partizan subtraction games, {\em Internat. J. Game Theory\/} {\bf 16}(2), 145--154, 887178 (88c:90145). \newline\urlprefix\url{http://dx.doi.org/10.1007/BF01780638} \point A.~S. Fraenkel and D.~Krieger [2004], The structure of complementary sets of integers: a 3-shift theorem, {\em Internat. J. Pure and Appl. Math.\/} {\bf 10}, 1--49, MR2020683 (2004h:05012). \point A.~S. Fraenkel and D.~Lichtenstein [1981], Computing a perfect strategy for $n\times n$ chess requires time exponential in $n$, {\em J. Combin. Theory \emph{(Ser.~A)}\/} {\bf 31}, 199--214, preliminary version in Proc. 8th Internat. Colloq. Automata, Languages and Programming (S. Even and O. Kariv, eds.), Vol. 115, Acre, Israel, 1981, Lecture Notes in Computer Science, Springer Verlag, Berlin, pp. 278--293, MR629595 (83b:68044). \point A.~S. Fraenkel, M.~Loebl and J.~Ne{\v{s}}et{\v{r}}il [1988], Epidemiography. {II}. {G}ames with a dozing yet winning player, {\em J. Combin. Theory Ser. A\/} {\bf 49}(1), 129--144, 957212 (90e:90170). \newline\urlprefix\url{http://dx.doi.org/10.1016/0097-3165(88)90030-1} \point A.~S. Fraenkel and M.~Lorberbom [1989], Epidemiography with various growth functions, {\em Discrete Appl. Math.\/} {\bf 25}(1-2), 53--71, Combinatorics and complexity (Chicago, IL, 1987), 1031263 (90m:90310). \newline\urlprefix\url{http://dx.doi.org/10.1016/0166-218X(89)90046-2} \point A.~S. Fraenkel and M.~Lorberbom [1991], Nimhoff games, {\em J. Combin. Theory Ser. A\/} {\bf 58}(1), 1--25, 1119698 (92i:90136). \newline\urlprefix\url{http://dx.doi.org/10.1016/0097-3165(91)90070-W} \point A.~S. Fraenkel and J.~Ne{\v{s}}et{\v{r}}il [1985], Epidemiography, {\em Pacific J. Math.\/} {\bf 118}(2), 369--381, 789177 (87a:90152). \newline\urlprefix\url{http://projecteuclid.org/getRecord?id=euclid.pjm/110270% 6445} \point A.~S. Fraenkel and M.~Ozery [1998], Adjoining to {W}ythoff's game its {$P$}-positions as moves, {\em Theoret. Comput. Sci.\/} {\bf 205}(1-2), 283--296, 1638601 (99m:90185). \newline\urlprefix\url{http://dx.doi.org/10.1016/S0304-3975(98)00044-9} \point A.~S. Fraenkel and U.~Peled [2013], Harnessing the Unwieldy MEX Function, in: {\em Games of No Chance 4\/}, Cambridge University Press, to appear. \point A.~S. Fraenkel and Y.~Perl [1975], Constructions in combinatorial games with cycles, in: {\em Infinite and finite sets ({C}olloq., {K}eszthely, 1973; dedicated to {P}. {E}rd{\H o}s on his 60th birthday), {V}ol. {II}\/}, North-Holland, Amsterdam, pp. 667--699. Colloq. Math. Soc. Jan\'os Bolyai, Vol. 10, 0384171 (52 \#5048). \point A.~S. Fraenkel and O.~Rahat [2001], Infinite cyclic impartial games, {\em Theoret. Comput. Sci.\/} {\bf 252}, 13--22, special "Computers and Games" issue; first version appeared in Proc. 1st Intern. Conf. on Computer Games CG'98, {\rm Tsukuba, Japan, Nov. 1998,} \emph{Lecture Notes in Computer Science}, Vol. 1558, Springer, pp. 212-221, 1999., MR1715689 (2000m:91028). \point A.~S. Fraenkel and O.~Rahat [2003], Complexity of error-correcting codes derived from combinatorial games, {\em Proc. Intern. Conference on Computers and Games CG'2002, Edmonton, Alberta, Canada, July 2002,\/} (Y.~Bj\"{o}rnsson, M.~M\"{u}ller and J.~Schaeffer, eds.), Vol. LNCS 2883, Lecture Notes in Computer Science, Springer, pp. 201--21. \point A.~S. Fraenkel and E.~Reisner [2009], The game of End-Wythoff, in: {\em Games of No Chance 3, \emph{Proc. BIRS Workshop on Combinatorial Games, July, 2005, Banff, Alberta, Canada, MSRI Publ.}\/} (M.~H. Albert and R.~J. Nowakowski, eds.), Vol.~56, Cambridge University Press, Cambridge, pp. 329--347. \point A.~S. Fraenkel and E.~R. Scheinerman [1991], A deletion game on hypergraphs, {\em Discrete Appl. Math.\/} {\bf 30}(2-3), 155--162, ARIDAM III (New Brunswick, NJ, 1988), 1095370 (92a:90102). \newline\urlprefix\url{http://dx.doi.org/10.1016/0166-218X(91)90041-T} \point A.~S. Fraenkel, E.~R. Scheinerman and D.~Ullman [1993], Undirected edge geography, {\em Theoret. Comput. Sci.\/} {\bf 112}(2), 371--381, 1216328 (94a:90043). \newline\urlprefix\url{http://dx.doi.org/10.1016/0304-3975(93)90026-P} \point A.~S. Fraenkel and S.~Simonson [1993], Geography, {\em Theoret. Comput. Sci.\/} {\bf 110}(1), 197--214, 1208665 (94h:90083). \newline\urlprefix\url{http://dx.doi.org/10.1016/0304-3975(93)90356-X} \point A.~S. Fraenkel and U.~Tassa [1975], Strategy for a class of games with dynamic ties, {\em Comput. Math. Appl.\/} {\bf 1}(no.2), 237--254, 0414115 (54 \#2220). \point A.~S. Fraenkel and U.~Tassa [1982], Strategies for compounds of partizan games, {\em Math. Proc. Cambridge Philos. Soc.\/} {\bf 92}(2), 193--204, 671176 (84k:90100). \newline\urlprefix\url{http://dx.doi.org/10.1017/S0305004100059867} \point A.~S. Fraenkel, U.~Tassa and Y.~Yesha [1978], Three annihilation games, {\em Math. Mag.\/} {\bf 51}(1), 13--17, 0496795 (58 \#15272). \point A.~S. Fraenkel and Y.~Yesha [1976], Theory of annihilation games, {\em Bull. Amer. Math. Soc.\/} {\bf 82}(5), 775--777, 0449726 (56 \#8027). \point A.~S. Fraenkel and Y.~Yesha [1979], Complexity of problems in games, graphs and algebraic equations, {\em Discrete Appl. Math.\/} {\bf 1}(1-2), 15--30, 544387 (81c:90091). \newline\urlprefix\url{http://dx.doi.org/10.1016/0166-218X(79)90012-X} \point A.~S. Fraenkel and Y.~Yesha [1982], Theory of annihilation games -- {I}, {\em J. Combin. Theory Ser. B\/} {\bf 33}(1), 60--86, 678172 (84c:90097). \newline\urlprefix\url{http://dx.doi.org/10.1016/0095-8956(82)90058-2} \point A.~S. Fraenkel and Y.~Yesha [1986], The generalized {S}prague-{G}rundy function and its invariance under certain mappings, {\em J. Combin. Theory Ser. A\/} {\bf 43}(2), 165--177, 867643 (87m:90179). \newline\urlprefix\url{http://dx.doi.org/10.1016/0097-3165(86)90058-0} \point A.~S. Fraenkel and D.~Zusman [2001], A new heap game, {\em Theoret. Comput. Sci.\/} {\bf 252}, 5--12, special "Computers and Games" issue; first version appeared in Proc. 1st Intern. Conf. on Computer Games CG'98, {\rm Tsukuba, Japan, Nov. 1998,} \emph{Lecture Notes in Computer Science}, Vol. 1558, Springer, pp. 205-211, 1999., MR1715688 (2000m:91027). \point C.~N. Frangakis [1981], A backtracking algorithm to generate all kernels of a directed graph, {\em Intern. J. Comput. Math.\/} {\bf 10}, 35--41. \point P.~Frankl [1987], Cops and robbers in graphs with large girth and Cayley graphs, {\em Discrete Appl. Math.\/} {\bf 17}, 301--305. \point P.~Frankl [1987], On a pursuit game on {C}ayley graphs, {\em Combinatorica\/} {\bf 7}(1), 67--70, 905152 (88j:90276). \newline\urlprefix\url{http://dx.doi.org/10.1007/BF02579201} \point P.~Frankl and N.~Tokushige [2003], The game of $n$-times nim, {\em Discrete Math.\/} {\bf 260}, 205--209, MR1948387 (2003m:05017). \point W.~Fraser, S.~Hirshberg and D.~Wolfe [2005], The structure of the distributive lattice of games born by day n, {\em Integers, Electr. J of Combinat. Number Theory\/} {\bf 5(2)}, \#A06, 11 pp., MR2192084 (2006g:91041). \newline\urlprefix\url{http://www.integers-ejcnt.org/vol5(2).html} \point D.~Fremlin [1973], Well-founded games, {\em Eureka\/} {\bf 36}, 33--37. \point G.~H. Fricke, S.~M. Hedetniemi, S.~T. Hedetniemi, A.~A. McRae, C.~K. Wallis, M.~S. Jacobson, H.~W. Martin and W.~D. Weakley [1995], Combinatorial problems on chessboards: a brief survey, in: {\em Graph Theory, Combinatorics, and Algorithms: \emph{Proc. 7th Quadrennial Internat. Conf. on the Theory and Applications of Graphs}\/} (Y.~Alavi and A.~Schwenk, eds.), Vol.~1, Wiley, pp. 507--528. \point E.~J. Friedman and A.~S. Landsberg [2007], Nonlinear dynamics in combinatorial games: renormalizing {C}homp, {\em Chaos\/} {\bf 17}(2), 023117 1--14, MR2340612. \point E.~J. Friedman and A.~S. Landsberg [2009], On the geometry of combinatorial games: a renormalization approach, in: {\em Games of No Chance 3, \emph{Proc. BIRS Workshop on Combinatorial Games, July, 2005, Banff, Alberta, Canada, MSRI Publ.}\/} (M.~H. Albert and R.~J. Nowakowski, eds.), Vol.~56, Cambridge University Press, Cambridge, pp. 349--376. \point E.~J. Friedman and A.~S. Landsberg [2007], Scaling, renormalization, and universality in combinatorial games: the geometry of {C}homp, in: {\em Combinatorial optimization and applications\/}, Vol. 4616 of {\em Lecture Notes in Comput. Sci.\/}, Springer, Berlin, pp. 200--207, 2391862 (2009e:91045). \newline\urlprefix\url{http://dx.doi.org/10.1007/978-3-540-73556-4_23} \point A.~Frieze, M.~Krivelevich, O.~Pikhurko and T.~Szab{\'o} [2005], The game of {J}umble{G}, {\em Combin. Probab. Comput.\/} {\bf 14}, 783--793, MR2174656 (2006k:05207). \point M.~Fukuyama [2003], A Nim game played on graphs, {\em Theoret. Comput. Sci.\/} {\bf 304}, 387--399, MR1992342 (2004f:91041). \point M.~Fukuyama [2003], A Nim game played on graphs II, {\em Theoret. Comput. Sci.\/} {\bf 304}, 401--419, MR1992343 (2004g:91036). \point G.~F{\"u}lep and N.~Sieben [2010], Polyiamonds and polyhexes with minimum site-perimeter and achievement games, {\em Electron. J. Combin.\/} {\bf 17}(1), Research Paper 65, 14, 2644851 (2011d:05078). \newline\urlprefix\url{http://www.combinatorics.org/Volume_17/Abstracts/v17i1r% 65.html} \point W.~W. Funkenbusch [1971], {SIM} as a game of chance, {\em J. Recr. Math.\/} {\bf 4}(4), 297--298. \point Z.~F\"uredi and {\'A}.~Seress [1994], Maximal triangle-free graphs with restrictions on the degrees, {\em J. Graph Theory\/} {\bf 18}, 11--24. \point H.~N. Gabow and H.~H. Westermann [1992], Forests, frames, and games: algorithms for matroid sums and applications, {\em Algorithmica\/} {\bf 7}, 465--497. \point T.~Gagie [2012], Bounds from a card trick, {\em J. Discrete Algorithms\/} {\bf 10}, 2--4. \point D.~Gale [1974], A curious Nim-type game, {\em Amer. Math. Monthly\/} {\bf 81}, 876--879. \point D.~Gale [1979], The game of Hex and the Brouwer fixed-point theorem, {\em Amer. Math. Monthly\/} {\bf 86}, 818--827. \point D.~Gale [1986], Problem 1237 (line-drawing game), {\em Math. Mag.\/} {\bf 59}, 111, solution by J. Hutchinson and S. Wagon, {\it ibid.} {\bf 60} (1987) 116. \point D.~Gale [1991 -- 1996], Mathematical Entertainments, {\em Math. Intelligencer\/} {\bf 13 - 18}, column on mathematical games and gems, Winter 1991 -- Fall 1996. \point D.~Gale [1993], The industrious ant, {\em Math. Intelligencer\/} {\bf 15}, 54--58. \point D.~Gale [1998], {\em Tracking the Automatic Ant and Other Mathematical Explorations\/}, Springer-Verlag, New York, A collection of Mathematical Entertainments columns from The Mathematical Intelligencer. \point D.~Gale and A.~Neyman [1982], Nim-type games, {\em Internat. J. Game Theory\/} {\bf 11}, 17--20. \point D.~Gale, J.~Propp, S.~Sutherland and S.~Troubetzkoy [1995], Further travels with my ant, {\em Math. Intelligencer\/} {\bf 17 {\rm issue 3}}, 48--56. \point D.~Gale and F.~M. Stewart [1953], Infinite games with perfect information, {\em Ann. of Math. Stud. \emph{(Contributions to the Theory of Games), Princeton}\/} {\bf 2}(28), 245--266. \point H.~Galeana-S\'{a}nchez [1982], A counterexample to a conjecture of Meyniel on kernel-perfect graphs, {\em Discrete Math.\/} {\bf 41}, 105--107. \point H.~Galeana-S\'{a}nchez [1986], A theorem about a conjecture of Meyniel on kernel-perfect graphs, {\em Discrete Math.\/} {\bf 59}, 35--41. \point H.~Galeana-S{\'a}nchez [1988], A new method to extend kernel-perfect graphs to kernel-perfect critical graphs, {\em Discrete Math.\/} {\bf 69}, 207--209, MR937787 (89d:05086). \point H.~Galeana-S{\'a}nchez [1990], On the existence of {$(k,l)$}-kernels in digraphs, {\em Discrete Math.\/} {\bf 85}, 99--102, MR1078316 (91h:05056). \point H.~Galeana-S\'{a}nchez [1992], On the existence of kernels and $h$-kernels in directed graphs, {\em Discrete Math.\/} {\bf 110}, 251--255. \point H.~Galeana-S\'{a}nchez [1995], $B_1$ and $B_2$-orientable graphs in kernel theory, {\em Discrete Math.\/} {\bf 143}, 269--274. \point H.~Galeana-S{\'a}nchez [1996], On claw-free {$M$}-oriented critical kernel-imperfect digraphs, {\em J. Graph Theory\/} {\bf 21}, 33--39, MR1363686 (96h:05089). \point H.~Galeana-S{\'a}nchez [1998], Kernels in edge-colored digraphs, {\em Discrete Math.\/} {\bf 184}, 87--99, MR1609359 (99a:05055). \point H.~Galeana-S\'{a}nchez [2000], Semikernels modulo $F$ and kernels in digraphs, {\em Discrete Math.\/} {\bf 218}, 61--71, MR1754327 (2001d:05068). \point H.~Galeana-S\'{a}nchez [2002], Kernels in digraphs with covering number at most 3, {\em Discrete Math.\/} {\bf 259}, 121--135, MR1948776 (2003m:05090). \point H.~Galeana-S{\'a}nchez [2004], Some sufficient conditions on odd directed cycles of bounded length for the existence of a kernel, {\em Discuss. Math. Graph Theory\/} {\bf 24}, 171--182, MR2120561 (2005m:05104). \point H.~Galeana-S{\'a}nchez [2006], Kernels and perfectness in arc-local tournament digraphs, {\em Discrete Math.\/} {\bf 306}(19-20), 2473--2480, special issue: Creation and Recreation: A Tribute to the Memory of Claude Berge, MR2261913 (2007g:05071). \point H.~Galeana-S{\'a}nchez [2008], Kernels in edge-coloured orientations of nearly complete graphs, {\em Discrete Math.\/} {\bf 308}(20), 4599--4607, 2438165 (2009e:05115). \newline\urlprefix\url{http://dx.doi.org/10.1016/j.disc.2007.08.079} \point H.~Galeana-S{\'a}nchez [2012], A new characterization of perfect graphs, {\em Discrete Math.\/} {\bf 312}(17), 2751--2755. \point H.~Galeana-S{\'a}nchez and J.~de~J.~Garc{\'{\i}}a-Ruvalcaba [2000], Kernels in the closure of coloured digraphs, {\em Discuss. Math. Graph Theory\/} {\bf 20}, 243--254, MR1817495 (2001m:05123). \point H.~Galeana-S{\'a}nchez and J.~d.~J. Garc{\'{\i}}a-Ruvalcaba [2001], On graphs all of whose {$\{C\sb 3,T\sb 3\}$}-free arc colorations are kernel-perfect, {\em Discuss. Math. Graph Theory\/} {\bf 21}(1), 77--93, MR1867488 (2002j:05075). \point H.~Galeana-S{\'a}nchez and M.-k. Guevara [2007], Kernel perfect and critical kernel imperfect digraphs structure, in: {\em 6th Czech-Slovak International Symposium on Combinatorics, Graph Theory, Algorithms and Applications\/}, Vol.~28 of {\em Electron. Notes Discrete Math.\/}, Elsevier, Amsterdam, pp. 401--408, MR2324045. \point H.~Galeana-S{\'a}nchez and M.-k. Guevara [2009], Some sufficient conditions for the existence of kernels in infinite digraphs, {\em Discrete Math.\/} {\bf 309}, 3680--3693, 2528045 (2010h:05211). \newline\urlprefix\url{http://dx.doi.org/10.1016/j.disc.2008.01.025} \point H.~Galeana-S{\'a}nchez and X.~Li [1998], Kernels in a special class of digraphs, {\em Discrete Math.\/} {\bf 178}, 73--80, MR1483740 (98f:05073). \point H.~Galeana-S{\'a}nchez and X.~Li [1998], Semikernels and {$(k,l)$}-kernels in digraphs, {\em SIAM J. Discrete Math.\/} {\bf 11}, 340--346 (electronic), MR1617163 (99c:05078). \point H.~Galeana-S\'{a}nchez and V.~Neumann-Lara [1984], On kernels and semikernels of digraphs, {\em Discrete Math.\/} {\bf 48}, 67--76. \point H.~Galeana-S{\'a}nchez and V.~Neumann~Lara [1986], On kernel-perfect critical digraphs, {\em Discrete Math.\/} {\bf 59}, 257--265, MR842278 (88b:05069). \point H.~Galeana-S\'{a}nchez and V.~Neumann-Lara [1991], Extending kernel perfect digraphs to kernel perfect critical digraphs, {\em Discrete Math.\/} {\bf 94}, 181--187. \point H.~Galeana-S{\'a}nchez and V.~Neumann~Lara [1991], Orientations of graphs in kernel theory, {\em Discrete Math.\/} {\bf 87}, 271--280, MR1095472 (92d:05134). \point H.~Galeana-S\'{a}nchez and V.~Neumann-Lara [1994], New extensions of kernel perfect digraphs to kernel imperfect critical digraphs, {\em Graphs Combin.\/} {\bf 10}, 329--336. \point H.~Galeana-S{\'a}nchez and V.~Neumann-Lara [1998], New classes of critical kernel-imperfect digraphs, {\em Discuss. Math. Graph Theory\/} {\bf 18}, 85--89, MR1646233 (99g:05087). \point H.~Galeana-S{\'a}nchez and V.~Neumann-Lara [1998], On the dichromatic number in kernel theory, {\em Math. Slovaca\/} {\bf 48}, 213--219, MR1647678 (99k:05080). \point H.~Galeana-S{\'a}nchez and M.~Olsen [2011], Kernels by monochromatic paths in digraphs with covering number 2, {\em Discrete Math.\/} {\bf 311}(13), 1111--1118, 2793221 (2012d:05166). \newline\urlprefix\url{http://dx.doi.org/10.1016/j.disc.2010.09.022} \point H.~Galeana-S{\'a}nchez and L.~Pastrana~Ram{\'{\i}}rez [1998], Kernels in edge coloured line digraph, {\em Discuss. Math. Graph Theory\/} {\bf 18}, 91--98, MR1646234 (99g:05088). \point H.~Galeana-S{\'a}nchez, L.~Pastrana~Ram{\'{\i}}rez and H.~A. Rinc{\'o}n-Mej{\'{\i}}a [1991], Semikernels, quasi kernels, and {G}rundy functions in the line digraph, {\em SIAM J. Discrete Math.\/} {\bf 4}, 80--83, MR1090291 (92c:05068). \point H.~Galeana-S{\'a}nchez, L.~P. Ram{\'{\i}}rez and H.~A. Rinc{\'o}n~Mej{\'{\i}}a [2005], Kernels in monochromatic path digraphs, {\em Discuss. Math. Graph Theory\/} {\bf 25}, 407--417, MR2233005. \point H.~Galeana-S{\'a}nchez and H.~A. Rinc{\'o}n-Mej{\'{\i}}a [1998], A sufficient condition for the existence of {$k$}-kernels in digraphs, {\em Discuss. Math. Graph Theory\/} {\bf 18}, 197--204, MR1687843 (2000c:05074). \point H.~Galeana-S{\'a}nchez and R.~Rojas-Monroy [2004], Kernels in pretransitive digraphs, {\em Discrete Math.\/} {\bf 275}, 129--136, MR2026280 (2004j:05059). \point H.~Galeana-S{\'a}nchez and R.~Rojas-Monroy [2006], Kernels in quasi-transitive digraphs, {\em Discrete Math.\/} {\bf 306}(16), 1969--1974, MR2251578 (2007b:05092). \point H.~Galeana-S{\'a}nchez and R.~Rojas-Monroy [2007], Extensions and kernels in digraphs and in edge-coloured digraphs, {\em WSEAS Trans. Math.\/} {\bf 6}(2), 334--341, MR2273872. \point H.~Galeana-S{\'a}nchez and R.~Rojas-Monroy [2007], Kernels in orientations of pretransitive orientable graphs, in: {\em Graph theory in Paris\/}, Trends Math., Birkh\"auser, Basel, pp. 197--208, MR2279176. \point H.~Galeana-S{\'a}nchez and R.~Rojas-Monroy [2008], Kernels and some operations in edge-coloured digraphs, {\em Discrete Math.\/} {\bf 308}(24), 6036--6046, 2464895 (2009j:05077). \newline\urlprefix\url{http://dx.doi.org/10.1016/j.disc.2007.11.022} \point R.~P. Gallant, G.~Gunther, B.~L. Hartnell and D.~F. Rall [2006], A game of edge removal on graphs, {\em J. Combin. Math. Combin. Comput.\/} {\bf 57}, 75--82, MR2226684 (2006m:05245). \point F.~Galvin [1978], Indeterminacy of point-open games, {\em Bull. de l'Academie Polonaise des Sciences \emph{(Math. astr. et phys.)}\/} {\bf 26}, 445--449. \point F.~Galvin [1985], Stationary strategies in topological games, {\em Proc. Conf. on Infinitistic Mathematics \emph{(Lyon, 1984)}\/}, Publ. D\'ep. Math. Nouvelle S\'er. B, 85--2, Univ. Claude-Bernard, Lyon, pp. 41--43. \point F.~Galvin [1990], Hypergraph games and the chromatic number, in: {\em A Tribute to Paul Erd\H os\/}, Cambridge Univ Press, Cambridge, pp. 201--206. \point F.~Galvin, T.~Jech and M.~Magidor [1978], An ideal game, {\em J. Symbolic Logic\/} {\bf 43}, 284--292. \point F.~Galvin and M.~Scheepers [1992], A {R}amseyan theorem and an infinite game, {\em J. Combin. Theory Ser. A\/} {\bf 59}(1), 125--129, 1141327 (93b:90129). \newline\urlprefix\url{http://dx.doi.org/10.1016/0097-3165(92)90103-2} \point F.~Galvin and R.~Telg\'arsky [1986], Stationary strategies in topological games, {\em Topology Appl.\/} {\bf 22}, 51--69. \point B.~B. Gan and Y.~N. Yeh [1995], A nim-like game and dynamic recurrence relations, {\em Stud. Appl. Math.\/} {\bf 95}, 213--228. \point A.~Gangolli and T.~Plambeck [1989], A note on periodicity in some octal games, {\em Internat. J. Game Theory\/} {\bf 18}(3), 311--320, 1024960 (91a:90183). \newline\urlprefix\url{http://dx.doi.org/10.1007/BF01254294} \point T.~E. Gantner [1988], The game of Quatrainment, {\em Math. Mag.\/} {\bf 61}, 29--34. \point S.~Ganzell and A.~Meadows [2009], Untangle: knots in combinatorial game theory, {\em Geombinatorics\/} {\bf 18}(3), 101--108, 2479639. \point M.~Gardner [1956], {\em Mathematics, Magic and Mystery\/}, Dover, New York, NY. \point M.~Gardner [Jan. 1957--Dec. 1981], Mathematical Games, a column in Scientific American; all 15 volumes of the column are on 1 CD-ROM, available from MAA. \point M.~Gardner [1959], {\em Fads and Fallacies in the Name of Science\/}, Dover, NY. \point M.~Gardner [1959], {\em Logic Machines and Diagrams\/}, McGraw-Hill, NY. \point M.~Gardner [1959], {\em Mathematical Puzzles of Sam Loyd\/}, Dover, New York, NY. \point M.~Gardner [1960], {\em More Mathematical Puzzles of Sam Loyd\/}, Dover, New York, NY. \point M.~Gardner [1966], {\em More Mathematical Puzzles and Diversions\/}, Har\-monds\-worth, Middlesex, England (Penguin Books), translated into German: {\it Ma\-the\-matische R\"atsel und Probleme}, Vieweg, Braunschweig, 1964. \point M.~Gardner, ed. [1967], {\em 536 Puzzles and Curious Problems\/}, Scribner's, NY, reissue of H. E. Dudeney's {\it Modern Puzzles} and {\it Puzzles and Curious Problems}. \point M.~Gardner [1968], {\em Logic Machines, Diagrams and Boolean Algebra\/}, Dover, NY. \point M.~Gardner [1970], {\em Further Mathematical Diversions\/}, Allen and Unwin, London. \point M.~Gardner [1977], {\em Mathematical Magic Show\/}, Knopf, NY. \point M.~Gardner [1978], {\em Aha! Insight\/}, Freeman, New York, NY. \point M.~Gardner [1979], {\em Mathematical Circus\/}, Knopf, NY. \point M.~Gardner [1981], {\em Entertaining Science Experiments with Everyday Objects\/}, Dover, NY. \point M.~Gardner [1981], {\em Science Fiction Puzzle Tales\/}, Potter. \point M.~Gardner [1982], {\em Aha! Gotcha!\/}, Freeman, New York, NY. \point M.~Gardner [1983], {\em New Mathematical Diversions from Scientific American\/}, University of Chicago Press, Chicago, before that appeared in 1971, Simon and Schuster, New York, NY. First appeared in 1966. \point M.~Gardner [1983], {\em Order and Surprise\/}, Prometheus Books, Buffalo, NY. \point M.~Gardner [1983], {\em Wheels, Life and Other Mathematical Amusements\/}, Freeman, New York, NY. \point M.~Gardner [1984], {\em Codes, Ciphers and Secret Writing\/}, Dover, NY. \point M.~Gardner [1984], {\em Puzzles from Other Worlds\/}, Random House. \point M.~Gardner [1984], {\em The Magic Numbers of Dr. Matrix\/}, Prometheus. \point M.~Gardner [1984], {\em The Sixth Book of Mathematical Games\/}, Univ. of Chi\-ca\-go Press. First appeared in 1971, Freeman, New York, NY. \point M.~Gardner [1986], {\em Knotted Doughnuts and Other Mathematical Entertainments\/}, Freeman, New York, NY. \point M.~Gardner [1987], {\em The Second Scientific American Book of Mathematical Puzzles and Diversions\/}, University of Chicago Press, Chicago. First appeared in 1961, Simon and Schuster, NY. \point M.~Gardner [1988], {\em Hexaflexagons and Other Mathematical Diversions\/}, University of Chicago Press, Chicago, 1988. A first version appeared under the title {\it The Scientific American Book of Mathematical Puzzles and Diversions}, Simon \& Schuster, 1959, NY. \point M.~Gardner [1988], {\em Perplexing Puzzles and Tantalizing Teasers\/}, Dover, NY. \point M.~Gardner [1988], {\em Riddles of the Sphinx\/}, Math. Assoc. of America, Washington, DC. \point M.~Gardner [1988], {\em Time Travel and Other Mathematical Bewilderments\/}, Freeman, New York, NY. \point M.~Gardner [1989], {\em How Not to Test a Psychic\/}, Prometheus Books, Buffalo, NY. \point M.~Gardner [1989], {\em Mathematical Carnival\/}, 2nd edition, Math. Assoc. of America, Washington, DC. First appeared in 1975, Knopf, NY. \point M.~Gardner [1990], {\em The New Ambidextrous Universe\/}, Freeman, New York, NY. First appeared in 1964, Basic Books, then in 1969, New American Library. \point M.~Gardner [1991], {\em The Unexpected Hanging and Other Mathematical Diversions\/}, University of Chicago Press. First appeared in 1969, Simon and Schuster, NY, adapted from ``Further Mathematical Diversions"; translated into German: {\it Logik Unterm Galgen}, Vieweg, Braunschweig, 1980. \point M.~Gardner [1992], {\em Fractal Music, Hypercards and More\/}, Freeman, New York, NY. \point M.~Gardner [1992], {\em On the Wild Side\/}, Prometheus Books, Buffalo, NY. \point M.~Gardner [1993], {\em Book of Visual Illusions\/}, Dover, NY. \point M.~Gardner [1997], {\em Penrose Tiles to Trapdoor Ciphers\/}, The Math. Assoc. of America, Washington, DC. First appeared in 1989, Freeman, New York, NY. Freeman, New York, NY. \point M.~Gardner [1997], {\em The Last Recreations\/}, Copernicus, NY. \point M.~Gardner [2001], {\em A Gardner's Workout: Training the Mind and Entertaining the Spirit\/}, A K Peters, Natick, MA. \point M.~R. Garey and D.~S. Johnson [1979], {\em Computers and Intractability: A Guide to the Theory of NP-Completeness\/}, Freeman, San Francisco, Appendix A8: Games and Puzzles, pp. 254-258. \point Q.~R. Gashi, T.~Schedler and D.~E. Speyer [2012], Looping of the numbers game and the alcoved hypercube, {\em J. Combin. Theory Ser. A\/} {\bf 119}(3), 713--730, 2871758. \newline\urlprefix\url{http://dx.doi.org/10.1016/j.jcta.2011.11.012} \point R.~Gasser [1996], Solving nine men's Morris, in: {\em Games of No Chance, \emph{Proc. MSRI Workshop on Combinatorial Games, July, 1994, Berkeley, CA, MSRI Publ.}\/} (R.~J. Nowakowski, ed.), Vol.~29, Cambridge University Press, Cambridge, pp. 101--114. \point H.~Gavel and P.~Strimling [2004], Nim with a modular Muller twist, {\em Integers, Electr. J of Combinat. Number Theory\/} {\bf 4}, \#G4, 9 pp., Comb. Games Sect., MR2116010. \newline\urlprefix\url{http://www.integers-ejcnt.org/vol4.html} \point T.~Gaven{\v{c}}iak [2010], Cop-win graphs with maximum capture-time, {\em Discrete Math.\/} {\bf 310}(10-11), 1557--1563, 2601265 (2011d:05241). \newline\urlprefix\url{http://dx.doi.org/10.1016/j.disc.2010.01.015} \point H.~Gebauer [2012], On the clique-game, {\em European J. Combin.\/} {\bf 33}(1), 8--19, 2854626. \newline\urlprefix\url{http://dx.doi.org/10.1016/j.ejc.2011.07.005} \point A.~Georgakopoulos and P.~Winkler [2012], Two-color Babylon, {\em Integers, Electr. J of Combinat. Number Theory\/} {\bf 12}, \#G1, 7 pp., Comb. Games Sect. \newline\urlprefix\url{http://www.integers-ejcnt.org/vol12.html} \point B.~Gerla [2000], Conditioning a state by \L ukasiewicz event: a probabilistic approach to Ulam Games, {\em Theoret. Comput. Sci. \emph{(Math Games)}\/} {\bf 230}, 149--166, MR1725635 (2001e:03117). \point C.~Germain and H.~Kheddouci [2003], Grundy coloring for power graphs, in: {\em Electron. Notes Discrete Math.\/} (D.~Ray-Chaudhuri, A.~Rao and B.~Roy, eds.), Vol.~15, Elsevier, Amsterdam, pp. 67--69. \point S.~V. Gervacio [1979], On graphs all of whose orientations have kernels, {\em Proceedings of the {F}irst {F}ranco-{S}outheast {A}sian {M}athematical {C}onference ({S}ingapore, 1979), {V}ol.\ {II}\/}, Vol.~46, pp. 259--263 (1980), MR582263 (83c:05103). \point N.~M. Gibbins [1944], Chess in 3 and 4 dimensions, {\em Math. Gaz.\/} pp. 46--50. \point P.~B. Gibbons and J.~A. Webb [1997], Some new results for the queens domination problem, {\em Australas. J. Combin.\/} {\bf 15}, 145--160. \point J.~R. Gilbert, T.~Lengauer and R.~E. Tarjan [1980], The pebbling problem is complete in polynomial space, {\em SIAM J. Comput.\/} {\bf 9}, 513--524, preliminary version in Proc. 11th Ann. ACM Symp. Theory of Computing (Atlanta, GA, 1979), Assoc. Comput. Mach., New York, NY, pp. 237--248. \point M.~Ginsberg [2002], Alpha-beta pruning under partial orders, in: {\em More Games of No Chance, \emph{Proc. MSRI Workshop on Combinatorial Games, July, 2000, Berkeley, CA, MSRI Publ.}\/} (R.~J. Nowakowski, ed.), Vol.~42, Cambridge University Press, Cambridge, pp. 37--48. \point J.~Ginsburg [1939], Gauss's arithmetization of the problem of 8 queens, {\em Scripta Math.\/} {\bf 5}, 63--66. \point M.~Goadrich and M.~Schlatter [2011], Analyzing two-color {B}abylon, {\em Integers\/} {\bf 11}, G01, 12, 2798614 (2012c:91060). \newline\urlprefix\url{http://dx.doi.org/10.1515/INTEG.2011.001} \point W.~Goddard, A.~Sinko, P.~Slater and H.~Xu [2011], The graph distance game, {\em AKCE Int. J. Graphs Comb.\/} {\bf 8}(1), 85--96, 2839178 (2012e:05252). \point P.~W. Goldberg and C.~H. Papadimitriou [2006], Reducibility among equilibrium problems, in: {\em S{TOC}'06: {P}roceedings of the 38th {A}nnual {ACM} {S}ymposium on {T}heory of {C}omputing\/}, ACM, New York, pp. 61--70, 2277131 (2007h:68083). \newline\urlprefix\url{http://dx.doi.org/10.1145/1132516.1132526} \point A.~S. Goldstein and E.~M. Reingold [1995], The complexity of pursuit on a graph, {\em Theoret. Comput. Sci. \emph{(Math Games)}\/} {\bf 143}, 93--112. \point J.~Goldwasser and W.~Klostermeyer [1997], Maximization versions of ``lights out'' games in grids and graphs, {\em Congr. Numer.\/} {\bf 126}, 99--111, Proc. 28th Southeastern Internat. Conf. on Combinatorics, Graph Theory, and Computing (Boca Raton, FL, 1997), MR1604979 (98j:05119). \point J.~Goldwasser, W.~Klostermeyer and G.~Trapp [1997], Characterizing switch-setting problems, {\em Linear and Multilinear Algebra\/} {\bf 43}(1-3), 121--135, 1613183 (98k:15005). \newline\urlprefix\url{http://dx.doi.org/10.1080/03081089708818520} \point J.~Goldwasser, X.~Wang and Y.~Wu [2009], Does the lit-only restriction make any difference for the {$\sigma$}-game and {$\sigma^+$}-game?, {\em European J. Combin.\/} {\bf 30}, 774--787, 2504636 (2010c:05087). \newline\urlprefix\url{http://dx.doi.org/10.1016/j.ejc.2008.09.020} \point J.~Goldwasser, X.~Wang and Y.~Wu [2011], Minimum light numbers in the {$\sigma$}-game and lit-only {$\sigma$}-game on unicyclic and grid graphs, {\em Electron. J. Combin.\/} {\bf 18}(1), Paper 214, 27, 2853071. \point E.~Goles [1991], Sand piles, combinatorial games and cellular automata, in: {\em Instabilities and nonequilibrium structures, {III} ({V}alpara\'\i so, 1989)\/}, Vol.~64 of {\em Math. Appl.\/}, Kluwer Acad. Publ., Dordrecht, pp. 101--121, 1177845 (93j:58069). \point E.~Goles and M.~A. Kiwi [1993], Games on line graphs and sand piles, {\em Theoret. Comput. Sci. \emph{(Math Games)}\/} {\bf 115}, 321--349 ($0$--player game). \point E.~Goles, M.~Latapy, C.~Magnien, M.~Morvan and H.~D. Phan [2004], Sandpile models and lattices: a comprehensive survey, {\em Theoret. Comput. Sci.\/} {\bf 322}, 383--407, MR2080235 (2005h:05013). \point E.~Goles and M.~Margenstern [1997], Universality of the chip-firing game, {\em Theoret. Comput. Sci. \emph{(Math Games)}\/} {\bf 172}, 121--134. \point E.~Goles, M.~Morvan and H.~D. Phan [2002], The structure of a linear chip firing game and related models, {\em Theoret. Comput. Sci.\/} {\bf 270}, 827--841, MR1871097 (2002k:05013). \point E.~Goles and E.~Prisner [2000], Source reversal and chip firing on graphs, {\em Theoret. Comput. Sci.\/} {\bf 233}, 287--295. \point S.~W. Golomb [1966], A mathematical investigation of games of ``take-away'', {\em J. Combinatorial Theory\/} {\bf 1}, 443--458, 0209015 (34 \#8823). \point S.~W. Golomb [1994], {\em Polyominoes: Puzzles, Patterns, Problems, and Packings\/}, Princeton University Press. Original edition: {\it Polyominoes}, Scribner's, NY, 1965; Allen and Unwin, London, 1965. \point S.~W. Golomb and A.~W. Hales [2002], Hypercube Tic-Tac-Toe, in: {\em More Games of No Chance, \emph{Proc. MSRI Workshop on Combinatorial Games, July, 2000, Berkeley, CA, MSRI Publ.}\/} (R.~J. Nowakowski, ed.), Vol.~42, Cambridge University Press, Cambridge, pp. 167--182, MR1973012 (2004c:91030). \point P.~A. Golovach and F.~V. Fomin [2001], The search and the node-search number of dual graphs, {\em Vestn. Syktyvkar. Univ. Ser. 1 Mat. Mekh. Inform.\/} (4), 125--136, 1875659 (2002k:05222). \point H.~Gonshor [1986], {\em An Introduction to the Theory of Surreal Numbers\/}, Cambridge University Press, Cambridge. \point P.~Gordinowicz, R.~Nowakowski and P.~Pra{\l}at [2012], POLISH -- Let us play the cleaning game, {\em Theoret. Comput. Sci.\/} {\bf 463}, 123--132. \point D.~M. Gordon, R.~W. Robinson and F.~Harary [1994], Minimum degree games for graphs, {\em Discrete Math.\/} {\bf 128}, 151--163, MR1271861 (95b:05201). \point E.~Gr\"adel [1990], Domino games and complexity, {\em SIAM J. Comput.\/} {\bf 19}, 787--804. \point S.~B. Grantham [1985], Galvin's ``racing pawns'' game and a well-ordering of trees, {\em Mem. Amer. Math. Soc.\/} {\bf 53}(316), iv+63, MR776346 (86d:04002). \point S.~Gravier, P.~Jorrand, M.~Mhalla and C.~Payan [2006], Quantum octal games, {\em Internat. J. Found. Comput. Sci.\/} {\bf 17}(4), 919--931, 2234074 (2008c:91039). \newline\urlprefix\url{http://dx.doi.org/10.1142/S0129054106004182} \point S.~Gravier, M.~Mhalla and E.~Tannier [2003], On a modular domination game, {\em Theoret. Comput. Sci.\/} {\bf 306}, 291--303, MR2000178 (2004i:91041). \point R.~Greenlaw, H.~J. Hoover and W.~L. Ruzzo [1995], {\em Limits to Parallel Computation: $P$-completeness Theory\/}, Oxford University Press, New York. \point D.~Griffeath and C.~Moore [1996], Life without death is {\bf P}-complete, {\em Complex Systems\/} {\bf 10}, 437--447, 1634401 (99d:68168). \point J.~P. Grossman [2004], Periodicity in one-dimensional peg duotaire, {\em Theoret. Comp. Sci.\/} {\bf 313}, 417--425, special issue of Dagstuhl Seminar ``Algorithmic Combinatorial Game Theory'', Feb. 2002, MR2056936 (2005b:91055). \point J.~P. Grossman and R.~J. Nowakowski [2002], One-dimensional Phutball, in: {\em More Games of No Chance, \emph{Proc. MSRI Workshop on Combinatorial Games, July, 2000, Berkeley, CA, MSRI Publ.}\/} (R.~J. Nowakowski, ed.), Vol.~42, Cambridge University Press, Cambridge, pp. 361--367, MR1973024. \point J.~P. Grossman and A.~N. Siegel [2009], Reductions of partizan games, in: {\em Games of No Chance 3, \emph{Proc. BIRS Workshop on Combinatorial Games, July, 2005, Banff, Alberta, Canada, MSRI Publ.}\/} (M.~H. Albert and R.~J. Nowakowski, eds.), Vol.~56, Cambridge University Press, Cambridge, pp. 427--445. \point J.~W. Grossman [2000], A variant of Nim, {\em Math. Mag.\/} {\bf 73}, 323--324, Problem No.~1580; originally posed {\it ibid.} {\bf 72} (1999) 325. \point P.~M. Grundy [1964], Mathematics and Games, {\em Eureka\/} {\bf 27}, 9--11, originally published: {\it ibid.} {\bf 2} (1939) 6--8. \point P.~M. Grundy and C.~A.~B. Smith [1956], Disjunctive games with the last player losing, {\em Proc. Camb. Phil. Soc.\/} {\bf 52}, 527--533. \point F.~Grunfeld and R.~C. Bell [1975], {\em Games of the World\/}, Holt, Rinehart and Winston. \point C.~D. Grupp [1976], {\em Brettspiele-Denkspiele\/}, Humboldt-Taschenbuch\-ver\-lag, M\"unchen. \point D.~J. Guan and X.~Zhu [1999], Game chromatic number of outerplanar graphs, {\em J. Graph Theory\/} {\bf 30}, 67--70. \point L.~J. Guibas, J.-C. Latombe, S.~M. Lavalle, D.~Lin and R.~Motwani [1999], A visibility-based pursuit-evasion problem, {\em Internat. J. Comput. Geom. Appl.\/} {\bf 9}, 471--493, MR1712332 (2000e:68177). \point L.~J. Guibas and A.~M. Odlyzko [1981], String overlaps, pattern matching, and nontransitive games, {\em J. Combin. Theory \emph{(Ser.~A)}\/} {\bf 30}, 183--208. \point A.~Guignard and {\'E}.~Sopena [2009], Compound {N}ode-{K}ayles on paths, {\em Theoret. Comput. Sci.\/} {\bf 410}, 2033--2044, 2519292 (2010g:91030). \newline\urlprefix\url{http://dx.doi.org/10.1016/j.tcs.2008.12.053} \point S.~Gunther [1874], Zur mathematischen Theorie des Schachbretts, {\em Arch. Math. Physik\/} {\bf 56}, 281--292. \point A.~Guo [2012], Winning strategies for aperiodic subtraction games, {\em Theoret. Comput. Sci.\/} {\bf 421}, 70--73. \point A.~Guo and E.~Miller [2011], Lattice point methods for combinatorial games, {\em Adv. in Appl. Math.\/} {\bf 46}(1-4), 363--378, 2794028. \newline\urlprefix\url{http://dx.doi.org/10.1016/j.aam.2010.10.004} \point A.~Guo and E.~Miller [2012], Corrigendum to ``{L}attice point methods for combinatorial games'' [{A}dv. in {A}ppl. {M}ath. 46 (1--4) (2011) 363--378] [MR2794028], {\em Adv. in Appl. Math.\/} {\bf 48}(1), 269--271, 2845518. \newline\urlprefix\url{http://dx.doi.org/10.1016/j.aam.2011.09.001} \point W.~Guo, S.~Kasala, M.~B. Rao and B.~Tucker [2006], The hat problem and some variations, in: {\em Advances in distribution theory, order statistics, and inference\/}, Stat. Ind. Technol., Birkh\"auser Boston, Boston, MA, pp. 459--479, MR2226238 (2007e:68043). \newline\urlprefix\url{http://dx.doi.org/10.1007/0-8176-4487-3_29} \point V.~A. Gurvich [2007], On the mis\`ere version of game {E}uclid and miserable games, {\em Discrete Math.\/} {\bf 307}(9-10), 1199--1204, MR2292548 (2007k:91052). \point V.~Gurvich [2012], Further generalizations of the {W}ythoff game and the minimum excludant, {\em Discrete Appl. Math.\/} {\bf 160}, 941--947. \point G.~Gutin, K.~M. Koh, E.~G. Tay and A.~Yeo [2004], On the number of quasi-kernels in digraphs, {\em J. Graph Theory\/} {\bf 46}(1), 48--56, 2051468 (2005e:05067). \newline\urlprefix\url{http://dx.doi.org/10.1002/jgt.10169} \point G.~Gutowski [2011], Mr. {P}aint and {M}rs. {C}orrect go fractional, {\em Electron. J. Combin.\/} {\bf 18}(1), Paper 140, 8, 2817790. \point R.~K. Guy [1976], Packing $[1,n]$ with solutions of $ax+by=cz$; the unity of combinatorics, {\em Atti Conv. Lincei \#17, Acad. Naz. Lincei, Tomo II\/}, Rome, pp. 173--179. \point R.~K. Guy [1976], Twenty questions concerning Conway's sylver coinage, {\em Amer. Math. Monthly\/} {\bf 83}, 634--637. \point R.~K. Guy [1977], Games are graphs, indeed they are trees, {\em Proc. 2nd Carib. Conf. Combin. and Comput., \emph{Letchworth Press, Barbados}\/}, pp. 6--18. \point R.~K. Guy [1977], She loves me, she loves me not; relatives of two games of Lenstra, Een Pak met een Korte Broek (papers presented to H. W. Lenstra), Mathematisch Centrum, Amsterdam. \point R.~K. Guy [1978], Partisan and impartial combinatorial games, in: {\em Combinatorics ({P}roc. {F}ifth {H}ungarian {C}olloq., {K}eszthely, 1976), {V}ol. {I}\/}, Vol.~18 of {\em Colloq. Math. Soc. J\'anos Bolyai\/}, North-Holland, Amsterdam, pp. 437--461, 519283 (80c:90156). \point R.~K. Guy [1979], Partizan Games, {\em Colloques Internationaux C. N. R. No. 260 --- Probl\`emes Combinatoires et Th\'eorie des Graphes\/}, pp. 199--205. \point R.~K. Guy [1981], Anyone for twopins?, in: {\em The Mathematical Gardner\/} (D.~A. Klarner, ed.), Wadsworth Internat., Belmont, CA, pp. 2--15. \point R.~K. Guy [1983], Graphs and games, in: {\em Selected topics in graph theory, 2\/}, Academic Press, London, pp. 269--295, 797255 (87h:90272). \point R.~K. Guy [1986], John {I}sbell's game of beanstalk and {J}ohn {C}onway's game of beans-don't-talk, {\em Math. Mag.\/} {\bf 59}(5), 259--269, 868803 (88c:90163). \newline\urlprefix\url{http://dx.doi.org/10.2307/2689400} \point R.~K. Guy [1989], {\em Fair Game\/}, COMAP Math. Exploration Series, Arlington, MA. \point R.~K. Guy [1990], A guessing game of Bill Sands, and Bernardo Recam\'an's Barranca, {\em Amer. Math. Monthly\/} {\bf 97}, 314--315. \point R.~K. Guy [1991], Mathematics from fun \& fun from mathematics: an informal autobiographical history of combinatorial games, in: {\em Paul {H}almos: Celebrating 50 Years of Mathematics\/} (J.~H. Ewing and F.~W. Gehring, eds.), Springer, New York, pp. 287--295, 1113280. \point R.~K. Guy [1995], Combinatorial games, in: {\em Handbook of combinatorics, {V}ol.\ 1,\ 2\/}, Elsevier, Amsterdam, pp. 2117--2162, 1373699 (97j:90099). \point R.~K. Guy [1996], Impartial Games, in: {\em Games of No Chance, \emph{Proc. MSRI Workshop on Combinatorial Games, July, 1994, Berkeley, CA, MSRI Publ.}\/} (R.~J. Nowa\-kowski, ed.), Vol.~29, Cambridge University Press, Cambridge, pp. 61--78, earlier version in: {\it Combinatorial Games}, Proc. Symp. Appl. Math. (R. K. Guy, ed.), Vol. 43, Amer. Math. Soc., Providence, RI, 1991, pp. 35--55. \point R.~K. Guy [1996], What is a game?, in: {\em Games of No Chance, \emph{Proc. MSRI Workshop on Combinatorial Games, July, 1994, Berkeley, CA, MSRI Publ.}\/} (R.~J. Nowakowski, ed.), Vol.~29, Cambridge University Press, Cambridge, pp. 43--60, earlier version in: {\it Combinatorial Games}, Proc. Symp. Appl. Math. (R. K. Guy, ed.), Vol. 43, Amer. Math. Soc., Providence, RI, 1991, pp. 1--21. \point R.~K. Guy [1996], Unsolved problems in combinatorial games, in: {\em Games of No Chance, \emph{Proc. MSRI Workshop on Combinatorial Games, July, 1994, Berkeley, CA, MSRI Publ.}\/} (R.~J. Nowakowski, ed.), Vol.~29, Cambridge University Press, Cambridge, pp. 475--491, update with 52 problems of earlier version with 37 problems, in: {\it Combinatorial Games}, Proc. Symp. Appl. Math. (R. K. Guy, ed.), Vol. 43, Amer. Math. Soc., Providence, RI, 1991, pp. 183--189; another version in: Combinatorics Advances (Tehran, 1994), Dordrecht, 1995, 90D46 (05-02). \point R.~K. Guy [2001], Aviezri {F}raenkel and combinatorial games, {\em Electron. J. Combin.\/} {\bf 8}(2), Introduction 2, 6 pp. (electronic), In honor of Aviezri Fraenkel on the occasion of his 70th birthday, 1853249 (2002g:01016). \point R.~K. Guy [2007], A parity subtraction game, {\em Crux Math.\/} {\bf 33}, 37--39. \point R.~K. Guy and R.~J. Nowakowski [1993], Mousetrap, in: {\em Combinatorics, {P}aul {E}rd{\H o}s is eighty, {V}ol.\ 1\/}, Bolyai Soc. Math. Stud., J\'anos Bolyai Math. Soc., Budapest, pp. 193--206, 1249712 (94k:05011). \point R.~K. Guy and R.~J. Nowakowski [2002], Unsolved problems in combinatorial games, in: {\em More Games of No Chance, \emph{Proc. MSRI Workshop on Combinatorial Games, July, 2000, Berkeley, CA, MSRI Publ.}\/} (R.~J. Nowakowski, ed.), Vol.~42, Cambridge University Press, Cambridge, pp. 457--473, also in Games of No Chance 3, \emph{Proc. BIRS Workshop on Combinatorial Games, July, 2005, Banff, Alberta, Canada, MSRI Publ., pp.465- 489, 2009}. \point R.~K. Guy, R.~J. Nowakowski, I.~Caines and C.~Gates [1999], Unsolved Problems: periods in taking and splitting games, {\em Amer. Math. Monthly\/} {\bf 106}, 359--361, Unsolved Problems Section. \point R.~K. Guy and C.~A.~B. Smith [1956], The {$G$}-values of various games, {\em Proc. Cambridge Philos. Soc.\/} {\bf 52}, 514--526, 0082408 (18,546a). \point R.~K. Guy and R.~E. Woodrow, eds. [1994], {\em The Lighter Side of Mathematics, \emph{Proc. E. Strens Memorial Conf. on Recr. Math. and its History, Calgary, 1986, Spectrum Series}\/}, Math. Assoc. Amer., Washington, DC. \point W.~Guzicki [1990], Ulam's searching game with two lies, {\em J. Combin. Theory Ser. A\/} {\bf 54}(1), 1--19, 1051775 (91f:68027). \newline\urlprefix\url{http://dx.doi.org/10.1016/0097-3165(90)90002-E} \point G.~Hahn [2007], Cops, robbers and graphs, {\em Tatra Mt. Math. Publ.\/} {\bf 36}, 163--176, 2378748 (2009b:05254). \point G.~Hahn, F.~Laviolette, N.~Sauer and R.~E. Woodrow [2002], On cop-win graphs, {\em Discrete Math.\/} {\bf 258}, 27--41, MR2002070 (2004f:05156). \point G.~Hahn and G.~MacGillivray [2006], A note on {$k$}-cop, {$l$}-robber games on graphs, {\em Discrete Math.\/} {\bf 306}(19-20), 2492--2497, MR2261915 (2007d:05069). \point A.~Hajnal and Z.~Nagy [1984], Ramsey games, {\em Trans. American Math. Soc.\/} {\bf 284}, 815--827. \point D.~R. Hale [1983], A variant of Nim and a function defined by Fibonacci representation, {\em Fibonacci Quart.\/} {\bf 21}, 139--142. \point A.~W. Hales and R.~I. Jewett [1963], Regularity and positional games, {\em Trans. Amer. Math. Soc.\/} {\bf 106}, 222--229. \point L.~Halpenny and C.~Smyth [1992], A classification of minimal standard-path $2\times 2$ switching networks, {\em Theoret. Comput. Sci. \emph{(Math Games)}\/} {\bf 102}, 329--354. \point I.~Halupczok and J.-C. Schlage-Puchta [2007], Achieving snaky, {\em Integers, Electr. J. of Combinat. Number Theory\/} {\bf 7}, \#G02, 28 pp., MR2282185 (2007i:05045). \newline\urlprefix\url{http://www.integers-ejcnt.org/vol7.html} \point I.~Halupczok and J.-C. Schlage-Puchta [2008], Some strategies for higher dimensional animal achievement games, {\em Discrete Math.\/} {\bf 308}(16), 3470--3478, 2421669 (2009g:91040). \newline\urlprefix\url{http://dx.doi.org/10.1016/j.disc.2007.07.005} \point Y.~O. Hamidoune [1987], On a pursuit game on {C}ayley digraphs, {\em European J. Combin.\/} {\bf 8}(3), 289--295, 919881 (89d:90264). \point Y.~O. Hamidoune and M.~Las~Vergnas [1985], The directed Shannon switching game and the one-way game, in: {\em Graph Theory with Applications to Algorithms and Computer Science\/} (Y.~Alavi et~al., eds.), Wiley, pp. 391--400. \point Y.~O. Hamidoune and M.~Las~Vergnas [1986], Directed switching games on graphs and matroids, {\em J. Combin. Theory Ser. B\/} {\bf 40}(3), 237--269, 842994 (87j:90172). \newline\urlprefix\url{http://dx.doi.org/10.1016/0095-8956(86)90083-3} \point Y.~O. Hamidoune and M.~Las~Vergnas [1987], A solution to the box game, {\em Discrete Math.\/} {\bf 65}, 157--171. \point Y.~O. Hamidoune and M.~Las~Vergnas [1988], A solution to the mis\`ere Shannon switching game, {\em Discrete Math.\/} {\bf 72}, 163--166. \point O.~Hanner [1959], Mean play of sums of positional games, {\em Pacific J. Math.\/} {\bf 9}, 81--99. \point F.~Harary [1982], Achievement and avoidance games for graphs, {\em Ann. Discrete Math.\/} {\bf 13}, 111--119. \point F.~Harary [2002], Sum-free games, {\em {\rm in:} Puzzler's Tribute: a Feast for the Mind{\rm ,}\/} pp. 395--398, honoring Martin Gardner (D. Wolfe and T. Rodgers, eds.), A K Peters, Natick, MA. \point F.~Harary, H.~Harborth and M.~Seemann [2000], Handicap achievement for polyominoes, {\em Congr. Numer.\/} {\bf 145}, 65--80, Proc. 31st Southeastern Internat. Conf. on Combinatorics, Graph Theory, and Computing (Boca Raton, FL, 1999), MR1817942 (2001m:05083). \point F.~Harary and K.~Plochinski [1987], On degree achievement and avoidance games for graphs, {\em Math. Mag.\/} {\bf 60}, 316--321. \point F.~Harary, B.~Sagan and D.~West [1985], Computer-aided analysis of monotonic sequence games, {\em Atti Accad. Peloritana Pericolanti Cl. Sci. Fis. Mat. Natur.\/} {\bf 61}, 67--78. \point F.~Harary, W.~Slany and O.~Verbitsky [2002], A symmetric strategy in graph avoidance games, in: {\em More Games of No Chance, \emph{Proc. MSRI Workshop on Combinatorial Games, July, 2000, Berkeley, CA, MSRI Publ.}\/} (R.~J. Nowakowski, ed.), Vol.~42, Cambridge University Press, Cambridge, pp. 369--381, MR1973105 (2004b:91036). \point F.~Harary, W.~Slany and O.~Verbitsky [2004], On the length of symmetry breaking-preserving games on graphs, {\em Theoret. Comp. Sci.\/} {\bf 313}, 427--446, special issue of Dagstuhl Seminar ``Algorithmic Combinatorial Game Theory", Feb. 2002, MR2056937 (2005a:91025). \point F.~Harary and Z.~Tuza [1993], Two graph-colouring games, {\em Bull. Austral. Math. Soc.\/} {\bf 48}(1), 141--149, 1227444 (94d:90084). \newline\urlprefix\url{http://dx.doi.org/10.1017/S0004972700015549} \point H.~Harborth and M.~Seemann [1996], Snaky is an edge-to-edge loser, {\em Geombinatorics\/} {\bf 5}, 132--136, MR1380142. \point H.~Harborth and M.~Seemann [1997], Snaky is a paving winner, {\em Bull. Inst. Combin. Appl.\/} {\bf 19}, 71--78, MR1427578 (97g:05052). \point H.~Harborth and M.~Seemann [2003], Handicap achievement for squares, {\em J. Combin. Math. Combin. Comput.\/} {\bf 46}, 47--52, 15th MCCCC (Las Vegas, NV, 2001), MR2004838 (2004g:05044). \point F.~Havet and L.~Sampaio [2010], On the {G}rundy number of a graph, in: {\em Parameterized and exact computation\/}, Vol. 6478 of {\em Lecture Notes in Comput. Sci.\/}, Springer, Berlin, pp. 170--179, 2770795 (2012e:05134). \newline\urlprefix\url{http://dx.doi.org/10.1007/978-3-642-17493-3_17} \point P.~J. Hayes [1977], A note on the towers of Hanoi problem, {\em Computer J.\/} {\bf 20}, 282--285. \point R.~B. Hayward [2009], A puzzling Hex primer, in: {\em Games of No Chance 3, \emph{Proc. BIRS Workshop on Combinatorial Games, July, 2005, Banff, Alberta, Canada, MSRI Publ.}\/} (M.~H. Albert and R.~J. Nowakowski, eds.), Vol.~56, Cambridge University Press, Cambridge, pp. 151--161. \point R.~Hayward, Y.~Bj{\"o}rnsson, M.~Johanson, M.~Kan, N.~Po and J.~van Rijswijck [2005], Solving {$7\times7$} {H}ex with domination, fill-in, and virtual connections, {\em Theoret. Comput. Sci.\/} {\bf 349}(2), 123--139, MR2184213 (2006f:68112). \point R.~B. Hayward, B.~Toft and P.~Henderson [2012], How to play {R}everse {H}ex, {\em Discrete Math.\/} {\bf 312}(1), 148--156, 2852517. \newline\urlprefix\url{http://dx.doi.org/10.1016/j.disc.2011.06.033} \point R.~B. Hayward and J.~van Rijswijck [2006], Hex and combinatorics, {\em Discrete Math.\/} {\bf 306}(19-20), 2515--2528, special issue: Creation and Recreation: A Tribute to the Memory of Claude Berge, MR2261917 (2007e:91045). \point W.~He, X.~Hou, K.-W. Lih, J.~Shao, W.~Wang and X.~Zhu [2002], Edge-partitions of planar graphs and their game coloring numbers, {\em J. Graph Theory\/} {\bf 41}, 307--317, MR1936946 (2003h:05153). \point W.~He, J.~Wu and X.~Zhu [2004], Relaxed game chromatic number of trees and outerplanar graphs, {\em Discrete Math.\/} {\bf 281}, 209--219, MR2047768 (2005a:05088). \point R.~A. Hearn [2005], The complexity of sliding block puzzles and plank puzzles, {\em {\rm in:} Tribute to a Mathemagician{\rm ,}\/} pp. 173--183, honoring Martin Gardner (B. Cipra, E. D. Demaine, M. L. Demaine and T. Rodgers, eds.), A K Peters, Wellesley, MA, pp. 93-99. \point R.~A. Hearn [2006], TipOver is NP-complete, {\em Math. Intelligencer\/} {\bf 28}, 10--14, Number 3, Summer 2006. \point R.~A. Hearn [2009], Amazons, Konane, and Cross Purposes are PSPACE-complete, in: {\em Games of No Chance 3, \emph{Proc. BIRS Workshop on Combinatorial Games, July, 2005, Banff, Alberta, Canada, MSRI Publ.}\/} (M.~H. Albert and R.~J. Nowakowski, eds.), Vol.~56, Cambridge University Press, Cambridge, pp. 287--306. \point R.~A. Hearn and E.~D. Demaine [2002], The nondeterministic constraint logic model of computation: reductions and applications, in: {\em Automata, Languages and Programming\/}, Vol. 2380 of {\em Lecture Notes in Comput. Sci.\/}, Springer, Berlin, pp. 401--413, MR2062475. \point R.~A. Hearn and E.~D. Demaine [2005], PSPACE-completeness of sliding-block puzzles and other problems through the nondeterministic constraint logic model of computation, {\em Theoret. Comput. Sci.\/} {\bf 343}, 72--96, special issue: Game Theory Meets Theoretical Computer Science, MR2168845 (2006d:68070). \point R.~A. Hearn and E.~D. Demaine [2009], {\em Games, puzzles, and computation\/}, A K Peters Ltd., Wellesley, MA, 2537584. \point O.~Heden [1992], On the modular $n$-queen problem, {\em Discrete Math.\/} {\bf 102}, 155--161. \point O.~Heden [1993], Maximal partial spreads and the modular $n$-queen problem, {\em Discrete Math.\/} {\bf 120}, 75--91. \point O.~Heden [1995], Maximal partial spreads and the modular $n$-queen problem II, {\em Discrete Math.\/} {\bf 142}, 97--106. \point S.~M. Hedetniemi, S.~Hedetniemi and T.~Beyer [1982], A linear algorithm for the Grundy (coloring) number of a tree, {\em Congr. Numer.\/} {\bf 36}, 351--363. \point S.~M. Hedetniemi, S.~T. Hedetniemi and R.~Reynolds [1998], Combinatorial problems on chessboards, II, in: {\em Domination in Graphs\/} ({T. W. Haynes et al.}, ed.), M. Dekker, NY, pp. 133--162. \point D.~Hefetz, M.~Krivelevich, M.~Stojakovi{\'c} and T.~Szab{\'o} [2008], Planarity, colorability, and minor games, {\em SIAM J. Discrete Math.\/} {\bf 22}, 194--212, MR2383236 (2009c:91029). \newline\urlprefix\url{http://dx.doi.org/10.1137/060654414} \point D.~Hefetz, M.~Krivelevich, M.~Stojakovi{\'c} and T.~Szab{\'o} [2009], A sharp threshold for the {H}amilton cycle {M}aker-{B}reaker game, {\em Random Structures Algorithms\/} {\bf 34}, 112--122, MR2478541 (2009k:91035). \newline\urlprefix\url{http://dx.doi.org/10.1002/rsa.20252} \point D.~Hefetz, M.~Krivelevich, M.~Stojakovi{\'c} and T.~Szab{\'o} [2009], Fast winning strategies in avoider-enforcer games, {\em Graphs Combin.\/} {\bf 25}, 533--544, MR2575600. \newline\urlprefix\url{http://dx.doi.org/10.1007/s00373-009-0870-8} \point D.~Hefetz, M.~Krivelevich, M.~Stojakovi{\'c} and T.~Szab{\'o} [2009], Fast winning strategies in {M}aker-{B}reaker games, {\em J. Combin. Theory Ser. B\/} {\bf 99}, 39--47, MR2467817. \newline\urlprefix\url{http://dx.doi.org/10.1016/j.jctb.2008.04.001} \point D.~Hefetz, M.~Krivelevich and T.~Szab{\'o} [2007], Avoider-enforcer games, {\em J. Combin. Theory Ser. A\/} {\bf 114}(5), 840--853, MR2333136. \point P.~Hegarty and U.~Larsson [2006], Permutations of the natural numbers with prescribed difference multisets, {\em Integers\/} {\bf 6}, A3, 25, 2215347 (2007a:11028). \point P.~Hein [1942], Vil de lre Polygon?, {\em Politiken \emph{(description of Hex in this Danish newspaper of Dec. 26)}\/} . \point G.~Helleloid, M.~Khalid, D.~P. Moulton and P.~M. Wood [2009], Graph pegging numbers, {\em Discrete Math.\/} {\bf 309}, 1971--1985, 2510324 (2010h:05247). \newline\urlprefix\url{http://dx.doi.org/10.1016/j.disc.2008.03.029} \point P.~Henderson and R.~B. Hayward [2013], A Handicap Strategy for Hex, in: {\em Games of No Chance 4\/}, Cambridge University Press, to appear. \point D.~Hensley [1988], A winning strategy at Taxman, {\em Fibonacci Quart.\/} {\bf 26}, 262--270. \point C.~W. Henson [1970], Winning strategies for the ideal game, {\em Amer. Math. Monthly\/} {\bf 77}, 836--840. \point J.~C. Hern{\'a}ndez-Castro, I.~Blasco-Lopez, J.~M. Est{\'e}vez-Tapiador and A.~Ribagorda-Garnacho [2006], Steganography in games: A general methodology and its application to the game of Go., {\em Computers {\&} Security\/} {\bf 25}, 64--71. \point C.~Hern\'andez-Cruz and H.~Galeana-S\'anchez [2012], $k$-kernels in $k$-transitive and $k$-quasi-transitive digraphs, {\em Discrete Math.\/} {\bf 312}, 2522--2530. \point D.~S. Herscovici, B.~D. Hester and G.~H. Hulbert [2012], Generalization of Graham's pebbling conjecture, {\em Discrete Math.\/} {\bf 312}, 2286--2293. \point D.~S. Herscovici and A.~W. Higgins [1998], The pebbling number of {$C_5\times C_5$}, {\em Discrete Math.\/} {\bf 187}(1-3), 123--135, 1630692 (99d:05082). \newline\urlprefix\url{http://dx.doi.org/10.1016/S0012-365X(97)00229-X} \point D.~S. Herscovici [2003], Graham's pebbling conjecture on products of cycles, {\em J. Graph Theory\/} {\bf 42}(2), 141--154, 1953226 (2004j:05123). \newline\urlprefix\url{http://dx.doi.org/10.1002/jgt.10080} \point D.~S. Herscovici [2008], Graham's pebbling conjecture on products of many cycles, {\em Discrete Math.\/} {\bf 308}(24), 6501--6512, 2466953 (2010b:05177). \newline\urlprefix\url{http://dx.doi.org/10.1016/j.disc.2007.12.045} \point D.~S. Herscovici [2010], On graph pebbling numbers and {G}raham's conjecture, {\em Graph Theory Notes N. Y.\/} {\bf 59}, 15--21, 2849399. \point D.~S. Herscovici, B.~D. Hester and G.~H. Hurlbert [2011], Optimal pebbling in products of graphs, {\em Australas. J. Combin.\/} {\bf 50}, 3--24, 2829275. \point R.~I. Hess [1999], Puzzles from around the world, {\em {\rm in:} The Mathemagician and Pied Puzzler{\rm ,}\/} honoring Martin Gardner; E. Berlekamp and T. Rodgers, eds., A K Peters, Natick, MA, pp. 53-84. \point G.~Hetyei [2009], Enumeration by kernel positions, {\em Adv. in Appl. Math.\/} {\bf 42}(4), 445--470, 2511010 (2010f:05013). \newline\urlprefix\url{http://dx.doi.org/10.1016/j.aam.2008.11.001} \point G.~Hetyei [2010], Enumeration by kernel positions for strongly {B}ernoulli type truncation games on words, {\em J. Combin. Theory Ser. A\/} {\bf 117}(8), 1107--1126, 2677677 (2011j:05007). \newline\urlprefix\url{http://dx.doi.org/10.1016/j.jcta.2010.01.003} \point G.~A. Heuer [1982], Odds versus evens in Silverman-type games, {\em Internat. J. Game Theory\/} {\bf 11}, 183--194. \point G.~A. Heuer [1989], Reduction of Silverman-like games to games on boun\-ded sets, {\em Internat. J. Game Theory\/} {\bf 18}, 31--36. \point G.~A. Heuer [2001], Three-part partition games on rectangles, {\em Theoret. Comput. Sci. \emph{(Math Games)}\/} {\bf 259}, 639--661. \point G.~A. Heuer and U.~Leopold-Wildburger [1995], {\em Silverman's game, A special class of two-person zero-sum games, \emph{with a foreword by Reinhard Selten}\/}, Vol. 424 of {\em \emph{Lecture Notes in Economics and Mathematical Systems}\/}, Springer-Verlag, Berlin. \point G.~A. Heuer and W.~D. Rieder [1988], Silverman games on disjoint discrete sets, {\em SIAM J. Discrete Math.\/} {\bf 1}(4), 485--525, 968854 (90a:90224). \newline\urlprefix\url{http://dx.doi.org/10.1137/0401047} \point R.~Hill [1995], Searching with lies, in: {\em Surveys in Combinatorics\/}, Vol. 218, Cambridge University Press, Cambridge, pp. 41--70. \point R.~Hill and J.~P. Karim [1992], Searching with lies: the Ulam problem, {\em Discrete Math.\/} {\bf 106/107}, 273--283. \point T.~P. Hill and U.~Krengel [1991], Minimax-optimal stop rules and distributions in secretary problems, {\em Ann. Probab.\/} {\bf 19}, 342--353. \point T.~P. Hill and U.~Krengel [1992], On the game of Googol, {\em Internat. J. Game Theory\/} {\bf 21}, 151--160. \point P.~G. Hinman [1972], Finite termination games with tie, {\em Israel J. Math.\/} {\bf 12}, 17--22. \point A.~M. Hinz [1989], An iterative algorithm for the tower of Hanoi with four pegs, {\em Computing\/} {\bf 42}, 133--140. \point A.~M. Hinz [1989], The tower of Hanoi, {\em Enseign. Math.\/} {\bf 35}, 289--321. \point A.~M. Hinz [1992], Pascal's triangle and the tower of Hanoi, {\em Amer. Math. Monthly\/} {\bf 99}, 538--544. \point A.~M. Hinz [1992], Shortest paths between regular states of the tower of Hanoi, {\em Inform. Sci.\/} {\bf 63}, 173--181. \point A.~M. Hinz [1999], The tower of Hanoi, {\em Algebras and Combinatorics\/} (K.~P. Shum, E.~J. Taft and Z.~X. Wan, eds.), Springer, Singapore, pp. 277--289. \point A.~M. Hinz and D.~Parisse [2002], On the planarity of Hanoi graphs, {\em Expo. Math.\/} {\bf 20}, 263--268, MR1924112 (2003f:05034). \point S.~Hitotumatu [1968], {\em Sin Ishi tori g\=emu no s\=uri $[$The Theory of Nim-Like Games$]$\/}, Morikita Publishing Co., Tokyo, (Japanese). \point S.~Hitotumatu [1968], Some remarks on nim-like games, {\em Comment. Math. Univ. St. Paul\/} {\bf 17}, 85--98. \point D.~G. Hoffman and P.~D. Johnson [1999], Greedy colorings and the Grundy chromatic number of the $n$-cube, {\em Bull. Inst. Combin. Appl.\/} {\bf 26}, 49--57. \point E.~J. Hoffman, J.~C. Loessi and R.~C. Moore [1969], Construction for the solution of the $n$-queens problem, {\em Math. Mag.\/} {\bf 42}, 66--72. \point M.~Hoffmann, J.~Matou{\v{s}}ek, Y.~Okamoto and P.~Zumstein [2010], Minimum and maximum against {$k$} lies, in: {\em Algorithm theory---{SWAT} 2010\/}, Vol. 6139 of {\em Lecture Notes in Comput. Sci.\/}, Springer, Berlin, pp. 139--149, 2678492. \point M.~Hoffmann, J.~Matou{\v{s}}ek, Y.~Okamoto and P.~Zumstein [2011], The {$t$}-pebbling number is eventually linear in {$t$}, {\em Electron. J. Combin.\/} {\bf 18}(1), Paper 153, 4, 2823374. \point S.~Hofmann, G.~Schuster and J.~Steuding [2008], Euclid, {C}alkin \& {W}ilf---playing with rationals, {\em Elem. Math.\/} {\bf 63}(3), 109--117, 2424893 (2009e:91046). \newline\urlprefix\url{http://dx.doi.org/10.4171/EM/95} \point M.~S. Hogan and D.~G. Horrocks [2003], Geography played on an N-cycle times a 4-cycle, {\em Integers, Electr. J. of Combinat. Number Theory\/} {\bf 3}, \#G2, 12 pp., Comb. Games Sect., MR1985672 (2004b:91037). \newline\urlprefix\url{http://www.integers-ejcnt.org/vol3.html} \point J.~C. Holladay [1957], Cartesian products of termination games, {\em Ann. of Math. Stud. \emph{(Contributions to the Theory of Games), Princeton}\/} {\bf 3}(39), 189--200. \point J.~C. Holladay [1958], Matrix nim, {\em Amer. Math. Monthly\/} {\bf 65}, 107--109. \point J.~C. Holladay [1966], A note on the game of dots, {\em Amer. Math. Monthly\/} {\bf 73}, 717--720. \point A.~Holshouser and H.~Reiter [2001], A generalization of Beatty's Theorem, {\em Southwest J. Pure and Appl. Math.,\/} {\bf {\rm issue 2}}, 24--29. \point A.~Holshouser and H.~Reiter [2005], Two pile move-size dynamic {N}im, {\em Discrete Math. Theor. Comput. Sci.\/} {\bf 7}, 1--10 (electronic), MR2164054 (2006d:91042). \point A.~Holshouser, H.~Reiter and J.~Rudzinski [2003], Dynamic one-pile nim, {\em Fibonacci Quart.\/} {\bf 41}(3), 253--262, MR2014006 (2004i:05005). \point A.~Holshouser, H.~Reiter and J.~Rudzinski [2004], Pilesize dynamic one-pile Nim and Beatty's theorem, {\em Integers, Electr. J. of Combinat. Number Theory\/} {\bf 4}, \#G3, 13 pp., Comb. Games Sect., MR2079848. \newline\urlprefix\url{http://www.integers-ejcnt.org/vol4.html} \point M.~Holzer and W.~Holzer [2004], {${\rm T}ANTRIX\sp {\rm TM}$} rotation puzzles are intractable, {\em Discrete Appl. Math.\/} {\bf 144}, 345--358, MR2098189 (2005j:94043). \point M.~Holzer and S.~Schwoon [2004], Assembling molecules in ATOMIX is hard, {\em Theoret. Comp. Sci.\/} {\bf 313}, 447--462, special issue of Dagstuhl Seminar ``Algorithmic Combinatorial Game Theory'', Feb. 2002, MR2056938. \point C.~W. Hong [2010], The biased, distance-restricted {$n$}-in-a-row game for small {$p$}, {\em Theoret. Comput. Sci.\/} {\bf 411}(16-18), 1895--1897, 2650351 (2011b:91080). \newline\urlprefix\url{http://dx.doi.org/10.1016/j.tcs.2010.02.002} \point J.~E. Hopcroft, J.~T. Schwartz and M.~Sharir [1984], On the complexity of motion planning for multiple independent objects: PSPACE-hardness of the "Warehouseman's problem", {\em J. Robot. Res.\/} {\bf 3 {\rm issue 4}}, 76--88. \point B.~Hopkins and J.~A. Sellers [2007], {\em Exact enumeration of Garden of Eden partitions\/}, de Gruyter, pp. 299--303, Proc.\ Integers Conference, Carrollton, Georgia, October 27-30,2005, in celebration of the 70th birthday of Ronald Graham. B.\ Landman, M.\ Nathanson, J.\ Ne\v{s}et\v{r}il, R.\ Nowakowski, C. Pomerance eds., appeared also in {\it Integers, Electr.\ J.\ of Combinat.\ Number Theory\/} {\bf 7(20)}, special volume in honor of Ron Graham, \#A19, 5 pp., MR2337053. \newline\urlprefix\url{http://www.integers-ejcnt.org/vol7(2).html} \point E.~Hordern [1986], {\em Sliding Piece Puzzles\/}, Oxford University Press, Oxford. \point D.~Horrocks [2010], Winning positions in simplicial {N}im, {\em Electron. J. Combin.\/} {\bf 17}(1), Research Paper 84, 13, 2661387 (2012a:91047). \newline\urlprefix\url{http://www.combinatorics.org/Volume_17/Abstracts/v17i1r% 84.html} \point D.~G. Horrocks and R.~J. Nowakowski [2003], Regularity in the ${\cal G}-$ sequences of octal games with a pass, {\em Integers, Electr. J. of Combinat. Number Theory\/} {\bf 3}, \#G1, 10 pp., Comb. Games Sect., MR1985671 (2004d:91049). \newline\urlprefix\url{http://www.integers-ejcnt.org/vol3.html} \point D.~G. Horrocks and M.~A. Trenton [2008], Subtraction with a {M}uller twist, {\em Integers, Electr. J of Combinat. Number Theory\/} {\bf 8}, G05, 12, MR2425634 (2009h:91051). \point D.~Howard and C.~Smyth [2012], Revolutianaries and spies, {\em Discrete Math.\/} {\bf 312}, 3384--3391. \point S.~Howse and R.~J. Nowakoski [2004], Periodicity and arithmetic-periodicity in hexadecimal games, {\em Theoret. Comp. Sci.\/} {\bf 313}, 463--472, special issue of Dagstuhl Seminar ``Algorithmic Combinatorial Game Theory'', Feb. 2002, MR2056939 (2005f:91037). \point M.~Y. Hsieh and S.-C. Tsai [2007], On the fairness and complexity of generalized {$k$}-in-a-row games, {\em Theoret. Comput. Sci.\/} {\bf 385}, 88--100, MR2356244. \point S.~Huddleston and J.~Shurman [2002], Transfinite Chomp, in: {\em More Games of No Chance, \emph{Proc. MSRI Workshop on Combinatorial Games, July, 2000, Berkeley, CA, MSRI Publ.}\/} (R.~J. Nowakowski, ed.), Vol.~42, Cambridge University Press, Cambridge, pp. 183--212, MR1973013 (2004b:91046). \point Y.-C. Hung, R.~W. Chen, A.~Zame and M.-R. Chen [2010], A note on the first occurrence of strings, {\em Electron. J. Combin.\/} {\bf 17}(1), Note 5, 8, 2587755 (2011d:05013). \newline\urlprefix\url{http://www.combinatorics.org/Volume_17/Abstracts/v17i1n% 5.html} \point P.~Hunter and S.~Kreutzer [2008], Digraph measures: {K}elly decompositions, games, and orderings, {\em Theoret. Comput. Sci.\/} {\bf 399}(3), 206--219, 2419778 (2009g:05169). \newline\urlprefix\url{http://dx.doi.org/10.1016/j.tcs.2008.02.038} \point G.~H. Hurlbert [1998], Two pebbling theorems, {\em Congr. Numer.\/} {\bf 135}, 55--63, Proc. 29-th Southeastern Internat. Conf. on Combinatorics, Graph Theory, and Computing (Boca Raton, FL, 1998). \point G.~H. Hurlbert [1999], A survey of graph pebbling, {\em Congr. Numer.\/} {\bf 139}, 41--64, Proc. 30-th Southeastern Internat. Conf. on Combinatorics, Graph Theory, and Computing (Boca Raton, FL, 1999). \point G.~Iba and J.~Tanton [2003], Candy sharing, {\em Amer. Math. Monthly\/} {\bf 110}, 25--35, MR1952745. \point K.~Igusa [1985], Solution of the {B}ulgarian solitaire conjecture, {\em Math. Mag.\/} {\bf 58}(5), 259--271, MR810147 (87c:00003). \point E.~J. Ionascu, D.~Pritikin and S.~E. Wright [2008], {$k$}-dependence and domination in kings graphs, {\em Amer. Math. Monthly\/} {\bf 115}, 820--836, 2463293 (2009i:05180). \point J.~Isbell [1992], The Gordon game of a finite group, {\em Amer. Math. Monthly\/} {\bf 99}, 567--569. \point V.~Isler, S.~Kannan and S.~Khanna [2006], Randomized pursuit-evasion with local visibility, {\em SIAM J. Discrete Math.\/} {\bf 20}, 26--41 (electronic), MR2257242 (2007h:91038). \point V.~Isler and N.~Karnad [2008], The role of information in the cop-robber game, {\em Theoret. Comput. Sci.\/} {\bf 399}(3), 179--190, 2419776 (2009f:91017). \newline\urlprefix\url{http://dx.doi.org/10.1016/j.tcs.2008.02.041} \point H.~Ito, G.~Nakamura and S.~Takata [2007], Winning ways of weighted poset games, {\em Graphs Combin.\/} {\bf 23}(suppl. 1), 291--306, 2320636 (2008c:91040). \newline\urlprefix\url{http://dx.doi.org/10.1007/s00373-007-0710-7} \point O.~Itzinger [1977], The South American game, {\em Math. Mag.\/} {\bf 50}, 17--21. \point Y.~Iwasaki [2009], Solution for the {T}ower of {H}anoi problem with four pegs, {\em Adv. Appl. Discrete Math.\/} {\bf 4}(2), 95--104, 2590297. \point S.~Iwata and T.~Kasai [1994], The Othello game on an $n\times n$ board is PSPACE-complete, {\em Theoret. Comput. Sci. \emph{(Math Games)}\/} {\bf 123}, 329--340. \point H.~Jacob and H.~Meyniel [1996], About quasi-kernels in a digraph, {\em Discrete Math.\/} {\bf 154}, 279--280, 1395467 (97a:05093). \newline\urlprefix\url{http://dx.doi.org/10.1016/0012-365X(93)E0035-3} \point C.~F.~A. Jaenisch [1862], {\em Trait\'{e} des Applications de l'Analyse math\'{e}\-ma\-tiques au Jeu des Echecs\/}, Petrograd, three volumes (Carl Friedrich Andreyevich Jaenisch from St Petersburg [changed its name to Petrograd, then to Leningrad, and then back to St Petersburg] is also known by his cyrillic transliteration "Yanich", or in the French form: de J, or German form: von J). \point J.~James and M.~Schlatter [2008], Some observations and solutions to short and long global nim, {\em Integers, Electr. J of Combinat. Number Theory\/} {\bf 8}, G01, 14, MR2373090 (2008k:91051). \point J.~Jeffs and S.~Seager [1995], The chip firing game on $n$-cycles, {\em Graphs Combin.\/} {\bf 11}, 59--67. \point T.~A. Jenkyns and J.~P. Mayberry [1980], The skeleton of an impartial game and the Nim-function of Moore's ${\hbox{Nim}}_k$, {\em Internat. J. Game Theory\/} {\bf 9}, 51--63. \point T.~R. Jensen and B.~Toft [1995], {\em Graph Coloring Problems\/}, Wiley-Inter\-science Series in Discrete Mathematics and Optimization, Wiley, New York, NY. \point L.~Y. Jin and J.~Nievergelt [2008], Tigers and Goats is a draw, in: {\em Games of No Chance 3, \emph{Proc. BIRS Workshop on Combinatorial Games, July, 2005, Banff, Alberta, Canada, MSRI Publ.}\/} (M.~H. Albert and R.~J. Nowakowski, eds.), Vol.~56, Cambridge University Press, Cambridge, pp. 163--176. \point D.~S. Johnson [1983], The NP-Completeness Column: An Ongoing Guide, {\em J. Algorithms\/} {\bf 4}, 397--411, 9th quarterly column (games); the column started in 1981; a further games update appeared in vol. {\bf 5}, 10th column, pp. 154-155. \point W.~W. Johnson [1879], Notes on the "15" puzzle, {\em Amer. J. Math.\/} {\bf 2}, 397--399. \point J.~P. Jones [1982], Some undecidable determined games, {\em Internat. J. Game Theory\/} {\bf 11}, 63--70. \point J.~P. Jones and A.~S. Fraenkel [1995], Complexities of winning strategies in diophantine games, {\em J. Complexity\/} {\bf 11}, 435--455. \point D.~Joyner [2006], Mathematics of Ghaly's machine, {\em Integers, Electr. J. of Combinat. Number Theory\/} {\bf 6}, \#G01, 27 pp., Comb. Games Sect. \newline\urlprefix\url{http://www.integers-ejcnt.org/vol6.html} \point M.~Kac [1974], Hugo Steinhaus, a reminiscence and a tribute, {\em Amer. Math. Monthly\/} {\bf 81}, 572--581 (p.~577). \point J.~Kahane and A.~S. Fraenkel [1987], {$k$}-{W}elter---a generalization of {W}elter's game, {\em J. Combin. Theory Ser. A\/} {\bf 46}(1), 1--20, 899899 (88k:90221). \newline\urlprefix\url{http://dx.doi.org/10.1016/0097-3165(87)90073-2} \point J.~Kahane and A.~J. Ryba [2001], The Hexad game, {\em Electr. J. Combin.\/} {\bf 8(2)}, \#R11, 9 pp., Volume in honor of Aviezri S. Fraenkel, MR1853262 (2002h:91031). \newline\urlprefix\url{http://www.combinatorics.org/} \point J.~Kahn, J.~C. Lagarias and H.~S. Witsenhausen [1987], Single-suit two-person card play, {\em Internat. J. Game Theory\/} {\bf 16}, 291--320, MR0918819 (88m:90162). \point J.~Kahn, J.~C. Lagarias and H.~S. Witsenhausen [1988], Single-suit two-person card play, II.~Dominance, {\em Order\/} {\bf 5}, 45--60, MR0953941 (89j:90279). \point J.~Kahn, J.~C. Lagarias and H.~S. Witsenhausen [1989], On Lasker's card game, in: {\em Differential Games and Applications, \emph{Lecture Notes in Control and Information Sciences}\/} (T.~S. Ba\c{s}ar and P.~Bernhard, eds.), Vol. 119, Springer Verlag, Berlin, pp. 1--8, MR1230186. \point J.~Kahn, J.~C. Lagarias and H.~S. Witsenhausen [1989], Single-suit two-person card play, III.~The mis\`ere game, {\em SIAM J. Disc. Math.\/} {\bf 2}, 329--343, MR1002697 (90g:90197). \point L.~Kalm\'{a}r [1928], Zur Theorie der abstrakten Spiele, {\em Acta Sci. Math. Univ. Szeged\/} {\bf 4}, 65--85. \point B.~Kalyanasundram [1991], On the power of white pebbles, {\em Combinatorica\/} {\bf 11}, 157--171. \point B.~Kalyanasundram and G.~Schnitger [1988], On the power of white pebbles, {\em Proc. 20th Ann. ACM Symp. Theory of Computing \emph{(Chicago, IL, 1988)}\/}, Assoc. Comput. Mach., New York, NY, pp. 258--266. \point J.~H. Kan [1994], (0, 1) matrices, combinatorial games and Ramsey problems, {\em Math. Appl. $($Wuhan$)$\/} {\bf 7}, 97--101, (Chinese; English summary). \point D.~M. Kane [2010], On solving games constructed using both short and long conjunctive sums, {\em Integers\/} {\bf 10}, G04, 849--878, 2797777. \newline\urlprefix\url{http://dx.doi.org/10.1515/INTEG.2010.104} \point M.~Kano [1983], Cycle games and cycle cut games, {\em Combinatorica\/} {\bf 3}(2), 201--206, 726458 (85d:90144). \newline\urlprefix\url{http://dx.doi.org/10.1007/BF02579294} \point M.~Kano [1993], An edge-removing game on a graph (a generalization of Nim and Kayles), in: {\em Optimal Combinatorial Structures on Discrete Mathematical Models \emph{(in Japanese, Kyoto, 1992)}\/}, S\=u\-ri\-kaisekikenky\=usho K\=oky\=uroku, pp. 82--90, MR1259331 (94m:90132). \point M.~Kano [1996], Edge-removing games of star type, {\em Discrete Math.\/} {\bf 151}, 113--119. \point M.~Kano, T.~Sasaki, H.~Fujita and S.~Hoshi [1993], Life games of Ibadai type, in: {\em Combinatorial Structure in Mathematical Models \emph{(in Japanese, Kyoto, 1993)}\/}, S\=urikaisekikenky\=usho K\=oky\=uroku, pp. 108--117. \point S.~Kanungo and R.~M. Low [2007], Further analysis on the ``king and rook vs. king on a quarter-infinite board'' problem, {\em Integers\/} {\bf 7}, G09, 7, 2373122. \point K.-Y. Kao [2005], Sumbers -- sums of ups and downs, {\em Integers, Electr. J. of Combinat. Number Theory\/} {\bf 5}, \#G01, 13 pp., Comb. Games Sect., MR2139164 (2005k:91081). \newline\urlprefix\url{http://www.integers-ejcnt.org/vol5.html} \point K.-Y. Kao, I.-C. Wu, Y.-C. Shan and H.-H. Lin [2010], Chilled Domineering, {\em Technologies and Applications of Artificial Intelligence, International Conference on\/} {\bf 0}, 427--432. \point R.~M. Karp and Y.~Zhang [1989], On parallel evaluation of game trees, {\em Proc. ACM Symp. Parallel Algorithms and Architectures\/}, pp. 409--420. \point T.~Kasai, A.~Adachi and S.~Iwata [1979], Classes of pebble games and complete problems, {\em SIAM J. Comput.\/} {\bf 8}(4), 574--586, 573848 (82a:68075). \newline\urlprefix\url{http://dx.doi.org/10.1137/0208046} \point N.~Kawanaka [2001], Sato-{W}elter game and {K}ac-{M}oody {L}ie algebras (English), {\em S\=urikaisekikenky\=usho K\=oky\=uroku\/} (1190), 95--106, Topics in combinatorial representation theory (Japanese) (Kyoto, 2000), 1847734. \point Y.~Kawano [1996], Using similar positions to search game trees, in: {\em Games of No Chance, \emph{Proc. MSRI Workshop on Combinatorial Games, July, 1994, Berkeley, CA, MSRI Publ.}\/} (R.~J. Nowakowski, ed.), Vol.~29, Cambridge University Press, Cambridge, pp. 193--202. \point R.~Kaye [2000], Minesweeper is {NP}-complete, {\em Math. Intelligencer\/} {\bf 22}(2), 9--15, 1764264. \newline\urlprefix\url{http://dx.doi.org/10.1007/BF03025367} \point M.~D. Kearse and P.~B. Gibbons [2001], Computational methods and new results for chessboard problems, {\em Australas. J. Combin.\/} {\bf 23}, 253--284, MR1815018 (2001m:05190). \point M.~D. Kearse and P.~B. Gibbons [2002], A new lower bound on upper irredundance in the queens' graph, {\em Discrete Math.\/} {\bf 256}, 225--242, MR1927068 (2003g:05098). \point A.~Kehagias and P.~Pra{\l}at [2012], Some remarks on cops and drunk robbers, {\em Theoret. Comput. Sci.\/} {\bf 463}, 133--147, 2992504. \newline\urlprefix\url{http://dx.doi.org/10.1016/j.tcs.2012.08.016} \point J.~C. Kenyon [1967], A Nim-like game with period 349, Res. Paper No.~13, Univ. of Calgary, Math. Dept. \point J.~C. Kenyon [1967], Nim-like games and the Sprague--Grundy theory, M.Sc. Thesis, Univ. of Calgary. \point B.~Kerst [1933], {\em Mathematische Spiele\/}, Reprinted by Dr. Martin S\H andig oHG, Wiesbaden 1968. \point T.~Khovanova and J.~B. Lewis [2011], Baron {M}\"unchhausen redeems himself: bounds for a coin-weighing puzzle, {\em Electron. J. Combin.\/} {\bf 18}(1), Paper 37, 14, 2776813. \point J.~Y. Kim [2011], The incidence game chromatic number of paths and subgraphs of wheels, {\em Discrete Appl. Math.\/} {\bf 159}(8), 683--694, 2782626 (2012b:05121). \newline\urlprefix\url{http://dx.doi.org/10.1016/j.dam.2010.01.001} \point H.~A. Kierstead [2000], A simple competitive graph coloring algorithm, {\em J. Combin. Theory Ser. B\/} {\bf 78}, 57--68, MR1737624 (2001k:05074). \newline\urlprefix\url{http://dx.doi.org/10.1006/jctb.1999.1927} \point H.~A. Kierstead [2005], Asymmetric graph coloring games, {\em J. Graph Theory\/} {\bf 48}(3), 169--185, MR2116838 (2006c:91033). \point H.~A. Kierstead [2006], Weak acyclic coloring and asymmetric coloring games, {\em Discrete Math.\/} {\bf 306}(7), 673--677, MR2215592 (2006j:05069). \newline\urlprefix\url{http://dx.doi.org/10.1016/j.disc.2004.07.042} \point H.~A. Kierstead and A.~V. Kostochka [2009], Efficient graph packing via game colouring, {\em Combin. Probab. Comput.\/} {\bf 18}(5), 765--774, 2534268 (2010j:05322). \newline\urlprefix\url{http://dx.doi.org/10.1017/S0963548309009973} \point H.~Kierstead, B.~Mohar, S.~{\v{S}}pacapan, D.~Yang and X.~Zhu [2009], The two-coloring number and degenerate colorings of planar graphs, {\em SIAM J. Discrete Math.\/} {\bf 23}(3), 1548--1560, 2556548 (2011b:05073). \newline\urlprefix\url{http://dx.doi.org/10.1137/070703697} \point H.~A. Kierstead and P.~H. Nyikos [1988], Racing pawn games, {\em Congr. Numer.\/} {\bf 67}, 257--264, Nineteenth Southeastern Conference on Combinatorics, Graph Theory, and Computing (Baton Rouge, LA, 1988), MR992938 (90c:90245). \point H.~A. Kierstead and W.~T. Trotter [1994], Planar graph coloring with an uncooperative partner, {\em J. Graph Theory\/} {\bf 18}, 569--584, Volume in honor of Aviezri S. Fraenkel, MR1292976 (95f:05043). \point H.~A. Kierstead and W.~T. Trotter [2001], Competitive colorings of oriented graphs, {\em Electr. J. Combin.\/} {\bf 8(2)}, \#R12, 15 pp., Volume in honor of Aviezri S. Fraenkel, MR1853263 (2002g:05083). \newline\urlprefix\url{http://www.combinatorics.org/} \point H.~A. Kierstead and {Zs. Tuza} [2003], Marking games and the oriented game chromatic number of partial {$k$}-trees, {\em Graphs Combin.\/} {\bf 19}, 121--129, MR1974374 (2003m:05069). \point H.~A. Kierstead and D.~Yang [2003], Orderings on graphs and game coloring number, {\em Order\/} {\bf 20}(3), 255--264 (2004), MR2064049 (2005a:05091). \newline\urlprefix\url{http://dx.doi.org/10.1023/B:ORDE.0000026489.93166.cb} \point H.~A. Kierstead and D.~Yang [2005], Very asymmetric marking games, {\em Order\/} {\bf 22}(2), 93--107 (2006), MR2207192 (2007d:91045). \point H.~A. Kierstead, C.-Y. Yang, D.~Yang and X.~Zhu [2012], Adapted game colouring of graphs, {\em European J. Combin.\/} {\bf 33}(4), 435--445, 2864427. \newline\urlprefix\url{http://dx.doi.org/10.1016/j.ejc.2011.11.001} \point Y.~Kim [1996], New values in domineering, {\em Theoret. Comput. Sci. \emph{(Math Games)}\/} {\bf 156}, 263--280. \point C.~Kimberling [2007], Complementary equations, {\em J. Integer Seq.\/} {\bf 10}(1), Article 07.1.4, 14 pp. (electronic), MR2268455. \newline\urlprefix\url{http://www.cs.uwaterloo.ca/journals/JIS/VOL10/Kimberlin% g/kimberling26.pdf} \point C.~Kimberling [2007], The equation {$m^2-4k=5n^2$} and unique representations of positive integers, {\em Fibonacci Quart.\/} {\bf 45}(4), 304--312 (2008), 2478613 (2009m:11040). \point C.~Kimberling [2008], Complementary equations and {W}ythoff sequences, {\em J. Integer Seq.\/} {\bf 11}(3), Article 08.3.3, 8, 2429960 (2009f:11030). \point H.~Kinder [1973], Gewinnstrategien des Anziehenden in einigen Spielen auf Graphen, {\em Arch. Math.\/} {\bf 24}, 332--336. \point M.~A. Kiwi, R.~Ndoundam, M.~Tchuente and E.~Goles [1994], No polynomial bound for the period of the parallel chip firing game on graphs, {\em Theoret. Comput. Sci.\/} {\bf 136}, 527--532. \point D.~A. Klarner, ed. [1998], {\em Mathematical recreations. A collection in honor of Martin Gardner\/}, Dover, Mineola, NY, Corrected reprint of {\it The Mathematical Gardner}, Wadsworth Internat., Belmont, CA, 1981. \point S.~Klav\v{z}ar and U.~Milutinovi\'{c} [1997], Graphs $S(n,k)$ and a variant of the tower of Hanoi problem, {\em Czechoslovak Math. J.\/} {\bf 47}, 95--104, MR1435608 (97k:05061). \point S.~Klav\v{z}ar and U.~Milutinovi\'{c} [2002], Simple explicit formulas for the Frame-Stewart numbers, {\em Ann. Comb.\/} {\bf 6}, 157--167, MR1955516 (2003k:05004). \point S.~Klav\v{z}ar, U.~Milutinovi\'{c} and C.~Petr [2001], Combinatorics of topmost discs of multi-peg tower of Hanoi problem, {\em Ars Combinatoria\/} {\bf 59}, 55--64, MR1832197 (2002b:05013). \point S.~Klav\v{z}ar, U.~Milutinovi\'{c} and C.~Petr [2002], On the Frame-Stewart algorithm for the multi-peg tower of Hanoi problem, {\em Discrete Appl. Math.\/} {\bf 120}, 141--157, MR1966398. \point M.~M. Klawe [1985], A tight bound for black and white pebbles on the pyramids, {\em J. Assoc. Comput. Mach.\/} {\bf 32}, 218--228. \point C.~S. Klein and S.~Minsker [1993], The super towers of Hanoi problem: large rings on small rings, {\em Discrete Math.\/} {\bf 114}, 283--295. \point D.~J. Kleitman and B.~L. Rothschild [1972], A generalization of Kaplansky's game, {\em Discrete Math.\/} {\bf 2}, 173--178. \point O.~Kloster [2007], A solution to the angel problem, {\em Theoret. Comput. Sci.\/} {\bf 389}(1-2), 152--161, 2363369 (2008j:91039). \newline\urlprefix\url{http://dx.doi.org/10.1016/j.tcs.2007.08.006} \point T.~Kl\o{v}e [1977], The modular $n$-queen problem, {\em Discrete Math.\/} {\bf 19}, 289--291. \point T.~Kl\o{v}e [1981], The modular $n$-queen problem II, {\em Discrete Math.\/} {\bf 36}, 33--48. \point K.~Knauer, P.~Micek and T.~Ueckerdt [2011], How to eat {$4/9$} of a pizza, {\em Discrete Math.\/} {\bf 311}(16), 1635--1645, 2806028 (2012e:91185). \newline\urlprefix\url{http://dx.doi.org/10.1016/j.disc.2011.03.015} \point A.~Knopfmacher and H.~Prodinger [2001], A Simple Card Guessing Game Revisited, {\em Electr. J. Combin.\/} {\bf 8(2)}, \#R13, 9 pp., Volume in honor of Aviezri S. Fraenkel, MR1853264 (2002g:05007). \newline\urlprefix\url{http://www.combinatorics.org/} \point M.~Knor [1996], On {R}amsey-type games for graphs, {\em Australas. J. Combin.\/} {\bf 14}, 199--206. \point D.~E. Knuth [1974], {\em Surreal Numbers\/}, Addison-Wesley, Reading, MA. \point D.~E. Knuth [1976], The computer as Master Mind, {\em J. Recr. Math.\/} {\bf 9}, 1--6. \point D.~E. Knuth [1977], Are toy problems useful?, {\em Popular Computing\/} {\bf 5 {\rm issue 1, 3-10; continued in {\bf 5} issue 2, 3-7}}. \point D.~E. Knuth [1993], {\em The Stanford Graph Base\rm{: A Platform for Combinatorial Computing}\/}, ACM Press, New York. \point D.~E. Knuth [1994], Leaper graphs, {\em Math. Gazette\/} {\bf 78}(483), 274--297. \point P.~Komj\'ath [1984], A simple strategy for the {R}amsey-game, {\em Studia Sci. Math. Hung.\/} {\bf 19}, 231--232. \point S.~C. Kontogiannis, P.~N. Panagopoulou and P.~G. Spirakis [2009], Polynomial algorithms for approximating {N}ash equilibria of bimatrix games, {\em Theoret. Comput. Sci.\/} {\bf 410}(17), 1599--1606, 2510266 (2010h:68217). \newline\urlprefix\url{http://dx.doi.org/10.1016/j.tcs.2008.12.033} \point G.~Kortsarz [2007], A lower bound for approximating the {G}rundy number, {\em Discrete Math. Theor. Comput. Sci.\/} {\bf 9}(1), 7--21 (electronic), 2282196 (2007m:05092). \point A.~Kotzig [1946], O $k$-posunutiach (On $k$-translations; in Slovakian), {\em \v Ca\-sop. pro P\v est. Mat. a Fys.\/} {\bf 71}, 55--61, extended abstract in French, pp. 62--66. \point G.~Kowalewski [1930], {\em Alte und neue mathematische Spiele\/}, Reprinted by Dr. Martin S\H andig oHG, Wiesbaden 1968. \point K.~Koyama and T.~W. Lai [1993], An optimal Mastermind strategy, {\em J. Recr. Math.\/} {\bf 25}, 251--256. \point M.~Kraitchik [1953], {\em Mathematical Recreations\/}, Dover, New York, NY, 2nd edn. \point D.~Kr\'{a}l, V.~Majerech, J.~Sgall, T.~Tich\'{y} and G.~Woeginger [2004], It is tough to be a plumber, {\em Theoret. Comp. Sci.\/} {\bf 313}, 473--484, special issue of Dagstuhl Seminar ``Algorithmic Combinatorial Game Theory'', Feb. 2002, MR2056940. \point W.~O. Krawec [2012], Analyzing $n$-player impartial games, {\em Int. J. Game Theory\/} {\bf 41}, 345--367. \point M.~Krivelevich and T.~Szab{\'o} [2008], Biased positional games and small hypergraphs with large covers, {\em Electron. J. Combin.\/} {\bf 15}(1), Research Paper 70, 13, 2411447 (2009h:91047). \newline\urlprefix\url{http://www.combinatorics.org/Volume_15/Abstracts/v15i1r% 70.html} \point I.~K{\v{r}}{\'{\i}}{\v{z}} [1985], Changes of the outcome of combinatorial games with differing number of prohibited repetitions, {\em Comment. Math. Univ. Carolin.\/} {\bf 26}(2), 363--372, 803934 (87h:90274). \point K.~Kruczek and E.~Sundberg [2008], A pairing strategy for tic-tac-toe on the integer lattice with numerous directions, {\em Electron. J. Combin.\/} {\bf 15}(1), Note 42, 6, 2465759 (2010c:91029). \newline\urlprefix\url{http://www.combinatorics.org/Volume_15/Abstracts/v15i1n% 42.html} \point K.~Kruczek and E.~Sundberg [2010], Potential-based strategies for tic-tac-toe on the integer lattice with numerous directions, {\em Electron. J. Combin.\/} {\bf 17}(1), Research Paper 5, 15, 2578900 (2011g:05204). \newline\urlprefix\url{http://www.combinatorics.org/Volume_17/Abstracts/v17i1r% 5.html} \point B.~Kummer [1980], {\em Spiele auf Graphen\/}, Internat. Series of Numerical Mathematics, Birkh\"auser Verlag, Basel. \point D.~Kunkle and G.~Cooperman [2007], Twenty-six moves suffice for {R}ubik's cube, in: {\em I{SSAC} 2007\/}, ACM, New York, pp. 235--242, 2402267 (2009c:20005). \newline\urlprefix\url{http://dx.doi.org/10.1145/1277548.1277581} \point D.~Kunkle and G.~Cooperman [2009], Harnessing parallel disks to solve {R}ubik's cube, {\em J. Symbolic Comput.\/} {\bf 44}(7), 872--890, 2522588 (2010g:05015). \newline\urlprefix\url{http://dx.doi.org/10.1016/j.jsc.2008.04.013} \point M.~Kutz [2005], Conway's angel in three dimensions, {\em Theoret. Comput. Sci.\/} {\bf 349}, 443--451, MR2183168 (2006h:91045). \point M.~Kutz and A.~P{\'o}r [2005], Angel, {D}evil, and {K}ing, in: {\em Computing and Combinatorics\/}, Vol. 3595 of {\em Lecture Notes in Comput. Sci.\/}, Springer, Berlin, pp. 925--934, Proc. COCOON, MR2190915 (2006g:91043). \point M.~Lachmann, C.~Moore and I.~Rapaport [2002], Who wins Domineering on rectangular boards?, in: {\em More Games of No Chance, \emph{Proc. MSRI Workshop on Combinatorial Games, July, 2000, Berkeley, CA, MSRI Publ.}\/} (R.~J. Nowakowski, ed.), Vol.~42, Cambridge University Press, Cambridge, pp. 307--315, MR1973019 (2004b:91047). \point R.~E. Ladner and J.~K. Norman [1985], Solitaire automata, {\em J. Comput. System Sci.\/} {\bf 30}, 116--129, MR 86i:68032. \point J.~C. Lagarias [1977], Discrete balancing games, {\em Bull. Inst. Math. Acad. Sinica\/} {\bf 5}, 363--373. \point J.~Lagarias and D.~Sleator [1999], Who wins mis\`{e}re Hex?, {\em {\rm in:} The Mathemagician and Pied Puzzler{\rm ,}\/} honoring Martin Gardner; E. Berlekamp and T. Rodgers, eds., A K Peters, Natick, MA, pp. 237-240. \point S.~P. Lalley [1988], A one-dimensional infiltration game, {\em Naval Res. Logistics\/} {\bf 35}, 441--446. \point P.~C.~B. Lam, W.~C. Shiu and B.~Xu [1999], Edge game-coloring of graphs, {\em Graph Theory Notes N. Y.\/} {\bf 37}, 17--19, MR1724310. \point T.~K. Lam [1997], Connected sprouts, {\em Amer. Math. Monthly\/} {\bf 104}, 116--119. \point H.~A. Landman [1996], Eyespace values in Go, in: {\em Games of No Chance, \emph{Proc. MSRI Workshop on Combinatorial Games, July, 1994, Berkeley, CA, MSRI Publ.}\/} (R.~J. Nowakowski, ed.), Vol.~29, Cambridge University Press, Cambridge, pp. 227--257, MR1427967 (97j:90100). \point H.~Landman [2002], A simple FSM-based proof of the additive periodicity of the Sprague-Grundy function of Wythoff's game, in: {\em More Games of No Chance, \emph{Proc. MSRI Workshop on Combinatorial Games, July, 2000, Berkeley, CA, MSRI Publ.}\/} (R.~J. Nowakowski, ed.), Vol.~42, Cambridge University Press, Cambridge, pp. 383--386, MR1973106 (2004b:91048). \point L.~Larson [1977], A theorem about primes proved on a chessboard, {\em Math. Mag.\/} {\bf 50}, 69--74. \point U.~Larsson [2009], 2-pile {N}im with a restricted number of move-size imitations, {\em Integers\/} {\bf 9}, G04, 671--690, With an appendix by Peter Hegarty, 2592547 (2011e:91054). \newline\urlprefix\url{http://dx.doi.org/10.1515/INTEG.2009.053} \point U.~Larsson [2011], Blocking {W}ythoff nim, {\em Electron. J. Combin.\/} {\bf 18}(1), Paper 120, 18, 2811089. \point U.~Larsson [2012], A Generalized Diagonal Wythoff Nim, {\em Integers, Electr. J. of Combinat. Number Theory\/} {\bf 12}, \#G02, 24 pp., Comb. Games Sect. \newline\urlprefix\url{http://www.integers-ejcnt.org/vol12.html} \point U.~Larsson [2012], The {*}-operator and invariant subtraction games, {\em Theoret. Comput. Sci.\/} {\bf 422}(1), 52--58. \point U.~Larsson [2013], Restrictions of $m$-Wythoff Nim and $p$-complementary Beatty Sequences, in: {\em Games of No Chance 4\/}, Cambridge University Press, to appear. \point U.~Larsson, P.~Hegarty and A.~S. Fraenkel [2011], Invariant and dual subtraction games resolving the {D}uch\^ene-{R}igo conjecture, {\em Theoret. Comput. Sci.\/} {\bf 412}(8-10), 729--735, 2796920 (2012d:91053). \newline\urlprefix\url{http://dx.doi.org/10.1016/j.tcs.2010.11.015} \point R.~Laskar, A.~McRae and C.~Wallis [2003], Domination in triangulated chessboard graphs, {\em Proceedings of the {T}hirty-{F}ourth {S}outheastern {I}nternational {C}onference on {C}ombinatorics, {G}raph {T}heory and {C}omputing\/}, Vol. 163, pp. 107--123, 2050563. \point R.~Laskar and C.~Wallis [1994], Domination parameters of graphs of three-class association schemes and variations of chessboard graphs, {\em Proceedings of the {T}wenty-fifth {S}outheastern {I}nternational {C}onference on {C}ombinatorics, {G}raph {T}heory and {C}omputing ({B}oca {R}aton, {FL}, 1994)\/}, Vol. 100, pp. 199--213, 1382320 (96k:05212). \point R.~Laskar and C.~Wallis [1999], Chessboard graphs, related designs, and domination parameters, {\em J. Statist. Plann. Inference\/} {\bf 76}(1-2), 285--294, 1673351 (2000g:05042). \newline\urlprefix\url{http://dx.doi.org/10.1016/S0378-3758(98)00132-3} \point R.~Laskar and C.~Wallis [2004], Domination and independence in the graph of the {$T_3$} association scheme and related chessboard graphs, {\em Proceedings of the {T}hirty-{F}ifth {S}outheastern {I}nternational {C}onference on {C}ombinatorics, {G}raph {T}heory and {C}omputing\/}, Vol. 167, pp. 109--120, 2122026 (2005i:05134). \point E.~Lasker [1931], {\em Brettspiele der V\"olker, R\"atsel und mathematische Spiele\/}, Berlin. \point M.~Latapy and C.~Magnien [2002], Coding distributive lattices with edge firing games, {\em Inform. Process. Lett.\/} {\bf 83}, 125--128, MR1837204 (2002h:37022). \point M.~Latapy and H.~D. Phan [2001], The lattice structure of chip firing games and related models, {\em Phys. D\/} {\bf 155}, 69--82, MR1837204 (2002h:37022). \point I.~Laval\'ee [1985], Note sur le probl\`eme des tours d'Hano\" {\i}, {\em Rev. Roumaine Math. Pures Appl.\/} {\bf 30}, 433--438. \point E.~L. Lawler and S.~Sarkissian [1995], An algorithm for ``Ulam's game'' and its application to error correcting codes, {\em Inform. Process. Lett.\/} {\bf 56}, 89--93. \point A.~J. Lazarus, D.~E. Loeb, J.~G. Propp, W.~R. Stromquist and D.~Ullman [1999], Combinatorial games under auction play, {\em Games Econom. Behav.\/} {\bf 27}, 229--264, MR1685133 (2001f:91023). \point A.~J. Lazarus, D.~E. Loeb, J.~G. Propp and D.~Ullman [1996], Richman Games, in: {\em Games of No Chance, \emph{Proc. MSRI Workshop on Combinatorial Games, July, 1994, Berkeley, CA, MSRI Publ.}\/} (R.~J. Nowakowski, ed.), Vol.~29, Cambridge University Press, Cambridge, pp. 439--449, MR1427981 (97j:90101). \point S.-G. Lee and J.-M. Yang [2006], Linear algebraic approach on real {$\sigma$}-game, {\em J. Appl. Math. Comput.\/} {\bf 21}(1-2), 295--305, MR2218803 (2006k:91056). \point D.~B. Leep and G.~Myerson [1999], Marriage, magic and solitaire, {\em Amer. Math. Monthly\/} {\bf 106}, 419--429. \point A.~Lehman [1964], A solution of the {S}hannon switching game, {\em J. Soc. Indust. Appl. Math.\/} {\bf 12}, 687--725, 0173250 (30 \#3463). \point E.~L. Leiss [1983], On restricted {H}anoi problems, {\em J. Combin. Inform. System Sci.\/} {\bf 8}, 277--285, MR783767 (86i:05072). \point E.~Leiss [1983], Solving the ``{T}owers of {H}anoi'' on graphs, {\em J. Combin. Inform. System Sci.\/} {\bf 8}, 81--89, MR783741 (86i:05071). \point E.~L. Leiss [1984], Finite {H}anoi problems: how many discs can be handled?, {\em Congr. Numer.\/} {\bf 44}, 221--229, Proc. 15th Southeastern Internat. Conf. on Combinatorics, Graph Theory and Computing (Baton Rouge, LA, 1984), MR777543 (87b:05062). \point J.~Lemoine and S.~Viennot [2012], Nimbers are inevitable, {\em Theoret. Comput. Sci.\/} {\bf 462}, 70--79. \point J.~Lemoine and S.~Viennot [2013], Computer Analysis of Sprouts with Nimbers, in: {\em Games of No Chance 4\/}, Cambridge University Press, to appear. \point T.~Lengauer and R.~Tarjan [1980], The space complexity of pebble games on trees, {\em Inform. Process. Lett.\/} {\bf 10}, 184--188. \point T.~Lengauer and R.~Tarjan [1982], Asymptotically tight bounds on time-space trade-offs in a pebble game, {\em J. Assoc. Comput. Mach.\/} {\bf 29}, 1087--1130. \point T.~Lengyel [2003], A Nim-type game and continued fractions, {\em Fibonacci Quart.\/} {\bf 41}, 310--320, MR2022411. \point J.~H.~W.~Lenstra [1977], On the algebraic closure of two, {\em Proc. Kon. Nederl. Akad. Wetensch. \emph{(Ser.~A)}\/} {\bf 80}, 389--396. \point J.~H.~W.~Lenstra [1977/1978], Nim multiplication, S\'eminaire de Th\'eorie des Nombres No. 11, Universit\'e de Bordeaux, France. \point L.~Levine [2006], Fractal sequences and restricted {N}im, {\em Ars Combin.\/} {\bf 80}, 113--127, MR2243082 (2007b:91029). \point D.~N.~L. Levy, H.~J. Berliner and E.~O. Thorpe [2009], {\em Computer Games, I, II\/}, Ishi Press, appeared first in 1988, by Levy, Springer. \point J.~Lewin [1986], The lion and man problem revisited, {\em J. Optimization Theory and Applications\/} {\bf 49}, 411--430. \point T.~Lewis and S.~Willard [1980], The rotating table, {\em Math. Mag.\/} {\bf 53}, 174--179. \point C.-K. Li and I.~Nelson [1998], Perfect codes on the towers of Hanoi graph, {\em Bull. Austral. Math. Soc.\/} {\bf 57}, 367--376. \point S.-Y.~R. Li [1974], Generalized impartial games, {\em Internat. J. Game Theory\/} {\bf 3}, 169--184, 0384170 (52 \#5047). \point S.~Y.~R. Li [1976], Sums of {Z}uchswang games, {\em J. Combinatorial Theory Ser. A\/} {\bf 21}(1), 52--67, 0426869 (54 \#14802). \point S.-Y.~R. Li [1977], $N$-person nim and $N$-person Moore's games, {\em Internat. J. Game Theory\/} {\bf 7}, 31--36. \point W.~Li, D.~Wu and F.~Pan [2012], A construction for doubly pandiagonal magic squares, {\em Discrete Math.\/} {\bf 312}(2), 479--485, 2852609. \newline\urlprefix\url{http://dx.doi.org/10.1016/j.disc.2011.09.031} \point D.~Lichtenstein [1982], Planar formulae and their uses, {\em SIAM J. Comput.\/} {\bf 11}, 329--343. \point D.~Lichtenstein and M.~Sipser [1980], Go is Polynomial-Space hard, {\em J. Assoc. Comput. Mach.\/} {\bf 27}, 393--401, earlier version appeared in Proc. 19th Ann. Symp. Foundations of Computer Science (Ann Arbor, MI, Oct. 1978), IEEE Computer Soc., Long Beach, CA, 1978, pp. 48--54. \point H.~Liebeck [1971], Some generalizations of the 14-15 puzzle, {\em Math. Mag.\/} {\bf 44}, 185--189. \point C.-W. Lim [2005], Partial Nim, {\em Integers, Electr. J. of Combinat. Number Theory\/} {\bf 5}, \#G02, 9 pp., Comb. Games Sect., MR2139165 (2005m:91046). \newline\urlprefix\url{http://www.integers-ejcnt.org/vol5.html} \point W.~Lin and X.~Zhu [2009], Circular game chromatic number of graphs, {\em Discrete Math.\/} {\bf 309}(13), 4495--4501, 2519188 (2010i:05127). \newline\urlprefix\url{http://dx.doi.org/10.1016/j.disc.2009.02.011} \point W.~A. Liu, H.~Li and B.~Li [2011], A restricted version of {W}ythoff's game, {\em Electron. J. Combin.\/} {\bf 18}(1), Paper 207, 17, 2853064. \point W.~A. Liu, H.~Li, Y.~Ma and B.~Li [2012], On supplements of $2\times m$ board in Toppling Towers, {\em Integers, Electr. J. of Combinat. Number Theory\/} {\bf 12}, \#G4, 19 pp. \point C.~L{\"o}ding and P.~Rohde [2003], Solving the sabotage game is {PSPACE}-hard, in: {\em Mathematical Foundations of Computer Science 2003\/}, Vol. 2747 of {\em Lecture Notes in Comput. Sci.\/}, Springer, Berlin, pp. 531--540, MR2081603. \point D.~E. Loeb [1995], How to win at Nim, {\em UMAP J.\/} {\bf 16}, 367--388. \point D.~E. Loeb [1996], Stable winning coalitions, in: {\em Games of No Chance, \emph{Proc. MSRI Workshop on Combinatorial Games, July, 1994, Berkeley, CA, MSRI Publ.}\/} (R.~J. Nowakowski, ed.), Vol.~29, Cambridge University Press, Cambridge, pp. 451--471. \point L.~Longpr{\'e} and P.~McKenzie [2009], The complexity of solitaire, {\em Theoret. Comput. Sci.\/} {\bf 410}(50), 5252--5260, Appeared first in {M}athematical foundations of computer science 2007, 182193, Lecture Notes in Comput. Sci., 4708, Springer, Berlin, 2007, 2573977 (2011b:91082). \newline\urlprefix\url{http://dx.doi.org/10.1016/j.tcs.2009.08.027} \point A.~M. Loosen [2008], Directional phutball, {\em Atl. Electron. J. Math.\/} {\bf 3}, 30--45, 2827227. \point J.~A.~M.~Lopez [1991], A prolog Mastermind program, {\em J. Recr. Math.\/} {\bf 23}, 81--93. \point R.~M. Low and M.~Stamp [2006], King and rook vs.\ king on a quarter-infinite board, {\em Integers, Electr. J. of Combinat. Number Theory\/} {\bf 6}, \#G3, 8 pp., MR2247807 (2007c:91038). \newline\urlprefix\url{http://www.integers-ejcnt.org/vol6.html} \point S.~Loyd [1914], {\em Cyclopedia of Puzzles and Tricks\/}, Franklin Bigelow Corporation, Morningside Press, NY, reissued and edited by M. Gardner under the name {\it The Mathematical Puzzles of Sam Loyd} (two volumes), Dover, New York, NY, 1959. \point X.~Lu [1986], A Hamiltonian game, {\em J. Math. Res. Exposition $($English Ed.$)$\/} {\bf 1}, 101--106. \point X.~Lu [1991], A matching game, {\em Discrete Math.\/} {\bf 94}, 199--207. \point X.~Lu [1992], A characterization on $n$-critical economical generalized tic-tac-toe games, {\em Discrete Math.\/} {\bf 110}, 197--203. \point X.~Lu [1992], Hamiltonian games, {\em J. Combin. Theory \emph{(Ser.~B)}\/} {\bf 55}, 18--32. \point X.~Lu [1995], A Hamiltonian game on $K_{n,n}$, {\em Discrete Math.\/} {\bf 142}, 185--191. \point X.~Lu [1995], A note on biased and non-biased games, {\em Discrete Appl. Math.\/} {\bf 60}, 285--291, Presented at ARIDAM VI and VII (New Brunswick, NJ, 1991/1992). \point X.-M. Lu [1986], Towers of Hanoi graphs, {\em Intern. J. Comput. Math.\/} {\bf 19}, 23--38. \point X.-M. Lu [1988], Towers of Hanoi problem with arbitrary $k\geq 3$ pegs, {\em Intern. J. Comput. Math.\/} {\bf 24}, 39--54. \point X.-M. Lu [1989], An iterative solution for the 4-peg towers of Hanoi, {\em Comput. J.\/} {\bf 32}, 187--189. \point X.-M. Lu and T.~S. Dillon [1994], A note on parallelism for the towers of Hanoi, {\em Math. Comput. Modelling\/} {\bf 20 {\rm issue 3}}, 1--6. \point X.-M. Lu and T.~S. Dillon [1995], Parallelism for multipeg towers of Hanoi, {\em Math. Comput. Modelling\/} {\bf 21 {\rm issue 3}}, 3--17. \point X.-M. Lu and T.~S. Dillon [1996], Nonrecursive solution to parallel multipeg towers of Hanoi: a decomposition approach, {\em Math. Comput. Modelling\/} {\bf 24 {\rm issue 3}}, 29--35. \point {\'E}.~Lucas [1960], {\em R\'{e}cr\'{e}ations Math\'{e}matiques\/}, Vol. I -- IV, A. Blanchard, Paris. Previous editions: Gauthier-Villars, Paris, 1891--1894. \point {\'E}.~Lucas [1974], {\em Introduction aux R\'{e}cr\'{e}ations Math\'{e}matiques: L'Arithm\'{e}\-tique Amusante\/}, reprinted by A. Blanchard, Paris. Originally published by A. Blanchard, Paris, 1895. \point A.~L. Ludington [1988], Length of the 7-number game, {\em Fibonacci Quart.\/} {\bf 26}, 195--204. \point A.~Ludington-Young [1990], Length of the $n$-number game, {\em Fibonacci Quart.\/} {\bf 28}, 259--265. \point W.~F. Lunnon [1986], The Reve's puzzle, {\em Comput. J.\/} {\bf 29}, 478. \point M.~Maamoun and H.~Meyniel [1987], On a game of policemen and robber, {\em Discrete Appl. Math.\/} {\bf 17}, 307--309. \point P.~A. MacMahon [1921], {\em New Mathematical Pastimes\/}, Cambridge University Press, Cambridge. \point F.~Maffray [1986], On kernels in $i$-triangulated graphs, {\em Discrete Math.\/} {\bf 61}, 247--251. \point F.~Maffray [1992], Kernels in perfect line-graphs, {\em J. Combin. Theory \break\emph{(Ser.~B)}\/} {\bf 55}, 1--8. \point C.~Magnien, H.~D. Phan and L.~Vuillon [2001], Characterization of lattices induced by (extended) chip firing games, {\em Discrete models: combinatorics, computation, and geometry $($Paris, 2001$)$, 229--244 $($electronic$)$, Discrete Math. and Theor. Comput. Sci. Proc.\/} pp. 229--244, MR1888776 (2003a:91029). \point R.~Mansfield [1996], Strategies for the Shannon switching game, {\em Amer. Math. Monthly\/} {\bf 103}, 250--252. \point D.~Marcu [1992], On finding a Grundy function, {\em Polytech. Inst. Bucharest Sci. Bull. Chem. Mater. Sci.\/} {\bf 54}, 43--47. \point G.~Martin [1991], {\em Polyominoes: Puzzles and Problems in Tiling\/}, Math. Assoc. America, Wasington, DC. \point G.~Martin [2002], Restoring fairness to Dukego, in: {\em More Games of No Chance, \emph{Proc. MSRI Workshop on Combinatorial Games, July, 2000, Berkeley, CA, MSRI Publ.}\/} (R.~J. Nowakowski, ed.), Vol.~42, Cambridge University Press, Cambridge, pp. 79--87, MR1973006 (2004c:91031). \point O.~Mart\'{\i}n-S\'{a}nchez and C.~Pareja-Flores [2001], Two reflected analyses of lights out, {\em Math. Mag.\/} {\bf 74}, 295--304. \point F.~M\"{a}ser [2002], Global threats in combinatorial games: a computational model with applications to chess endgames, in: {\em More Games of No Chance, \emph{Proc. MSRI Workshop on Combinatorial Games, July, 2000, Berkeley, CA, MSRI Publ.}\/} (R.~J. Nowakowski, ed.), Vol.~42, Cambridge University Press, Cambridge, pp. 137--149, MR1973010 (2004b:91049). \point A.~Mateescu, G.~P{\u{a}}un, G.~Rozenberg and A.~Salomaa [1995], Parikh prime words and {GO}-like territories, {\em J.UCS\/} {\bf 1}(12), 790--810 (electronic), 1392430 (97b:68113). \point A.~M{\'a}th{\'e} [2007], The angel of power 2 wins, {\em Combin. Probab. Comput.\/} {\bf 16}, 363--374, MR2312432 (2008a:91038). \point J.~G. Mauldon [1978], Num, a variant of nim with no first player win, {\em Amer. Math. Monthly\/} {\bf 85}, 575--578. \point R.~McConville [1974], {\em The History of Board Games\/}, Creative Publications, Palo Alto, CA. \point S.~K. McCurdy and R.~Nowakowski [2005], Cutthroat, an all-small game on graphs, {\em Integers, Electr. J of Combinat. Number Theory\/} {\bf 5(2)}, \#A13, 13 pp., MR2192091 (2006g:05076). \newline\urlprefix\url{http://www.integers-ejcnt.org/vol5(2).html} \point D.~P. McIntyre [1942], A new system for playing the game of nim, {\em Amer. Math. Monthly\/} {\bf 49}, 44--46. \point N.~A. McKay [2011], Canonical forms of uptimals, {\em Theoret. Comput. Sci.\/} {\bf 412}(52), 7122--7132, 2895141. \newline\urlprefix\url{http://dx.doi.org/10.1016/j.tcs.2011.09.021} \point N.~A. McKay, R.~J. Nowakowski and A.~A. Siegel [2010], The gods play maze, in: {\em Recreational {M}athematics {C}olloquium {I}\/}, Assoc. Ludus, Lisbon, pp. 153--159, 2807403. \point R.~McNaughton [1993], Infinite games played on finite graphs, {\em Ann. Pure Appl. Logic\/} {\bf 65}, 149--184. \point J.~W.~A.~McWorter [1981], Kriegspiel Hex, {\em Math. Mag.\/} {\bf 54}, 85--86, solution to Problem 1084 posed by the author in Math. Mag. {\bf 52} (1979) 317. \point E.~Mead, A.~Rosa and C.~Huang [1974], The game of SIM: A winning strategy for the second player, {\em Math. Mag.\/} {\bf 47}, 243--247. \point N.~Megiddo, S.~L. Hakimi, M.~R. Garey, D.~S. Johnson and C.~H. Papadimitriou [1988], The complexity of searching a graph, {\em J. Assoc. Comput. Mach.\/} {\bf 35}, 18--44. \point K.~Mehlhorn, S.~N\"aher and M.~Rauch [1990], On the complexity of a game related to the dictionary problem, {\em SIAM J. Comput.\/} {\bf 19}, 902--906, earlier draft appeared in Proc. 30th Ann. Symp. Foundations of Computer Science, pp. 546--548. \point A.~Mehrabian [2011], Lower bounds for the cop number when the robber is fast, {\em Combin. Probab. Comput.\/} {\bf 20}(4), 617--621, 2805400 (2012e:05253). \newline\urlprefix\url{http://dx.doi.org/10.1017/S0963548311000101} \point A.~Mehrabian [2011], The capture time of grids, {\em Discrete Math.\/} {\bf 311}(1), 102--105, 2737974 (2011i:05154). \newline\urlprefix\url{http://dx.doi.org/10.1016/j.disc.2010.10.002} \point N.~Mehta and {\'A}.~Seress [2011], Connected, bounded degree, triangle avoidance games, {\em Electron. J. Combin.\/} {\bf 18}(1), Paper 193, 37, 2836828. \point N.~S. Mendelsohn [1946], A psychological game, {\em Amer. Math. Monthly\/} {\bf 53}, 86--88. \point E.~Mendelson [2004], {\em Introducing game theory and its applications\/}, Discrete Mathematics and its Applications (Boca Raton), Chapman \& Hall/CRC, Boca Raton, FL, (Ch. 1 is on combinatorial games), MR2073442 (2005b:91003). \point C.~G. M\'endez [1981], On the law of large numbers, infinite games and category, {\em Amer. Math. Monthly\/} {\bf 88}, 40--42. \point K.~Meng, C.~Lin, W.~A. Liu and Y.~Yang [2011], {$Q$}-ary {R}\'enyi-{U}lam pathological liar game with one lie, {\em Discrete Appl. Math.\/} {\bf 159}(6), 478--483, 2765437 (2012c:91063). \newline\urlprefix\url{http://dx.doi.org/10.1016/j.dam.2010.12.021} \point C.~Merino [2001], The chip firing game and matroid complexes, {\em Discrete models: combinatorics, computation, and geometry $($Paris, 2001$)$ $($electronic$)$, Discrete Math. and Theor. Comput. Sci. Proc.\/} pp. 245--255, MR1888777 (2002k:91048). \point C.~Merino [2005], The chip-firing game, {\em Discrete Math.\/} {\bf 302}(1-3), 188--210, 2179643 (2007c:91036). \newline\urlprefix\url{http://dx.doi.org/10.1016/j.disc.2004.07.033} \point C.~{Merino L\'opez} [1997], Chip firing and the Tutte polynomial, {\em Ann. Comb.\/} {\bf 1}, 253--259, (C. Merino L\'opez = C.M. L\'opez = C. Merino is the same author), MR1630779 (99k:90232). \point G.~A. {Mesdal III} [2009], Partizan splittles, in: {\em Games of No Chance 3, \emph{Proc. BIRS Workshop on Combinatorial Games, July, 2005, Banff, Alberta, Canada, MSRI Publ.}\/} (M.~H. Albert and R.~J. Nowakowski, eds.), Vol.~56, Cambridge University Press, Cambridge, pp. 447--461. \point G.~A. Mesdal and P.~Ottaway [2007], Simplification of partizan games in mis\`ere play, {\em Integers, Electr. J of Combinat. Number Theory\/} {\bf 7}, \#G06, 12 pp.), (G. A. Mesdal designates the following authors: M. Allen, J. P. Grossman, A. Hill, N. A. McKay, R. J. Nowakowski, T. Plambeck, A. A. Siegel, D. Wolfe, who participated at the 2006 ``Games-at-Dal~4" (Dalhousie) conference), MR2299812 (2007k:91054). \newline\urlprefix\url{http://www.integers-ejcnt.org/vol7.html} \point D.~Mey [1994], Finite games for a predicate logic without contractions, {\em Theoret. Comput. Sci.\/} {\bf 123}, 341--349. \point F.~Meyer auf~der Heide [1981], A comparison of two variations of a pebble game on graphs, {\em Theoret. Comput. Sci.\/} {\bf 13}, 315--322. \point H.~Meyniel and J.-P. Roudneff [1988], The vertex picking game and a variation of the game of dots and boxes, {\em Discrete Math.\/} {\bf 70}, 311--313, MR0955128 (89f:05111). \point P.~Micek and B.~Walczak [2011], A graph-grabbing game, {\em Combin. Probab. Comput.\/} {\bf 20}(4), 623--629, 2805401 (2012d:05252). \newline\urlprefix\url{http://dx.doi.org/10.1017/S0963548311000071} \point P.~Micek and B.~Walczak [2012], Parity in graph sharing games, {\em Discrete Math.\/} {\bf 312}, 1788--1795. \point D.~Michie and I.~Bratko [1987], Ideas on knowledge synthesis stemming from the KBBKN endgame, {\em Internat. Comp. Chess Assoc. J.\/} {\bf 10}, 3--13. \point R.~Milley, R.~J. Nowakowski and P.~Ottaway [2012], Mis\`ere moniod of one-handed alternating games, {\em Integers\/} {\bf 12B}, A1, 12, in Proceedings of the Integers Conference 2011. \point J.~Milnor [1953], Sums of positional games, {\em Ann. of Math. Stud. \emph{(Contributions to the Theory of Games, H. W. Kuhn and A. W. Tucker, eds.), Princeton}\/} {\bf 2}(28), 291--301. \point P.~Min~Lin [1982], Principal partition of graphs and connectivity games, {\em J. Franklin Inst.\/} {\bf 314}, 203--210. \point S.~Minsker [1989], The towers of Hanoi rainbow problem: coloring the rings, {\em J. Algorithms\/} {\bf 10}, 1--19. \point S.~Minsker [1991], The towers of Antwerpen problem, {\em Inform. Process. Lett.\/} {\bf 38}, 107--111. \point J.~Missigman and R.~Weida [2001], An easy solution to mini lights out, {\em Math. Mag.\/} {\bf 74}, 57--59. \point D.~Moews [1991], Sums of games born on days 2 and 3, {\em Theoret. Comput. Sci. \emph{(Math Games)}\/} {\bf 91}, 119--128, MR1142561 (93b:90130). \point D.~Moews [1992], Pebbling graphs, {\em J. Combin. Theory \emph{(Ser.~B)}\/} {\bf 55}, 244--252. \point D.~Moews [1996], Coin-sliding and Go, {\em Theoret. Comput. Sci. \emph{(Math Games)}\/} {\bf 164}, 253--276. \point D.~Moews [1996], Infinitesimals and coin-sliding, in: {\em Games of No Chance, \emph{Proc. MSRI Workshop on Combinatorial Games, July, 1994, Berkeley, CA, MSRI Publ.}\/} (R.~J. Nowakowski, ed.), Vol.~29, Cambridge University Press, Cambridge, pp. 315--327. \point D.~Moews [1996], Loopy games and Go, in: {\em Games of No Chance, \emph{Proc. MSRI Workshop on Combinatorial Games, July, 1994, Berkeley, CA, MSRI Publ.}\/} (R.~J. Nowakowski, ed.), Vol.~29, Cambridge University Press, Cambridge, pp. 259--272, MR1427968 (98d:90152). \point D.~Moews [2002], The abstract structure of the group of games, in: {\em More Games of No Chance, \emph{Proc. MSRI Workshop on Combinatorial Games, July, 2000, Berkeley, CA, MSRI Publ.}\/} (R.~J. Nowakowski, ed.), Vol.~42, Cambridge University Press, Cambridge, pp. 49--57, MR1973004 (2004b:91034). \point M.~Montassier, A.~P{\^e}cher, A.~Raspaud, D.~B. West and X.~Zhu [2010], Decomposition of sparse graphs, with application to game coloring number, {\em Discrete Math.\/} {\bf 310}(10-11), 1520--1523, 2601259 (2011g:05244). \newline\urlprefix\url{http://dx.doi.org/10.1016/j.disc.2010.01.008} \point C.~Moore and D.~Eppstein [2002], 1-dimensional peg solitaire, and duotaire, in: {\em More Games of No Chance, \emph{Proc. MSRI Workshop on Combinatorial Games, July, 2000, Berkeley, CA, MSRI Publ.}\/} (R.~J. Nowakowski, ed.), Vol.~42, Cambridge University Press, Cambridge, pp. 341--350, MR1973022. \point E.~H. Moore [1909--1910], A generalization of the game called nim, {\em Ann. of Math. \emph{(Ser.~2)}\/} {\bf 11}, 93--94. \point A.~H. Moorehead and G.~Mott-Smith [1963], {\em Hoyle's Rules of Games\/}, Signet, New American Library. \point F.~L. Morris [1981], Playing disjunctive sums is polynomial space complete, {\em Internat. J. Game Theory\/} {\bf 10}, 195--205. \point D.~R. Morrison [1980], A {S}tolarsky array of {W}ythoff pairs, in: {\em A collection of manuscripts related to the {F}ibonacci sequence\/}, Fibonacci Assoc., Santa Clara, Calif., pp. 134--136, MR624110 (82j:05030). \point R.~E. Morrison, E.~J. Friedman and A.~S. Landsberg [2011], Combinatorial games with a pass: A dynamical systems approach, {\em Chaos 21, 043108 (2011); doi:10.1063/1.3650234\/} {\bf 21}. \point M.~Morse and G.~A. Hedlund [1944], Unending chess, symbolic dynamics and a problem in semigroups, {\em Duke Math. J.\/} {\bf 11}, 1--7. \point M.~M\"uller [2003], Conditional combinatorial games and their application to analyzing capturing races in Go, {\em Information Sciences\/} {\bf 154}, 189--202. \point M.~M\"uller and R.~Gasser [1996], Conditional combinatorial games and their application to analyzing capturing races in Go, in: {\em Games of No Chance, \emph{Proc. MSRI Workshop on Combinatorial Games, July, 1994, Berkeley, CA, MSRI Publ.}\/} (R.~J. Nowakowski, ed.), Vol.~29, Cambridge University Press, Cambridge, pp. 273--284. \point M.~M{\"u}ller and T.~Tegos [2002], Experiments in computer {A}mazons, in: {\em More games of no chance (Berkeley, CA, 2000)\/}, Vol.~42 of {\em Math. Sci. Res. Inst. Publ.\/}, Cambridge Univ. Press, Cambridge, pp. 243--260, MR1973016 (2004b:91050). \point D.~J. Mundfrom [1994], A problem in permutations: the game of `{M}ousetrap', {\em European J. Combin.\/} {\bf 15}(6), 555--560, 1302079 (95m:05015). \newline\urlprefix\url{http://dx.doi.org/10.1006/eujc.1994.1057} \point D.~Mundici [1991], Logic and algebra in {U}lam's searching game with lies, {\em Jbuch. Kurt-G\"odel-Ges.\/} pp. 109--114 (1993), MR1213606 (94j:03130). \point D.~Mundici [1992], The logic of {U}lam's game with lies, in: {\em Knowledge, Belief, and Strategic Interaction (Castiglioncello, 1989)\/}, Cambridge Stud. Probab. Induc. Decis. Theory, Cambridge Univ. Press, Cambridge, pp. 275--284, MR1206717 (94c:90133). \point D.~Mundici and T.~Trombetta [1997], Optimal comparison strategies in Ulam's searching game with two errors, {\em Theoret. Comput. Sci. \emph{(Math Games)}\/} {\bf 182}, 217--232. \point H.~J.~R. Murray [1952], {\em A History of Board Games Other Than Chess\/}, Oxford University Press. \point T.~M{\"u}tze and R.~Sp{\"o}hel [2011], On the path-avoidance vertex-coloring game, {\em Electron. J. Combin.\/} {\bf 18}(1), Paper 163, 33, 2831099. \point B.~Nadel [1990], Representation selection for constraint satisfaction: a case study using $n$-queens, {\em IEEE Expert\/} {\bf 5 {\rm issue 3}}, 16--23. \point H.~Nagamochi [2011], Cop-robber guarding game with cycle robber-region, {\em Theoret. Comput. Sci.\/} {\bf 412}(4-5), 383--390, 2778471 (2012b:05181). \newline\urlprefix\url{http://dx.doi.org/10.1016/j.tcs.2010.04.014} \point T.~Nakamura [2009], On counting liberties in capturing races of Go, in: {\em Games of No Chance 3, \emph{Proc. BIRS Workshop on Combinatorial Games, July, 2005, Banff, Alberta, Canada, MSRI Publ.}\/} (M.~H. Albert and R.~J. Nowakowski, eds.), Vol.~56, Cambridge University Press, Cambridge, pp. 177--196. \point T.~Nakamura [2013], Evaluating Territories of Go Positions with Capturing Races, in: {\em Games of No Chance 4\/}, Cambridge University Press, to appear. \point T.~Nakamura and E.~Berlekamp [2003], Analysis of composite corridors, {\em Proc. Intern. Conference on Computers and Games CG'2002, Edmonton, Alberta, Canada, July 2002,\/} (Y.~Bj\"{o}rnsson, M.~M\"{u}ller and J.~Schaeffer, eds.), Vol. LNCS 288, Lecture Notes in Computer Science, Springer, pp. 213--229. \point B.~Nalebuff [1989], The other person's envelope is always greener, {\em J. Economic Perspectives\/} {\bf 3 {\rm issue 1}}, 171--181. \point A.~Napier [1970], A new game in town, Empire Mag., Denver Post, May 2. \point Z.~Nedev [2008], Universal sets and the vector game, {\em Integers\/} {\bf 8}, A45, 5, 2472063 (2010b:91053). \point Z.~Nedev [2010], An {$O(n)$}-round strategy for the {M}agnus-{D}erek game, {\em Algorithms (Basel)\/} {\bf 3}(3), 244--254, 2725450. \newline\urlprefix\url{http://dx.doi.org/10.3390/a3030244} \point Z.~Nedev and S.~Muthukrishnan [2008], The {M}agnus-{D}erek game, {\em Theoret. Comput. Sci.\/} {\bf 393}(1-3), 124--132, 2397246 (2009h:91052). \newline\urlprefix\url{http://dx.doi.org/10.1016/j.tcs.2007.11.016} \point Z.~Nedev and A.~Quas [2008], Balanced sets and the vector game, {\em Int. J. Number Theory\/} {\bf 4}, 339--347, MR2424326. \point A.~Negro and M.~Sereno [1992], Solution of {U}lam's problem on binary search with three lies, {\em J. Combin. Theory Ser. A\/} {\bf 59}, 149--154, MR1141331 (92h:05013). \point A.~Negro and M.~Sereno [1992], Ulam's searching game with three lies, {\em Adv. in Appl. Math.\/} {\bf 13}, 404--428, MR1190120 (93i:90129). \point J.~Ne\v{s}et\v{r}il and E.~Sopena [2001], On the oriented game chromatic number, {\em Electr. J. Combin.\/} {\bf 8(2)}, \#R14, 13 pp., Volume in honor of Aviezri S. Fraenkel, MR1853265 (2002h:05069). \newline\urlprefix\url{http://www.combinatorics.org/} \point J.~Ne{\v{s}}et{\v{r}}il and R.~Thomas [1987], Well quasi-orderings, long games and a combinatorial study of undecidability, in: {\em Logic and combinatorics ({A}rcata, {C}alif., 1985)\/}, Vol.~65 of {\em Contemp. Math.\/}, Amer. Math. Soc., Providence, RI, pp. 281--293, 891254 (88i:03098). \newline\urlprefix\url{http://dx.doi.org/10.1090/conm/065/891254} \point S.~Neufeld and R.~J. Nowakowski [1993], A vertex-to-vertex pursuit game played with disjoint sets of edges, in: {\em Finite and Infinite Combinatorics in Sets and Logic\/} (N.~W. Sauer et~al., eds.), Kluwer, Dordrecht, pp. 299--312. \point S.~Neufeld and R.~J. Nowakowski [1998], A game of cops and robbers played on products of graphs, {\em Discrete Math.\/} {\bf 186}, 253--268. \point J.~Nievergelt, F.~Maeser, B.~Mann, K.~Roeseler, M.~Schulze and C.~Wirth [1999], CRASH! Mathematik und kombinatorisches Chaos prallen aufeinander, {\em Informatik Spektrum\/} {\bf 22}, 45--48, (German). \point G.~Nivasch [2006], The {S}prague-{G}rundy function of the game {E}uclid, {\em Discrete Math.\/} {\bf 306}(21), 2798--2800, MR2264378 (2007i:91039). \point G.~Nivasch [2009], More on the Sprague-Grundy function for Wythoff's game, in: {\em Games of No Chance 3, \emph{Proc. BIRS Workshop on Combinatorial Games, July, 2005, Banff, Alberta, Canada, MSRI Publ.}\/} (M.~H. Albert and R.~J. Nowakowski, eds.), Vol.~56, Cambridge University Press, Cambridge, pp. 377--410. \point I.~Niven [1988], Coding theory applied to a problem of Ulam, {\em Math. Mag.\/} {\bf 61}, 275--281. \point H.~Noon and G.~V. Brummelen [2006], The non-attacking queens game, {\em College Math. J.\/} {\bf 37}, 223--227. \point R.~J. Nowakowski [1991], $\ldots$, Welter's game, Sylver coinage, dots-and-boxes, $\ldots$, in: {\em Combinatorial Games, \emph{Proc. Symp. Appl. Math.}\/} (R.~K. Guy, ed.), Vol.~43, Amer. Math. Soc., Providence, RI, pp. 155--182. \point R.~J. Nowakowski and P.~Ottaway [2005], Vertex Deletion Games with Parity Rules, {\em Integers, Electr. J of Combinat. Number Theory\/} {\bf 5(2)}, \#A15, 16 pp., MR2192093. \newline\urlprefix\url{http://www.integers-ejcnt.org/vol5(2).html} \point R.~J. Nowakowski and P.~Ottaway [2011], Option-closed games, {\em Contrib. Discrete Math.\/} {\bf 6}(1), 142--153, 2800733 (2012e:91080). \point R.~J. Nowakowski and D.~G. Poole [1996], Geography played on products of directed cycles, in: {\em Games of No Chance, \emph{Proc. MSRI Workshop on Combinatorial Games, July, 1994, Berkeley, CA, MSRI Publ.}\/} (R.~J. Nowakowski, ed.), Vol.~29, Cambridge University Press, Cambridge, pp. 329--337. \point R.~J. Nowakowski and A.~A. Siegel [2007], {\em Partizan geography on $K_n\times K_2$\/}, de Gruyter, pp. 389--401, Proc.\ Integers Conference, Carrollton, Georgia, October 27-30,2005, in celebration of the 70th birthday of Ronald Graham. B.\ Landman, M.\ Nathanson, J.\ Ne\v{s}et\v{r}il, R.\ Nowakowski, C. Pomerance eds., appeared also in {\it Integers, Electr.\ J.\ of Combinat.\ Number Theory\/} {\bf 7(20)}, special volume in honor of Ron Graham, \#A29, 14 pp., MR2337063. \newline\urlprefix\url{http://www.integers-ejcnt.org/vol7(2).html} \point R.~Nowakowski and P.~Winkler [1983], Vertex-to-vertex pursuit in a graph, {\em Discrete Math.\/} {\bf 43}, 235--239. \point S.~P. Nudelman [1995], The modular $n$-queens problem in higher dimensions, {\em Discrete Math.\/} {\bf 146}, 159--167. \point T.~H. {O'Beirne} [1984], {\em Puzzles and Paradoxes\/}, Dover, New York, NY. (Appeared previously by Oxford University Press, London, 1965.). \point G.~L. {O'Brian} [1978-79], The graph of positions in the game of {SIM}, {\em J. Recr. Math.\/} {\bf 11}, 3--9. \point J.~Olson [1985], A balancing strategy, {\em J. Combin. Theory Ser. A\/} {\bf 40}, 175--178. \point T.~Ooya and J.~Akiyama [2003], Impact of binary and Fibonacci expansions of numbers on winning strategies for Nim-like games, {\em Internat. J. Math. Ed. Sci. Tech.\/} {\bf 34}, 121--128, MR1958736. \point H.~K. Orman [1996], Pentominoes: a first player win, in: {\em Games of No Chance, \emph{Proc. MSRI Workshop on Combinatorial Games, July, 1994, Berkeley, CA, MSRI Publ.}\/} (R.~J. Nowakowski, ed.), Vol.~29, Cambridge University Press, Cambridge, pp. 339--344. \point P.~R.~J. \"{O}sterg\aa rd and W.~D. Weakley [2001], Values of domination numbers of the queen's graph, {\em Electr. J. Combin.\/} {\bf 8(1)}, \#R29, 19 pp. \newline\urlprefix\url{http://www.combinatorics.org/} \point J.~Pach [1992], On the game of Misery, {\em Studia Sci. Math. Hungar.\/} {\bf 27}, 355--360. \point E.~W. Packel [1987], The algorithm designer versus nature: a game-theo\-re\-tic approach to information-based complexity, {\em J. Complexity\/} {\bf 3}, 244--257. \point C.~H. Papadimitriou [1985], Games against nature, {\em J. Comput. System Sci.\/} {\bf 31}, 288--301. \point C.~H. Papadimitriou [1994], {\em Computational Complexity\/}, Addison-Wesley, Chapter 19: Polynomial Space. \point C.~H. Papadimitriou [1994], On the complexity of the parity argument and other inefficient proofs of existence, {\em J. Comput. System Sci.\/} {\bf 48}(3), 498--532, 31st Annual Symposium on Foundations of Computer Science (FOCS) (St. Louis, MO, 1990), 1279412 (95j:68061). \newline\urlprefix\url{http://dx.doi.org/10.1016/S0022-0000(05)80063-7} \point C.~H. Papadimitriou, P.~Raghavan, M.~Sudan and H.~Tamaki [1994], Motion planning on a graph (extended abstract), {\em Proc. 35-th Annual IEEE Symp. on Foundations of Computer Science\/}, Santa Fe, NM, pp. 511--520. \point A.~Papaioannou [1982], A Hamiltonian game, {\em Ann. Discrete Math.\/} {\bf 13}, 171--178. \point T.~Pappas [1994], {\em The Magic of Mathematics\/}, Wide World, San Carlos. \point I.~Parberry [1997], An efficient algorithm for the knight's tour problem, {\em Discrete Appl. Math.\/} {\bf 73}(3), 251--260, 1438157 (98b:05066). \newline\urlprefix\url{http://dx.doi.org/10.1016/S0166-218X(96)00010-8} \point D.~Parlett [1999], {\em The Oxford History of Board Games\/}, Oxford University Press. \point T.~D. Parsons [1978], Pursuit-evasion in a graph, in: {\em Theory and Applications of Graphs\/} (Y.~Alavi and D.~R. Lick, eds.), Springer-Verlag, pp. 426--441. \point T.~D. Parsons [1978], The search number of a connected graph, {\em Proc. 9th South-Eastern Conf. on Combinatorics, Graph Theory, and Computing,\/}, pp. 549--554. \point O.~Patashnik [1980], Qubic: $4\times 4\times 4$ Tic-Tac-Toe, {\em Math. Mag.\/} {\bf 53}, 202--216. \point M.~B. Paterson and D.~R. Stinson [2010], Yet another hat game, {\em Electron. J. Combin.\/} {\bf 17}(1), Research Paper 86, 12, 2661389 (2011e:91055). \newline\urlprefix\url{http://www.combinatorics.org/Volume_17/Abstracts/v17i1r% 86.html} \point J.~L. Paul [1978], Tic-Tac-Toe in $n$ dimensions, {\em Math. Mag.\/} {\bf 51}, 45--49. \point W.~J. Paul, E.~J. Prauss and R.~Reischuk [1980], On alternation, {\em Acta Informatica\/} {\bf 14}, 243--255. \point W.~J. Paul and R.~Reischuk [1980], On alternation, II, {\em Acta Informatica\/} {\bf 14}, 391--403. \point W.~J. Paul, R.~E. Tarjan and J.~R. Celoni [1976/77], Space bounds for a game on graphs, {\em Math. Systems Theory\/} {\bf 10}, 239--251, correction ibid. {\bf 11} (1977/78), 85. First appeared in Eighth Annual ACM Symposium on Theory of Computing (Hershey, Pa., 1976), Assoc. Comput. Mach., New York, NY, 1976, pp 149--160. \point M.~M. Paulhus [1999], Beggar my neighbour, {\em Amer. Math. Monthly\/} {\bf 106}, 162--165. \point S.~Payne and E.~Robeva [2013], Artificial Intelligence for Bidding Hex, in: {\em Games of No Chance 4\/}, Cambridge University Press, to appear. \point J.~Pearl [1980], Asymptotic properties of minimax trees and game-sear\-ching procedures, {\em Artificial Intelligence\/} {\bf 14}, 113--138. \point J.~Pearl [1984], {\em Heuristics: Intelligent Search Strategies for Computer Problem Solving\/}, Addison-Wesley, Reading, MA. \point A.~Pedrotti [2002], Playing by searching: two strategies against a linearly bounded liar, {\em Theoret. Comput. Sci.\/} {\bf 282}, 285--302, special "Fun With Algorithms" issue, MR1909053 (2003m:91010). \point A.~Peke\v{c} [1996], A winning strategy for the Ramsey graph game, {\em Combin. Probab. Comput.\/} {\bf 5}, 267--276. \point A.~Pelc [1986], Lie patterns in search procedures, {\em Theoret. Comput. Sci.\/} {\bf 47}, 61--69, MR871464 (88b:68020). \point A.~Pelc [1987], Solution of Ulam's problem on searching with a lie, {\em J. Combin. Theory \emph{(Ser.~A)}\/} {\bf 44}, 129--140. \point A.~Pelc [1988], Prefix search with a lie, {\em J. Combin. Theory \emph{(Ser.~A)}\/} {\bf 48}, 165--173. \point A.~Pelc [1989], Detecting errors in searching games, {\em J. Combin. Theory Ser. A\/} {\bf 51}(1), 43--54, 993647 (90e:90152). \newline\urlprefix\url{http://dx.doi.org/10.1016/0097-3165(89)90075-7} \point A.~Pelc [2002], Searching games with errors---fifty years of coping with liars, {\em Theoret. Comput. Sci. \emph{(Math Games)}\/} {\bf 270}, 71--109, MR1871067 (2002h:68040). \point D.~H. Pelletier [1987], Merlin's magic square, {\em Amer. Math. Monthly\/} {\bf 94}, 143--150. \point H.~Peng and C.~H. Yan [1998], Balancing game with a buffer, {\em Adv. in Appl. Math.\/} {\bf 21}, 193--204. \point Y.~Peres, O.~Schramm, S.~Sheffield and D.~B. Wilson [2007], Random-turn Hex and other selection games, {\em Amer. Math. Monthly\/} {\bf 114}, 373--387. \point G.~L. Peterson [1979], Press-Ups is Pspace-complete, Dept. of Computer Science, The University of Rochester, Rochester New York, 14627, unpublished manuscript. \point G.~L. Peterson and J.~H. Reif [1979], Multiple-person alternation, {\em Proc. 20th Ann. Symp. Foundations Computer Science \emph{(San Juan, Puerto Rico, Oct. 1979)}\/}, IEEE Computer Soc., Long Beach, CA, pp. 348--363. \point M.~Petkovi{\'c} [1997], {\em Mathematics and chess\/}, Dover Publications Inc., Mineola, NY, 110 entertaining problems and solutions, 1474728 (98j:00003). \point C.~Pickover [2002], The fractal society, {\em {\rm in:} Puzzler's Tribute: a Feast for the Mind{\rm ,}\/} pp. 377--381, honoring Martin Gardner (D. Wolfe and T. Rodgers, eds.), A K Peters, Natick, MA. \point O.~Pikhurko [2003], Breaking symmetry on complete bipartite graphs of odd size, {\em Integers, Electr. J. of Combinat. Number Theory\/} {\bf 3}, \#G4, 9 pp., Comb. Games Sect., MR2036488 (2004k:05117). \newline\urlprefix\url{http://www.integers-ejcnt.org/vol3.html} \point N.~Pippenger [1980], Pebbling, {\em Proc. 5th IBM Symp. Math. Foundations of Computer Science\/}, IBM, Japan, 19 pp. \point N.~Pippenger [1982], Advances in pebbling, {\em Proc. 9th Internat. Colloq. Automata, Languages and Programming, \emph{Lecture Notes in Computer Science}\/} (M.~Nielson and E.~M. Schmidt, eds.), Vol. 140, Springer Verlag, New York, NY, pp. 407--417. \point T.~E. Plambeck [1992], Daisies, Kayles, and the Sibert--Conway decomposition in mis\`ere octal games, {\em Theoret. Comput. Sci. \emph{(Math Games)}\/} {\bf 96}, 361--388, MR1160551 (93c:90108). \point T.~E. Plambeck [2005], Taming the wild in impartial combinatorial games, {\em Integers, Electr. J. of Combinat. Number Theory\/} {\bf 5}, \#G5(1), 36 pp., Comb. Games Sect., MR2192253 (2006g:91044). \newline\urlprefix\url{http://www.integers-ejcnt.org/vol5.html} \point T.~Plambeck [2009], Advances in losing, in: {\em Games of No Chance 3, \emph{Proc. BIRS Workshop on Combinatorial Games, July, 2005, Banff, Alberta, Canada, MSRI Publ.}\/} (M.~H. Albert and R.~J. Nowakowski, eds.), Vol.~56, Cambridge University Press, Cambridge, pp. 57--89. \point T.~E. Plambeck [2009], {\em Misere play of G-A-R-D-N-R, the G4G7 heptagon game, {\rm in: Mathematical Wizardry for a Gardner, Volume honoring Martin Gardner}\/}, A K Peters, Natick, MA, pp. 107--113, E. Pegg Jr, A. H. Schoen, and T. Rodgers, eds. \point T.~E. Plambeck and A.~N. Siegel [2008], Mis\`ere quotients for impartial games, {\em J. Combin. Theory Ser. A\/} {\bf 115}, 593--622, 2407915 (2009m:91036). \point V.~Pless [1991], Games and codes, in: {\em Combinatorial Games, \emph{Proc. Symp. Appl. Math.}\/} (R.~K. Guy, ed.), Vol.~43, Amer. Math. Soc., Providence, RI, pp. 101--110. \point A.~Pluh\'{a}r [2002], The accelerated $k$-in-a-row game, {\em Theoret. Comput. Sci. \emph{(Math Games)}\/} {\bf 270}, 865--875, MR1871100 (2002i:05017). \point R.~Polizzi and F.~Schaefer [1991], {\em Spin Again\/}, Chronicle Books. \point G.~P\'{o}lya [1921], {\em \"{U}ber die ``doppelt-periodischen'' L\"{o}sungen des $n$-Damen-Problems, in: W. Ahrens, Mathematische Unterhaltungen und Spiele, Vol. {\rm 1}\/}, B.G. Teubner, Leipzig, 1918, pp. 364--374, also appeared in vol. IV of P\'{o}lya's Collected Works, MIT Press, Cambridge, London, 1984 (G.-C Rota ed.), pp. 237-247. \point D.~Poole [1992], The bottleneck towers of Hanoi problem, {\em J. Recr. Math.\/} {\bf 24}, 203--207. \point D.~G. Poole [1994], The towers and triangles of Professor Claus (or, Pascal knows Hanoi), {\em Math. Mag.\/} {\bf 67}, 323--344. \point P.~Pra{\l}at [2010], When does a random graph have constant cop number?, {\em Australas. J. Combin.\/} {\bf 46}, 285--296, 2598712 (2011f:05291). \point O.~Pretzel [2002], Characterization of simple edge-firing games, {\em Inform. Process. Lett.\/} {\bf 84}, 235--236, MR1931725 (2003i:05128). \point D.~Pritchard [1994], {\em The Family Book of Games\/}, Sceptre Books, Time-Life Books, Brockhampton Press. \point J.~Propp [1994], A new take-away game, in: {\em The Lighter Side of Mathematics, \emph{Proc. E. Strens Memorial Conf. on Recr. Math. and its History, Calgary, 1986, Spectrum Series}\/} (R.~K. Guy and R.~E. Woodrow, eds.), Math. Assoc. of America, Washington, DC, pp. 212--221. \point J.~Propp [1994], Further ant-ics, {\em Math. Intelligencer\/} {\bf 16}, 37--42, 1251666 (94m:05020). \newline\urlprefix\url{http://dx.doi.org/10.1007/BF03026614} \point J.~Propp [1996], About David Richman (Prologue to the paper by J. D. Lazarus et al.), in: {\em Games of No Chance, \emph{Proc. MSRI Workshop on Combinatorial Games, July, 1994, Berkeley, CA, MSRI Publ.}\/} (R.~J. Nowakowski, ed.), Vol.~29, Cambridge University Press, Cambridge, p. 437. \point J.~Propp [2000], Three-player impartial games, {\em Theoret. Comput. Sci. \emph{(Math Games)}\/} {\bf 233}, 263--278, MR1732189 (2001i:91040). \point J.~Propp and D.~Ullman [1992], On the cookie game, {\em Internat. J. Game Theory\/} {\bf 20}, 313--324, MR1163932 (93b:90131). \point P.~Pudl\'ak and J.~Sgall [1997], An upper bound for a communication game related to time-space tradeoffs, in: {\em The Mathematics of Paul Erd\H os\/} (R.~L. Graham and J.~Ne\v{s}et\v{r}il, eds.), Vol.~I, Springer, Berlin, pp. 393--399. \point A.~Pultr and F.~L. Morris [1984], Prohibiting repetitions makes playing games substantially harder, {\em Internat. J. Game Theory\/} {\bf 13}(1), 27--40, 741584 (86i:90133). \newline\urlprefix\url{http://dx.doi.org/10.1007/BF01769863} \point A.~Pultr and J.~{\'U}lehla [1985], Remarks on strategies in combinatorial games, {\em Discrete Appl. Math.\/} {\bf 12}(2), 165--173, 808457 (87c:90243). \newline\urlprefix\url{http://dx.doi.org/10.1016/0166-218X(85)90070-8} \point Y.~Qing and J.~J. Watkins [2006], Knight's tours for cubes and boxes, {\em Proceedings of the {T}hirty-{S}eventh {S}outheastern {I}nternational {C}onference on {C}ombinatorics, {G}raph {T}heory and {C}omputing\/}, Vol. 181, pp. 41--48, 2311267 (2007m:05148). \point A.~Quilliot [1983], Discrete pursuit games, {\em Congr. Numer.\/} {\bf 38}, 227--241, Proc. 13th Southeastern Conf. on Combinatorics, Graph Theory and Computing, Boca Raton, FL, 1982. \point A.~Quilliot [1985], A short note about pursuit games played on a graph with a given genus, {\em J. Combin. Theory Ser. B\/} {\bf 38}(1), 89--92, 782627 (86g:05088). \newline\urlprefix\url{http://dx.doi.org/10.1016/0095-8956(85)90093-0} \point A.~Quilliot [1986], Some results about pursuit games on metric spaces obtained through graph theory techniques, {\em European J. Combin.\/} {\bf 7}(1), 55--66, 850144 (87i:90381). \point M.~O. Rabin [1957], Effective computability of winning strategies, {\em Ann. of Math. Stud. \emph{(Contributions to the Theory of Games), Princeton}\/} {\bf 3}(39), 147--157. \point M.~O. Rabin [1976], Probabilistic algorithms, {\em Proc. Symp. on New Directions and Recent Results in Algorithms and Complexity\/} (J.~F. Traub, ed.), Carnegie-Mellon, Academic Press, New York, NY, pp. 21--39. \point I.~Rajasingh, B.~Rajan and J.~Punitha [2007], Kernel in cycle related graphs, {\em Int. J. Math. Comput. Sci.\/} {\bf 2}, 147--153, 2345016 (2008g:05086). \point P.~Manuel, I.~Rajasingh, B.~Rajan and J.~Punitha [2009], Kernel in oriented circulant graphs, in: {\em Combinatorial algorithms\/}, Vol. 5874 of {\em Lecture Notes in Comput. Sci.\/}, Springer, Berlin, pp. 396--407, 2577955. \point D.~Ratner and M.~Warmuth [1990], The $(n\sp 2-1)$-puzzle and related relocation problems, {\em J. Symbolic Comput.\/} {\bf 10}, 111--137. \point B.~Ravikumar [2004], Peg-solitaire, string rewriting systems and finite automata, {\em Theoret. Comput. Sci.\/} {\bf 321}, 383--394, Appeared first under same title in Proc. 8th Internat. Symp. Algorithms and Computation, Singapore, 233-242, 1997, MR 2005e:68119, MR2076153 (2005e:68119). \point B.~Ravikumar and K.~B. Lakshmanan [1982], Coping with known patterns of lies in a search game, in: {\em Foundations of software technology and theoretical computer science {\rm (}Bangalore, 1982{\rm )}\/}, Nat. Centre Software Develop. Comput. Tech., Bombay, pp. 363--377, MR678245 (83m:68114). \point B.~Ravikumar and K.~B. Lakshmanan [1984], Coping with known patterns of lies in a search game, {\em Theoret. Comput. Sci.\/} {\bf 33}, 85--94. \point J.~W.~S. Rayleigh [1937], {\em The {T}heory of {S}ound\/}, MacMillan, London, 1st ed. 1877, 2nd ed. 1894, reprinted 1928,1929,1937. There is also a Dover 1945 publication, which is a reprint of the 2nd. The ``sound" equivalent of Beatty's theorem, is stated, without proof, in sect.~92a, pp.~122-123, in the 1937 reprint of the 2nd ed., the only one I saw. Kevin O'Bryant told me that he checked the 1st edition and the statement is not there, MR0016009 (7,500e). \point N.~Reading [1999], Nim-regularity of graphs, {\em Electr. J. Combinatorics\/} {\bf 6}, \#R11, 8 pp. \newline\urlprefix\url{http://www.combinatorics.org/} \point M.~Reichling [1987], A simplified solution of the $N$ queens' problem, {\em Inform. Process. Lett.\/} {\bf 25}, 253--255. \point J.~H. Reif [1984], The complexity of two-player games of incomplete information, {\em J. Comput. System Sci.\/} {\bf 29}, 274--301, earlier draft entitled Universal games of incomplete information, appeared in Proc. 11th Ann. ACM Symp. Theory of Computing (Atlanta, GA, 1979), Assoc. Comput. Mach., New York, NY, pp. 288--308. \point S.~Reisch [1980], Gobang ist PSPACE-vollst\"andig, {\em Acta Informatica\/} {\bf 13}, 59--66. \point S.~Reisch [1981], Hex ist PSPACE-vollst\"andig, {\em Acta Informatica\/} {\bf 15}, 167--191. \point M.~Reiss [1857], Beitr\"age zur Theorie des Solit\"ar-Spiels, {\em Crelles Journal\/} {\bf 54}, 344--379. \point P.~Rendell [2001], {\em {\rm Turing universality of the game of life, in:} Collision-Based Computing\/}, Springer Verlag, London, UK, pp. 513 -- 539. \point C.~S. ReVelle and K.~E. Rosing [2000], Defendens imperium romanum [Defending the Roman Empire]: a classical problem in military strategy, {\em Amer. Math. Monthly\/} {\bf 107}, 585--594. \point M.~Richardson [1953], Extension theorems for solutions of irreflexive relations, {\em Proc. Nat. Acad. Sci. USA\/} {\bf 39}, 649. \point M.~Richardson [1953], Solutions of irreflexive relations, {\em Ann. of Math.\/} {\bf 58}, 573--590. \point R.~D. Ringeisen [1974], Isolation, a game on a graph, {\em Math. Mag.\/} {\bf 47}, 132--138. \point R.~L. Rivest, A.~R. Meyer, D.~J. Kleitman, K.~Winklman and J.~Spencer [1980], Coping with errors in binary search procedures, {\em J. Comput. System Sci.\/} {\bf 20}, 396--404. \point I.~Rivin, I.~Vardi and P.~Zimmermann [1994], The $n$-queens problem, {\em Amer. Math. Monthly\/} {\bf 101}, 629--639. \point I.~Rivin and R.~Zabih [1992], A dynamic programming solution to the $N$-queens problem, {\em Inform. Process. Lett.\/} {\bf 41}, 253--256. \point E.~Robertson and I.~Munro [1978], NP-completeness, puzzles and games, {\em Utilitas Math.\/} {\bf 13}, 99--116. \point A.~G. Robinson and A.~J. Goldman [1989], The set coincidence game: complexity, attainability, and symmetric strategies, {\em J. Comput. System Sci.\/} {\bf 39}, 376--387. \point A.~G. Robinson and A.~J. Goldman [1990], On Ringeisen's isolation game, {\em Discrete Math.\/} {\bf 80}, 297--312. \point A.~G. Robinson and A.~J. Goldman [1990], On the set coincidence game, {\em Discrete Math.\/} {\bf 84}, 261--283. \point A.~G. Robinson and A.~J. Goldman [1991], On Ringeisen's isolation game, II, {\em Discrete Math.\/} {\bf 90}, 153--167. \point A.~G. Robinson and A.~J. Goldman [1993], The isolation game for regular graphs, {\em Discrete Math.\/} {\bf 112}, 173--184. \point J.~M. Robson [1983], The complexity of Go, {\em Proc. Information Processing \emph{83}\/} (R.~E.~A. Mason, ed.), Elsevier, Amsterdam, pp. 413--417. \point J.~M. Robson [1984], Combinatorial games with exponential space complete decision problems, in: {\em Mathematical foundations of computer science, 1984 ({P}rague, 1984)\/}, Vol. 176 of {\em Lecture Notes in Comput. Sci.\/}, Springer, Berlin, pp. 498--506, 783481. \newline\urlprefix\url{http://dx.doi.org/10.1007/BFb0030333} \point J.~M. Robson [1984], $N$ by $N$ checkers is Exptime complete, {\em SIAM J. Comput.\/} {\bf 13}, 252--267. \point J.~M. Robson [1985], Alternation with restrictions on looping, {\em Inform. and Control\/} {\bf 67}, 2--11. \point E.~Y. Rodin [1989], A pursuit-evasion bibliography -- version 2, {\em Comput. Math. Appl.\/} {\bf 18}, 245--320. \point J.~S. Rohl [1983], A faster lexicographical $n$-queens algorithm, {\em Inform. Process. Lett.\/} {\bf 17}, 231--233. \point J.~S. Rohl and T.~D. Gedeon [1986], The Reve's puzzle, {\em Comput. J.\/} {\bf 29}, 187--188, Corrigendum, {\it Ibid.} {\bf 31} (1988), 190. \point I.~Roizen and J.~Pearl [1983], A minimax algorithm better than alpha-beta? Yes and no, {\em Artificial Intelligence\/} {\bf 21}, 199--220. \point I.~Rosenholtz [1993], Solving some variations on a variant of Tic-Tac-Toe using invariant subsets, {\em J. Recr. Math.\/} {\bf 25}, 128--135. \point A.~S.~C. Ross [1953], The name of the game of Nim, Note 2334, {\em Math. Gaz.\/} {\bf 37}, 119--120. \point A.~E. Roth [1978], A note concerning asymmetric games on graphs, {\em Naval Res. Logistics\/} {\bf 25}, 365--367. \point A.~E. Roth [1978], Two-person games on graphs, {\em J. Combin. Theory Ser. B\/} {\bf 24}(2), 238--241, 486149 (80c:90159). \newline\urlprefix\url{http://dx.doi.org/10.1016/0095-8956(78)90026-6} \point T.~Roth [1974], The tower of Brahma revisited, {\em J. Recr. Math.\/} {\bf 7}, 116--119. \point E.~M. Rounds and S.~S. Yau [1974], A winning strategy for SIM, {\em J. Recr. Math.\/} {\bf 7}, 193--202. \point W.~L. Ruzzo [1980], Tree-size bounded alternation, {\em J. Comput. Systems Sci.\/} {\bf 21}, 218--235. \point S.~Sackson [1969], {\em A Gamut of Games\/}, Random House. \point I.~Safro and L.~Segel [2003], Collective stochastic versions of playable games as metaphors for complex biosystems: team Connect Four, {\em Complexity\/} {\bf 8 {\rm issue 5}}, 46--55, MR2018947. \point M.~Saks and A.~Wigderson [1986], Probabilistic Boolean decision trees and the complexity of evaluating game trees, {\em Proc. 27th Ann. Symp. Foundations of Computer Science \emph{(Toronto, Ont., Canada)}\/}, IEEE Computer Soc., Washington, DC, pp. 29--38. \point D.~Samet, I.~Samet and D.~Schmeidler [2004], One observation behind two-envelope puzzles, {\em Amer. Math. Monthly\/} {\bf 111}, 347--351, MR2057189 (2005e:00005). \point C.~P. dos Santos [2011], Embedding processes in combinatorial game theory, {\em Discrete Appl. Math.\/} {\bf 159}(8), 675--682, 2782625 (2012d:91054). \newline\urlprefix\url{http://dx.doi.org/10.1016/j.dam.2010.11.019} \point C.~P.~d. Santos and J.~N. Silva [2008], Konane has infinite {N}im-dimension, {\em Integers\/} {\bf 8}, G2, 6, 2393375 (2008k:91052). \point A.~Sapir [2004], The tower of Hanoi with forbidden moves, {\em Comput. J.\/} {\bf 47}, 20--24. \point U.~K. Sarkar [2000], On the design of a constructive algorithm to solve the multi-peg towers of Hanoi problem, {\em Theoret. Comput. Sci. \emph{(Math Games)}\/} {\bf 237}, 407--421, MR1756218 (2001k:05025). \point R.~Savani and B.~von Stengel [2006], Hard-to-solve bimatrix games, {\em Econometrica\/} {\bf 74}, 397--429. \point M.~Sato [1972], Grundy functions and linear games, {\em Publ. Res. Inst. Math. Sciences, \emph{Kyoto Univ.}\/} {\bf 7}, 645--658. \point F.~Scarioni and H.~G. Speranza [1984], A probabilistic analysis of an error-correcting algorithm for the Towers of Hanoi puzzle, {\em Inform. Process. Lett.\/} {\bf 18}, 99--103. \point W.~L. Schaaf [1955, 1970, 1973, 1978], {\em A Bibliography of Recreational Mathematics\/}, Vol. I -- IV, Nat'l. Council of Teachers of Mathematics, Reston, VA. \point T.~J. Schaefer [1976], Complexity of decision problems based on finite two-person perfect information games, {\em Proc. 8th Ann. ACM Symp. Theory of Computing \emph{(Hershey, PA, 1976)}\/}, Assoc. Comput. Mach., New York, NY, pp. 41--49. \point T.~J. Schaefer [1978], On the complexity of some two-person perfect-in\-for\-ma\-tion games, {\em J. Comput. System Sci.\/} {\bf 16}, 185--225. \point J.~Schaeffer, N.~Burch, Y.~Bj{\"o}rnsson, A.~Kishimoto, M.~M{\"u}ller, R.~Lake, P.~Lu and S.~Sutphen [2007], Checkers is solved, {\em Science\/} {\bf 317}(5844), 1518--1522, MR2348441. \point J.~Schaeffer and R.~Lake [1996], Solving the game of checkers, in: {\em Games of No Chance, \emph{Proc. MSRI Workshop on Combinatorial Games, July, 1994, Berkeley, CA, MSRI Publ.}\/} (R.~J. Nowakowski, ed.), Vol.~29, Cambridge University Press, Cambridge, pp. 119--133. \newline\urlprefix\url{http://www.msri.org/publications/books/Book29/files/sch% aeffer.ps.gz} \point U.~Schauz [2009], Mr. {P}aint and {M}rs. {C}orrect, {\em Electron. J. Combin.\/} {\bf 16}(1), Research Paper 77, 18, 2515754 (2010i:91064). \newline\urlprefix\url{http://www.combinatorics.org/Volume_16/Abstracts/v16i1r% 77.html} \point U.~Schauz [2011], Colorings and nowhere-zero flows of graphs in terms of {B}erlekamp's switching game, {\em Electron. J. Combin.\/} {\bf 18}(1), Paper 65, 33, 2788682 (2012e:05254). \point M.~Scheepers [1994], Variations on a game of Gale (II): Markov strategies, {\em Theoret. Comput. Sci. \emph{(Math Games)}\/} {\bf 129}, 385--396. \point D.~Schleicher and M.~Stoll [2006], An introduction to {C}onway's games and numbers, {\em Mosc. Math. J.\/} {\bf 6}(2), 359--388, 407, MR2270619 (2007m:91033). \point G.~Schmidt and T.~Str\"ohlein [1985], On kernels of graphs and solutions of games: a synopsis based on relations and fixpoints, {\em SIAM J. Alg. Disc. Math.\/} {\bf 6}, 54--65. \point R.~W. Schmittberger [1992], {\em New Rules for Classic Games\/}, Wiley, New York. \point G.~Schrage [1985], A two-dimensional generalization of Grundy's game, {\em Fibonacci Quart.\/} {\bf 23}, 325--329. \point H.~Schubert [1953], {\em Mathematische Mussestunden\/}, De Gruyter, Berlin, neubearbeitet von F. Fitting, Elfte Auflage. \point F.~Schuh [1952], Spel van delers (The game of divisors), {\em Nieuw Tijdschrift voor Wiskunde\/} {\bf 39}, 299--304. \point F.~Schuh [1968], {\em The Master Book of Mathematical Recreations\/}, Dover, New York, NY, translated by F. G\"obel, edited by T. H. O'Beirne. \point U.~Schwalbe and P.~Walker [2001], Zermelo and the early history of game theory, {\em Games Econom. Behav.\/} {\bf 34}(1), 123--137, With an appendix by Ernst Zermelo, translated from German by the authors, 1895174 (2003a:01019). \newline\urlprefix\url{http://dx.doi.org/10.1006/game.2000.0794} \point B.~L. Schwartz [1971], Some extensions of Nim, {\em Math. Mag.\/} {\bf 44}, 252--257. \point B.~L. Schwartz, ed. [1979], {\em Mathematical solitaires and games\/}, Baywood Publishing Company, Farmingdale, NY, pp. 37--81. \point A.~J. Schwenk [1970], Take-away games, {\em Fibonacci Quart.\/} {\bf 8}, 225--234. \point A.~J. Schwenk [1991], Which rectangular chessboards have a knight's tour?, {\em Math. Mag.\/} {\bf 64}, 325--332, MR1141559 (93c:05081). \point A.~J. Schwenk [2000], What is the correct way to seed a knockout tournament?, {\em Amer. Math. Monthly\/} {\bf 107}, 140--150. \point R.~S. Scorer, P.~M. Grundy and C.~A.~B. Smith [1944], Some binary games, {\em Math. Gaz.\/} {\bf 280}, 96--103. \point A.~Scott and U.~Stege [2008], Parameterized chess, in: {\em Parameterized and exact computation\/}, Vol. 5018 of {\em Lecture Notes in Comput. Sci.\/}, Springer, Berlin, pp. 172--189, 2503563 (2010f:68062). \newline\urlprefix\url{http://dx.doi.org/10.1007/978-3-540-79723-4_17} \point A.~Scott and U.~Stege [2010], Parameterized pursuit-evasion games, {\em Theoret. Comput. Sci.\/} {\bf 411}(43), 3845--3858, 2779755 (2012c:68102). \newline\urlprefix\url{http://dx.doi.org/10.1016/j.tcs.2010.07.004} \point S.~Seager [2012], Locating a robber on a graph, {\em Discrete Math.\/} {\bf 312}, 3265--3269. \point M.~Sereno [1998], Binary search with errors and variable cost queries, {\em Inform. Process. Lett.\/} {\bf 68}, 261--270, MR1664741 (99i:68026). \point {\'A}.~Seress [1992], On Hajnal's triangle-free game, {\em Graphs Combin.\/} {\bf 8}, 75--79. \point {\'A}.~Seress and T.~Szab\'o [1999], On Erd\"os' Eulerian trail game, {\em Graphs Combin.\/} {\bf 15}, 233--237. \point J.~Sgall [2001], Solution of David Gale's lion and man problem, {\em Theoret. Comput. Sci. \emph{(Math Games)}\/} {\bf 259}, 663--670, MR1832815 (2002b:91025). \point L.~E. Shader [1978], Another strategy for SIM, {\em Math. Mag.\/} {\bf 51}, 60--64. \point L.~E. Shader and M.~L. Cook [1980], A winning strategy for the second player in the game {T}ri-tip, {\em Proc. Tenth S.E. Conference on Computing, Combinatorics and Graph Theory\/}, Utilitas, Winnipeg. \point A.~S. Shaki [1979], Algebraic solutions of partizan games with cycles, {\em Math. Proc. Camb. Phil. Soc.\/} {\bf 85}, 227--246. \point A.~Shamir, R.~L. Rivest and L.~M. Adleman [1981], Mental Poker, in: {\em The Mathematical Gardner\/} (D.~A. Klarner, ed.), Wadsworth Internat., Belmont, CA, pp. 37--43. \point A.~Shankar and M.~Sridharan [2005], New temparatures in Domineering, {\em Integers, Electr. J. of Combinat. Number Theory\/} {\bf 5}, \#G04, 13 pp., Comb. Games Sect., MR2139167 (2006c:91036). \newline\urlprefix\url{http://www.integers-ejcnt.org/vol5.html} \point C.~E. Shannon [1950], Programming a computer for playing chess, {\em Philos. Mag. {\rm(}Ser. 7{\rm)}\/} {\bf 41}, 256--275, MR0034095 (11,543f). \point A.~Shapovalov [2011], Occupation games on graphs in which the second player takes almost all vertices, {\em Discrete Appl. Math.\/} {\bf 159}(15), 1526--1527, 2823909 (2012f:05202). \newline\urlprefix\url{http://dx.doi.org/10.1016/j.dam.2011.03.002} \point K.~Shelton [2007], {\em The game of take turn\/}, de Gruyter, pp. 413--430, Proc.\ Integers Conference, Carrollton, Georgia, October 27-30,2005, in celebration of the 70th birthday of Ronald Graham. B.\ Landman, M.\ Nathanson, J.\ Ne\v{s}et\v{r}il, R.\ Nowakowski, C. Pomerance eds., appeared also in {\it Integers, Electr.\ J.\ of Combinat.\ Number Theory\/} {\bf 7(20)}, special volume in honor of Ron Graham, \#A31, 18 pp., MR2337065. \newline\urlprefix\url{http://www.integers-ejcnt.org/vol7(2).html} \point A.~Shen [2000], Lights out, {\em Math. Intelligencer\/} {\bf 22 {\rm issue 3}}, 20--21. \point R.~Sheppard and J.~Wilkinson [1995], {\em Strategy Games: A Collection Of 50 Games \& Puzzles To Stimulate Mathematical Thinking\/}, Parkwest Publications. \point G.~J. Sherman [1978], A child's game with permutations, {\em Math. Mag.\/} {\bf 51}, 67--68. \point Z.~Shi, W.~Goddard, S.~T. Hedetniemi, K.~Kennedy, R.~Laskar and A.~McRae [2005], An algorithm for partial {G}rundy number on trees, {\em Discrete Math.\/} {\bf 304}(1-3), 108--116, 2184451 (2006h:05223). \newline\urlprefix\url{http://dx.doi.org/10.1016/j.disc.2005.09.008} \point W.~L. Sibert and J.~H. Conway [1992], Mathematical {K}ayles, {\em Internat. J. Game Theory\/} {\bf 20}(3), 237--246, 1146325. \newline\urlprefix\url{http://dx.doi.org/10.1007/BF01253778} \point G.~Sicherman [2002], Theory and practice of Sylver coinage, {\em Integers, Electr. J. of Combinat. Number Theory\/} {\bf 2}, \#G2, 8 pp., Comb. Games Sect., MR1934618 (2003h:05026). \newline\urlprefix\url{http://www.integers-ejcnt.org/vol2.html} \point N.~Sieben [2004], Hexagonal polyomino weak {$(1,2)$}-achievement games, {\em Acta Cybernet.\/} {\bf 16}(4), 579--585, MR2104074. \point N.~Sieben [2004], Snaky is a 41-dimensional winner, {\em Integers, Electr. J. of Combinat. Number Theory\/} {\bf 4}, \#G5, 4 pp., Comb. Games Sect., MR2116011. \newline\urlprefix\url{http://www.integers-ejcnt.org/vol4.html} \point N.~Sieben [2008], Polyominoes with minimum site-perimeter and full set achievement games, {\em European J. Combin.\/} {\bf 29}(1), 108--117, MR2368619 (2008j:05092). \newline\urlprefix\url{http://dx.doi.org/10.1016/j.ejc.2006.12.008} \point N.~Sieben [2008], Proof trees for weak achievement games, {\em Integers, Electr. J of Combinat. Number Theory\/} {\bf 8}, G07, 18, MR2472080 (2010b:91054). \point N.~Sieben and E.~Deabay [2005], Polyomino weak achievement games on 3-dimensional rectangular boards, {\em Discrete Math.\/} {\bf 290}, 61--78, MR2117357 (2005h:05044). \point A.~N. Siegel [2000], Combinatorial Game Suite, a software tool for investigating games. \newline\urlprefix\url{http://cgsuite.sourceforge.net/} \point A.~N. Siegel [2006], Reduced canonical forms of stoppers, {\em Electron. J. Combin.\/} {\bf 13}(1), \#R57, 14 pp., MR2240763 (2007b:91030). \newline\urlprefix\url{http://www.combinatorics.org/} \point A.~N. Siegel [2009], Backsliding Toads and Frogs, in: {\em Games of No Chance 3, \emph{Proc. BIRS Workshop on Combinatorial Games, July, 2005, Banff, Alberta, Canada, MSRI Publ.}\/} (M.~H. Albert and R.~J. Nowakowski, eds.), Vol.~56, Cambridge University Press, Cambridge, pp. 197--214. \point A.~N. Siegel [2009], Coping with cycles, in: {\em Games of No Chance 3, \emph{Proc. BIRS Workshop on Combinatorial Games, July, 2005, Banff, Alberta, Canada, MSRI Publ.}\/} (M.~H. Albert and R.~J. Nowakowski, eds.), Vol.~56, Cambridge University Press, Cambridge, pp. 91--123. \point A.~N. Siegel [2009], New results in loopy games, in: {\em Games of No Chance 3, \emph{Proc. BIRS Workshop on Combinatorial Games, July, 2005, Banff, Alberta, Canada, MSRI Publ.}\/} (M.~H. Albert and R.~J. Nowakowski, eds.), Vol.~56, Cambridge University Press, Cambridge, pp. 215--232. \point A.~N. Siegel [2013], Mis\`ere Canonical Forms of Partizan Games, in: {\em Games of No Chance 4\/}, Cambridge University Press, to appear. \point A.~N. Siegel [2013], Mis\`ere Games and Mis\`ere Quotients, in: {\em Games of No Chance 4\/}, Cambridge University Press, to appear. \point A.~N. Siegel [2013], The Structure and Classification of Mis\`ere Quotients, in: {\em Games of No Chance 4\/}, Cambridge University Press, to appear. \point R.~Silber [1976], A Fibonacci property of Wythoff pairs, {\em Fibonacci Quart.\/} {\bf 14}, 380--384. \point R.~Silber [1977], Wythoff's Nim and Fibonacci representations, {\em Fibonacci Quart.\/} {\bf 15}, 85--88. \point J.-N.~O. Silva [1993], Some game bounds depending on birthdays, {\em Portugaliae Math.\/} {\bf 50}, 353--358. \point R.~Silver [1967], The group of automorphisms of the game of 3-dimensional ticktacktoe, {\em Amer. Math. Monthly\/} {\bf 74}, 247--254. \point D.~L. Silverman [1971], {\em Your Move\/}, McGraw-Hill. \point G.~J. Simmons [1969], The game of SIM, {\em J. Recr. Math.\/} {\bf 2}, 66. \point D.~Singmaster [1981], Almost all games are first person games, {\em Eureka\/} {\bf 41}, 33--37. \point D.~Singmaster [1982], Almost all partizan games are first person and almost all impartial games are maximal, {\em J. Combin. Inform. System Sci.\/} {\bf 7}, 270--274. \point D.~Singmaster [1999], Some diophantine recreations, {\em {\rm in:} The Mathemagician and Pied Puzzler{\rm ,}\/} honoring Martin Gardner; E. Berlekamp and T. Rodgers, eds., A K Peters, Natick, MA, pp. 219-235. \point A.~Sinko and P.~J. Slater [2006], Efficient domination in knights graphs, {\em AKCE Int. J. Graphs Comb.\/} {\bf 3}(2), 193--204, 2285466 (2007m:05190). \point A.~Sinko and P.~J. Slater [2008], Queen's domination using border squares and {$(A,B)$}-restricted domination, {\em Discrete Math.\/} {\bf 308}(20), 4822--4828, 2438189 (2009f:05208). \newline\urlprefix\url{http://dx.doi.org/10.1016/j.disc.2007.08.065} \point W.~Slany [2001], The complexity of graph Ramsey games, {\em Proc. Intern. Conference on Computers and Games CG'2000\/} (T.~Marsland and I.~Frank, eds.), Vol. 2063, Hamamatsu, Japan, Oct.\ 2000, Lecture Notes in Computer Science, Springer, pp. 186--203, MR1909610. \point W.~Slany [2002], Endgame problems of Sim-like graph Ramsey avoidance games are PSPACE-complete, {\em Theoret. Comput. Sci. \emph{(Math Games)}\/} {\bf 289}, 829--843, MR1933803 (2003h:05177). \point C.~A.~B. Smith [1966], Graphs and composite games, {\em J. Combinatorial Theory\/} {\bf 1}, 51--81, reprinted in slightly modified form in: {\it A Seminar on Graph Theory} (F. Harary, ed.), Holt, Rinehart and Winston, New York, NY, 1967, pp. 86-111, 0194362 (33 \#2572). \point C.~A.~B. Smith [1968], Compound games with counters, {\em J. Recr. Math.\/} {\bf 1}, 67--77. \point C.~A.~B. Smith [1971], Simple game theory and its applications, {\em Bull. Inst. Math. Appl.\/} {\bf 7}, 352--357. \point D.~E. Smith and C.~C. Eaton [1911], Rithmomachia, the great medieval number game, {\em Amer. Math. Montly\/} {\bf 18}, 73--80. \point F.~Smith and P.~St\u{a}nic\u{a} [2002], Comply/constrain games or games with a Muller twist, {\em Integers, Electr. J. of Combinat. Number Theory\/} {\bf 2}, \#G3, 10 pp., Comb. Games Sect., MR1945951 (2003i:91029). \newline\urlprefix\url{http://www.integers-ejcnt.org/vol2.html} \point R.~Smullyan [2005], G\"{o}delian puzzles, {\em {\rm in:} Tribute to a Mathemagician{\rm ,}\/} honoring Martin Gardner (B. Cipra, E. D. Demaine, M. L. Demaine and T. Rodgers, eds.), A K Peters, Wellesley, MA, pp. 49-54. \point R.~G. Snatzke [2002], Exhaustive search in Amazons, in: {\em More Games of No Chance, \emph{Proc. MSRI Workshop on Combinatorial Games, July, 2000, Berkeley, CA, MSRI Publ.}\/} (R.~J. Nowakowski, ed.), Vol.~42, Cambridge University Press, Cambridge, pp. 261--278, MR1973017. \point M.~Soltys and C.~Wilson [2011], On the complexity of computing winning strategies for finite poset games, {\em Theory Comput. Syst.\/} {\bf 48}(3), 680--692, 2770813 (2012e:91016). \newline\urlprefix\url{http://dx.doi.org/10.1007/s00224-010-9254-y} \point R.~Sosic and J.~Gu [1990], A polynomial time algorithm for the $n$-queens problem, {\em SIGART\/} {\bf 1 {\rm issue 3}}, 7--11. \point J.~Spencer [1977], Balancing games, {\em J. Combinatorial Theory Ser. B\/} {\bf 23}(1), 68--74, 0526057 (58 \#26058). \point J.~Spencer [1984], Guess a number with lying, {\em Math. Mag.\/} {\bf 57}, 105--108. \point J.~Spencer [1986], Balancing vectors in the max norm, {\em Combinatorica\/} {\bf 6}, 55--65. \point J.~Spencer [1991], Threshold spectra via the {E}hrenfeucht game, {\em Discrete Appl. Math.\/} {\bf 30}(2-3), 235--252, ARIDAM III (New Brunswick, NJ, 1988), 1095377 (92b:03040). \newline\urlprefix\url{http://dx.doi.org/10.1016/0166-218X(91)90048-2} \point J.~Spencer [1992], Ulam's searching game with a fixed number of lies, {\em Theoret. Comput. Sci. \emph{(Math Games)}\/} {\bf 95}, 307--321. \point J.~Spencer [1994], Randomization, derandomization and antirandomization: three games, {\em Theoret. Comput. Sci. \emph{(Math Games)}\/} {\bf 131}, 415--429. \point W.~L. Spight [2001], Extended thermography for multiple kos in {G}o, {\em Theoret. Comput. Sci.\/} {\bf 252}(1-2), 23--43, Computer and games (Tsukuba, 1998), 1806224 (2001k:91041). \newline\urlprefix\url{http://dx.doi.org/10.1016/S0304-3975(00)00075-X} \point W.~L. Spight [2002], Go thermography: the {$4/21/98$} {J}iang-{R}ui endgame, in: {\em More games of no chance ({B}erkeley, {CA}, 2000)\/}, Vol.~42 of {\em Math. Sci. Res. Inst. Publ.\/}, Cambridge Univ. Press, Cambridge, pp. 89--105, 1973007 (2004d:91050). \point E.~L. Spitznagel, Jr. [1967], A new look at the fifteen puzzle, {\em Math. Mag.\/} {\bf 40}, 171--174. \point E.~L. Spitznagel, Jr. [1973], Properties of a game based on Euclid's algorithm, {\em Math. Mag.\/} {\bf 46}, 87--92. \point M.~Z. Spivey [2009], Staircase rook polynomials and {C}ayley's game of {M}ousetrap, {\em European J. Combin.\/} {\bf 30}(2), 532--539, 2489284 (2010f:05016). \newline\urlprefix\url{http://dx.doi.org/10.1016/j.ejc.2008.04.005} \point R.~Sprague [1935--36], \"Uber mathematische Kampfspiele, {\em T\^oho\-ku Math. J.\/} {\bf 41}, 438--444. \point R.~Sprague [1937], \"Uber zwei Abarten von Nim, {\em T\^ohoku Math. J.\/} {\bf 43}, 351--354. \point R.~Sprague [1947], Bemerkungen \"uber eine spezielle Abelsche Gruppe, {\em Math. Z.\/} {\bf 51}, 82--84. \point R.~Sprague [1961], {\em Unterhaltsame Mathematik\/}, Vieweg and Sohn, Braunschweig, Paperback reprint, translation by T. H. O'Beirne: {\it Recreation in Mathematics}, Blackie, 1963. \point R.~G. Stanton [2004], Some design theory games, {\em Bull. Inst. Combin. Appl.\/} {\bf 41}, 61--63. \point H.~Steinhaus [1960], Definitions for a theory of games and pursuit, {\em Naval Res. Logistics\/} {\bf 7}, 105--108. \point V.~N. Stepanenko [1975], Grundy games under conditions of semidefiniteness, {\em Cybernetics\/} {\bf 11}, 167--172 (trans. of {\it Kibernetika} {\bf 11} (1975) 145--149). \point B.~M. Stewart [1939], Problem 3918 ($k$-peg tower of Hanoi), {\em Amer. Math. Monthly\/} {\bf 46}, 363, solution by J. S. Frame, {\it ibid.} {\bf 48} (1941) 216--217; by the proposer, {\it ibid.} 217--219. \point F.~Stewart [2007], The sequential join of combinatorial games, {\em Integers, Electr. J. of Combinat. Number Theory\/} {\bf 7}, \#G03, 10 pp., MR2299809. \newline\urlprefix\url{http://www.integers-ejcnt.org/vol7.html} \point I.~Stewart [1971], Solid knight’s tours, {\em J. Recr. Math.\/} {\bf 4}(1), 1. \point I.~Stewart [1991], Concentration: a winning strategy, {\em Sci. Amer.\/} {\bf 265}, 167--172, October issue. \point I.~Stewart [2000], Hex marks the spot, {\em Sci. Amer.\/} {\bf 283}, 100--103, September issue. \point L.~Stiller [1988], Massively parallel retrograde analysis, Tech. Rep. BU-CS TR88--014, Comp. Sci. Dept., Boston University. \point L.~Stiller [1989], Parallel analysis of certain endgames, {\em Internat. Comp. Chess Assoc. J.\/} {\bf 12}, 55--64. \point L.~Stiller [1991], Group graphs and computational symmetry on massively parallel architecture, {\em J. Supercomputing\/} {\bf 5}, 99--117. \point L.~Stiller [1996], Multilinear algebra and chess endgames, in: {\em Games of No Chance, \emph{Proc. MSRI Workshop on Combinatorial Games, July, 1994, Berkeley, CA, MSRI Publ.}\/} (R.~J. Nowakowski, ed.), Vol.~29, Cambridge University Press, Cambridge, pp. 151--192. \point D.~L. Stock [1989], Merlin's magic square revisited, {\em Amer. Math. Monthly\/} {\bf 96}, 608--610. \point L.~J. Stockmeyer and A.~K. Chandra [1979], Provably difficult combinatorial games, {\em SIAM J. Comput.\/} {\bf 8}(2), 151--174, 529587 (80d:68060). \newline\urlprefix\url{http://dx.doi.org/10.1137/0208013} \point P.~K. Stockmeyer [1994], Variations on the four-post Tower of Hanoi puzzle, {\em Congr. Numer.\/} {\bf 102}, 3--12, Proc. 25th Southeastern Internat. Conf. on Combinatorics, Graph Theory and Computing (Boca Raton, FL, 1994). \point P.~K. Stockmeyer [1999], The average distance between nodes in the cyclic Tower of Hanoi digraph, {\em Combinatorics, Graph Theory, and Algorithms, Vol. I, II $($Kalamazoo, MI, 1996$)$\/}, New Issues Press, Kalamazoo, MI, pp. 799--808. \point P.~K. Stockmeyer [2005], The Tower of Hanoi: a bibliography, {\em Internet publication\/} 38 pp. \newline\urlprefix\url{http://www.cs.wm.edu/$\sim$pkstoc/{hpapers}.html} \point P.~K. Stockmeyer, C.~D. Bateman, J.~W. Clark, C.~R. Eyster, M.~T. Harrison, N.~A. Loehr, P.~J. Rodriguez and J.~R. {Simmons III} [1995], Exchanging disks in the tower of Hanoi, {\em Intern. J. Computer Math.\/} {\bf 59}, 37--47. \point K.~B. Stolarsky [1976], Beatty sequences, continued fractions, and certain shift operators, {\em Canad. Math. Bull.\/} {\bf 19}, 473--482, MR0444558 (56 \#2908). \point K.~B. Stolarsky [1977], A set of generalized {F}ibonacci sequences such that each natural number belongs to exactly one, {\em Fibonacci Quart.\/} {\bf 15}, 224, MR0472674 (57 \#12369). \point K.~B. Stolarsky [1991], From {W}ythoff's {N}im to {C}hebyshev's inequality, {\em Amer. Math. Monthly\/} {\bf 98}(10), 889--900, MR1137536 (93b:90132). \point J.~A. Storer [1983], On the complexity of chess, {\em J. Comput. System Sci.\/} {\bf 27}(1), 77--100, 730916 (85g:68030). \newline\urlprefix\url{http://dx.doi.org/10.1016/0022-0000(83)90030-2} \point W.~E. Story [1879], Notes on the "15" puzzle, {\em Amer. J. Math.\/} {\bf 2}, 399--404. \point P.~D. Straffin, Jr. [1985], Three-person winner-take-all games with McCarthy's revenge rule, {\em College J. Math.\/} {\bf 16}, 386--394. \point P.~D. Straffin [1993], {\em Game Theory and Strategy\/}, New Mathematical Library, MAA, Washington, DC. \point P.~D. Straffin, Jr. [1995], Position graphs for Pong Hau K'i and Mu Torere, {\em Math. Mag.\/} {\bf 68}, 382--386. \point T.~Str\"ohlein and L.~Zagler [1977], Analyzing games by Boolean matrix iteration, {\em Discrete Math.\/} {\bf 19}, 183--193. \point W.~Stromquist [2007], Winning paths in {$N$}-by-infinity hex, {\em Integers, Electr. J. of Combinat. Number Theory\/} {\bf 7}, \#G05, 3 pp., MR2299811. \newline\urlprefix\url{http://www.integers-ejcnt.org/vol7.html} \point W.~Stromquist and D.~Ullman [1993], Sequential compounds of combinatorial games, {\em Theoret. Comput. Sci.\/} {\bf 119}(2), 311--321, 1244296 (94k:90171). \newline\urlprefix\url{http://dx.doi.org/10.1016/0304-3975(93)90162-M} \point K.~Sugihara and I.~Suzuki [1989], Optimal algorithms for a pursuit-evasion problem in grids, {\em SIAM J. Disc. Math.\/} {\bf 2}, 126--143. \point X.~Sun [2002], Improvements on Chomp, {\em Integers, Electr. J. of Combinat. Number Theory\/} {\bf 2}, \#G1, 8 pp., Comb. Games Sect., MR1917957 (2003e:05015). \newline\urlprefix\url{http://www.integers-ejcnt.org/vol2.html} \point X.~Sun [2005], Wythoff's sequence and $N$-heap Wythoff's conjectures, {\em Discrete Math.\/} {\bf 300}, 180--195, MR2170125. \point X.~Sun and D.~Zeilberger [2004], On Fraenkel's $N$-heap Wythoff's conjectures, {\em Ann. Comb.\/} {\bf 8}, 225--238, MR2079933 (2005e:91039). \point K.~Sutner [1988], Additive automata on graphs, {\em Complex Systems\/} {\bf 2}, 649--661, MR987520 (90k:68127). \point K.~Sutner [1988], On $\sigma$-automata, {\em Complex Systems\/} {\bf 2}, 1--28. \point K.~Sutner [1989], Linear cellular automata and the Garden-of-Eden, {\em Math. Intelligencer\/} {\bf 11}, 49--53. \point K.~Sutner [1990], The $\sigma$-game and cellular automata, {\em Amer. Math. Monthly\/} {\bf 97}, 24--34. \point K.~Sutner [1995], On the computational complexity of finite cellular automata, {\em J. Comput. System Sci.\/} {\bf 50}, 87--97. \point K.~Sutner [2001], Decomposition of additive cellular automata, {\em Complex Systems\/} {\bf 13}, 245--270, MR1916041 (2003e:37016). \point K.~J. Swanepoel [2000], Balancing unit vectors, {\em J. Combin. Theory \emph{(Ser.~A)}\/} {\bf 89}, 105--112. \point Z.~Szaniszlo, M.~Tomova and C.~Wyels [2009], The {$N$}-queens problem on a symmetric {T}oeplitz matrix, {\em Discrete Math.\/} {\bf 309}, 969--974, 2502208 (2010d:05023). \newline\urlprefix\url{http://dx.doi.org/10.1016/j.disc.2008.01.042} \point M.~Szegedy [1999], In how many steps the $k$ peg version of the towers of Hanoi game can be solved?, in: {\em STACS 99, Trier, Lecture Notes in Computer Science\/}, Vol. 1563, Springer, Berlin, pp. 356--361. \point G.~J. Sz{\'e}kely and M.~L. Rizzo [2007], The uncertainty principle of game theory, {\em Amer. Math. Monthly\/} {\bf 114}(8), 688--702, MR2354439. \point L.~A. Sz{\'e}kely [1984], On two concepts of discrepancy in a class of combinatorial games, in: {\em Finite and infinite sets, {V}ol.\ {I}, {II} ({E}ger, 1981)\/}, Vol.~37 of {\em Colloq. Math. Soc. J\'anos Bolyai\/}, North-Holland, Amsterdam, pp. 679--683, 818270 (87f:05161). \point J.~L. Szwarcfiter and G.~Chaty [1994], Enumerating the kernels of a directed graph with no odd circuits, {\em Inform. Process. Lett.\/} {\bf 51}, 149--153. \point W.~Szumny, I.~W{\l}och and A.~W{\l}och [2008], On the existence and on the number of {$(k,l)$}-kernels in the lexicographic product of graphs, {\em Discrete Math.\/} {\bf 308}(20), 4616--4624, 2438167 (2009e:05235). \newline\urlprefix\url{http://dx.doi.org/10.1016/j.disc.2007.08.078} \point A.~Takahashi, S.~Ueno and Y.~Kajitani [1995], Mixed searching and proper-path-width, {\em Theoret. Comput. Sci. \emph{(Math Games)}\/} {\bf 137}, 253--268. \point T.~Takizawa [2002], An application of mathematical game theory to Go endgames: some width-two-entrance rooms with and without kos, in: {\em More Games of No Chance, \emph{Proc. MSRI Workshop on Combinatorial Games, July, 2000, Berkeley, CA, MSRI Publ.}\/} (R.~J. Nowakowski, ed.), Vol.~42, Cambridge University Press, Cambridge, pp. 108--124, MR1973008. \point G.~Tardos [1988], Polynomial bound for a chip firing game on graphs, {\em SIAM J. Discrete Math.\/} {\bf 1}(3), 397--398, 955655 (89i:68103). \newline\urlprefix\url{http://dx.doi.org/10.1137/0401039} \point M.~Tarsi [1983], Optimal search on some game trees, {\em J. Assoc. Comput. Mach.\/} {\bf 30}, 389--396. \point A.~Taylor and W.~Zwicker [1995], Simple games and magic squares, {\em J. Combin. Theory Ser. A\/} {\bf 71}(1), 67--88, 1335777 (96c:90152). \newline\urlprefix\url{http://dx.doi.org/10.1016/0097-3165(95)90016-0} \point R.~Telg\'arsky [1987], Topological games: on the 50th anniversary of the Banach-Mazur game, {\em Rocky Mountain J. Math.\/} {\bf 17}, 227--276. \point T.~Thanatipanonda [2008], How to beat {C}apablanca, {\em Adv. in Appl. Math.\/} {\bf 40}, 266--270, 2388615. \newline\urlprefix\url{http://dx.doi.org/10.1016/j.aam.2006.11.005} \point T.~Thanatipanonda [2011], Further hopping with {T}oads and {F}rogs, {\em Electron. J. Combin.\/} {\bf 18}(1), Paper 67, 12, 2788684. \point T.~Thanatipanonda and D.~Zeilberger [2009], A symbolic finite-state approach for automated proving of theorems in combinatorial game theory, {\em J. Difference Equ. Appl.\/} {\bf 15}, 111--118, 2482841 (2010b:91055). \newline\urlprefix\url{http://dx.doi.org/10.1080/10236190802006423} \point W.~F.~D. Theron and G.~Geldenhuys [1998], Domination by queens on a square beehive, {\em Discrete Math.\/} {\bf 178}, 213--220. \point K.~Thompson [1986], Retrograde analysis of certain endgames, {\em Internat. Comp. Chess Assoc. J.\/} {\bf 9}, 131--139. \point H.~Tohyama and A.~Adachi [2000], Complexity of path discovery problems, {\em Theoret. Comput. Sci. \emph{(Math Games)}\/} {\bf 237}, 381--406. \point G.~P. Tollisen and T.~Lengyel [2000], Color switching games, {\em Ars Combin.\/} {\bf 56}, 223--234, MR1768618 (2001b:05094). \point I.~Tomescu [1990], Almost all digraphs have a kernel, {\em Discrete Math.\/} {\bf 84}, 181--192. \point B.~Torrence [2011], The easiest lights out games, {\em College Math. J.\/} {\bf 42}, 361--372. \point R.~To\v{s}i\'c and S.~\v{S}\'ceki\'c [1983], An analysis of some partizan graph games, {\em Proc. 4th Yugoslav Seminar on Graph Theory, \emph{Novi Sad}\/}, pp. 311--319. \point S.~P. Tung [1987], Computational complexities of {D}iophantine equations with parameters, {\em J. Algorithms\/} {\bf 8}, 324--336, MR905990 (88m:03063). \point A.~M. Turing, M.~A. Bates, B.~V. Bowden and C.~Strachey [1953], Digital computers applied to games, in: {\em Faster Than Thought\/} (B.~V. Bowden, ed.), Pitman, London, pp. 286--310. \point R.~Uehara and S.~Iwata [1990], Generalized Hi-Q is NP-complete, {\em Trans. IEICE\/} {\bf E73}, 270--273. \point J.~\'Ulehla [1980], A complete analysis of von Neumann's Hackendot, {\em Internat. J. Game Theory\/} {\bf 9}, 107--113. \point D.~Ullman [1992], More on the four-numbers game, {\em Math. Mag.\/} {\bf 65}, 170--174. \point J.~V. Uspensky [1927], On a problem arising out of the theory of a certain game, {\em Amer. Math. Monthly\/} {\bf 34}, 516--521. \point S.~Vajda [1992], {\em Mathematical Games and How to Play Them\/}, Ellis Horwood Series in Mathematics and its Applications, Chichester, England. \point H.~J. van~den Herik and I.~S. Herschberg [1985], The construction of an omniscient endgame database, {\em Internat. Comp. Chess Assoc. J.\/} {\bf 8}, 66--87. \point J.~van~den Heuvel [2001], Algorithmic aspects of a chip-firing game, {\em Combin. Probab. Comput.\/} {\bf 10}, 505--529, MR1869843 (2002h:05154). \point B.~L. van~der Waerden [1974], The game of rectangles, {\em Ann. Mat. Pura Appl.\/} {\bf 98}, 63--75, MR0351854 (50 \#4342). \point J.~van Leeuwen [1976], Having a Grundy-numbering is NP-complete, Report No.~207, Computer Science Dept., Pennsylvania State University, University Park, PA. \point A.~J. van Zanten [1990], The complexity of an optimal algorithm for the generalized tower of Hanoi problem, {\em Intern. J. Comput. Math.\/} {\bf 36}, 1--8. \point A.~J. van Zanten [1991], An iterative optimal algorithm for the generalized tower of Hanoi problem, {\em Intern. J. Comput. Math.\/} {\bf 39}, 163--168. \point I.~Vardi [1991], {\em Computational Recreations in Mathematica\/}, Addison Wesley. \point L.~P. Varvak [1968], A generalization of the concept of {$p$}-sum of graphs, {\em Dopov\=\i d\=\i\ Akad. Nauk Ukra\"\i n. RSR Ser. A\/} {\bf 1968}, 965--968, MR0245468 (39 \#6776). \point L.~P. Varvak [1968], Games on the sum of graphs, {\em Cybernetics\/} {\bf 4}, 49--51 (trans. of {\it Kibernetika (Kiev)} {\bf 4} (1968) 63--66), MR0299238 (45 \#8287). \point L.~P. Varvak [1970], A certain generalization of the Grundy function, {\em Kibernetika {\rm (Kiev)}\/} (5), 112--116, MR0295968 (45 \#5029). \point L.~P. Varvak [1971], Game properties of generalized {$p$}-sums of graphs, {\em Dopov\=\i d\=\i\ Akad. Nauk Ukra\"\i n. RSR Ser. A\/} pp. 1059--1061, 1148, MR0307731 (46 \#6851). \point L.~P. Varvak [1973], A certain generalization of the nucleus of a graph, {\em Ukrainian Math. J.\/} {\bf 25}, 78--81, MR0323649 (48 \#2005). \point J.~Veerasamy and I.~Page [1994], On the towers of Hanoi problem with multiple spare pegs, {\em Intern. J. Comput. Math.\/} {\bf 52}, 17--22. \point H.~Venkateswaran and M.~Tompa [1989], A new pebble game that characterizes parallel complexity classes, {\em SIAM J. Comput.\/} {\bf 18}, 533--549. \point D.~Viaud [1987], Une strat\'egie g\'en\'erale pour jouer au Master-Mind, {\em RAIRO Recherche op\'erationelle/Operations Research\/} {\bf 21}, 87--100. \point F.~R. Villegas, L.~Sadun and J.~F. Voloch [2002], Blet: a mathematical puzzle, {\em Amer. Math. Monthly\/} {\bf 109}, 729--740. \point J.~von Neumann [1928], Zur Theorie der Gesellschaftsspiele, {\em Math. Ann.\/} {\bf 100}, 295--320. \point J.~von Neumann and O.~Morgenstern [2004], {\em Theory of Games and Economic Behaviour\/}, Princeton University Press, Princeton, NJ, reprint of the 3rd 1980 edition; first edition appeared in 1944. \point R.~G. Wahl [2005], The Butler University game, {\em Tribute to a Mathemagician\/}, A K Peters, Wellesley, pp. 37--40, honoring Martin Gardner. \point J.~Waldmann [2002], Rewrite games, {\em Rewriting Techniques and Applications, Copenhagen, 22-24 July 2002\/} (S.~Tison, ed.), Vol. LNCS 2378, Lecture Notes in Computer Science, Springer, pp. 144--158. \point C.~T.~C. Wall [1955], Nim-arithmetic, {\em Eureka {\rm no. 18}\/} pp. 3--7. \point J.~L. Walsh [1953], The name of the game of Nim, Letter to the Editor, {\em Math. Gaz.\/} {\bf 37}, 290. \point M.~Walsh [2003], A note on the {G}rundy number, {\em Bull. Inst. Combin. Appl.\/} {\bf 38}, 23--26, 1977016 (2004c:05078). \point T.~R. Walsh [1982], The towers of Hanoi revisited: moving the rings by counting the moves, {\em Inform. Process. Lett.\/} {\bf 15}, 64--67. \point T.~R. Walsh [1983], Iteration strikes back at the cyclic towers of Hanoi, {\em Inform. Process. Lett.\/} {\bf 16}, 91--93. \point W.-F. Wang [2006], Edge-partitions of graphs of nonnegative characteristic and their game coloring numbers, {\em Discrete Math.\/} {\bf 306}, 262--270. \point X.~Wang and Y.~Wu [2007], Minimum light number of lit-only {$\sigma$}-game on a tree, {\em Theoret. Comput. Sci.\/} {\bf 381}, 292--300, MR2347414. \point X.~Wang and Y.~Wu [2010], Lit-only {$\sigma$}-game on pseudo-trees, {\em Discrete Appl. Math.\/} {\bf 158}(17), 1945--1952, 2721756 (2011i:05180). \newline\urlprefix\url{http://dx.doi.org/10.1016/j.dam.2010.08.009} \point I.~M. Wanless [1997], On the periodicity of graph games, {\em Australas. J. Combin.\/} {\bf 16}, 113--123, MR1477524 (98i:05159). \point I.~M. Wanless [2001], Path achievement games, {\em Australas. J. Combin.\/} {\bf 23}, 9--18, MR1814595 (2002k:91050). \point R.~H. Warren [1996], Disks on a chessboard, {\em Amer. Math. Monthly\/} {\bf 103}, 305--307. \point A.~Washburn [1990], Deterministic graphical games, {\em J. Math. Anal. Appl.\/} {\bf 153}, 84--96. \point J.~J. Watkins [1997], Knight's tours on triangular honeycombs, {\em Congr. Numer.\/} {\bf 124}, 81--87, Proc. 28th Southeastern Internat. Conf. on Combinatorics, Graph Theory and Computing (Boca Raton, FL, 1997), MR1605097. \point J.~J. Watkins [2000], Knight's tours on cylinders and other surfaces, {\em Congr. Numer.\/} {\bf 143}, 117--127, Proc. 31st Southeastern Internat. Conf. on Combinatorics, Graph Theory and Computing (Boca Raton, FL, 2000), MR1817914 (2001k:05136). \point J.~J. Watkins [2004], {\em Across the Board: The Mathematics of Chessboard Problems\/}, Princeton University Press, Princeton and Oxford, MR2041306 (2004m:00002). \point J.~J. Watkins and R.~L. Hoenigman [1997], Knight's tours on a torus, {\em Math. Mag.\/} {\bf 70}, 175--184, MR1456114 (98i:00003). \point W.~D. Weakley [1995], Domination in the queen's graph, in: {\em Graph theory, Combinatorics, and Algorithms, {\rm Vol. {\bf 2} (Kalamazoo, MI, 1992)}\/} (Y.~Alavi and A.~J. Schwenk, eds.), Wiley, New York, pp. 1223--1232. \point W.~D. Weakley [2002], A lower bound for domination numbers of the queen's graph, {\em J. Combin. Math. Combin. Comput.\/} {\bf 43}, 231--254. \point W.~D. Weakley [2002], Upper bounds for domination numbers of the queen's graph, {\em Discrete Math.\/} {\bf 242}, 229--243. \point W.~A. Webb [1982], The length of the four-number game, {\em Fibonacci Quart.\/} {\bf 20}, 33--35, MR0660757 (84e:10017). \point M.~Weimerskirch [2013], An Algorithm for Computing Indistinguishability Quotients in Mis\`ere Impartial Combinatorial Games, in: {\em Games of No Chance 4\/}, Cambridge University Press, to appear. \point C.~P. Welter [1952], The advancing operation in a special abelian group, {\it Nederl. Akad. Wetensch. Proc. \emph{(Ser.~A)} {\bf 55} = Indag. Math.{\bf 14}}, 304-314. \point C.~P. Welter [1954], The theory of a class of games on a sequence of squares, in terms of the advancing operation in a special group, {\it Nederl. Akad. Wetensch. Proc. \emph{(Ser.~A)} {\bf 57} = Indag. Math.{\bf 16}}, 194-200. \point J.~West [1996], Champion-level play of domineering, in: {\em Games of No Chance, \emph{Proc. MSRI Workshop on Combinatorial Games, July, 1994, Berkeley, CA, MSRI Publ.}\/} (R.~J. Nowakowski, ed.), Vol.~29, Cambridge University Press, Cambridge, pp. 85--91. \point J.~West [1996], Champion-level play of dots-and-boxes, in: {\em Games of No Chance, \emph{Proc. MSRI Workshop on Combinatorial Games, July, 1994, Berkeley, CA, MSRI Publ.}\/} (R.~J. Nowakowski, ed.), Vol.~29, Cambridge University Press, Cambridge, pp. 79--84, MR1427958. \point J.~West [1996], New values for Top Entails, in: {\em Games of No Chance, \emph{Proc. MSRI Workshop on Combinatorial Games, July, 1994, Berkeley, CA, MSRI Publ.}\/} (R.~J. Nowakowski, ed.), Vol.~29, Cambridge University Press, Cambridge, pp. 345--350. \point M.~J. Whinihan [1963], Fibonacci Nim, {\em Fibonacci Quart.\/} {\bf 1}(4), 9--13. \point R.~Wilber [1988], White pebbles help, {\em J. Comput. System Sci.\/} {\bf 36}, 108--124. \point M.~Wildon [2010], Knights, spies, games and ballot sequences, {\em Discrete Math.\/} {\bf 310}(21), 2974--2983, 2677658 (2011k:05014). \newline\urlprefix\url{http://dx.doi.org/10.1016/j.disc.2010.07.005} \point R.~Wilfong [1991], Motion planning in the presence of movable obstacles. Algorithmic motion planning in robotics, {\em Ann. Math. Artificial Intelligence\/} {\bf 3}, 131--150. \point R.~M. Wilson [1974], Graph puzzles, homotopy and the alternating group, {\em J. Combin. Theory \emph{(Ser.~B)}\/} {\bf 16}, 86--96. \point P.~Winkler [2002], Games people don't play, {\em {\rm in:} Puzzler's Tribute: a Feast for the Mind{\rm ,}\/} pp. 301--313, honoring Martin Gardner (D. Wolfe and T. Rodgers, eds.), A K Peters, Natick, MA, MR2034896 (2006c:00002). \point D.~Wolfe [1993], Snakes in domineering games, {\em Theoret. Comput. Sci.\/} {\bf 119}(2), 323--329, 1244297. \newline\urlprefix\url{http://dx.doi.org/10.1016/0304-3975(93)90163-N} \point D.~Wolfe [1996], The gamesman's toolkit, in: {\em Games of No Chance, \emph{Proc. MSRI Workshop on Combinatorial Games, July, 1994, Berkeley, CA, MSRI Publ.}\/} (R.~J. Nowakowski, ed.), Vol.~29, Cambridge University Press, Cambridge, pp. 93--98. \newline\urlprefix\url{http://www.gustavus.edu/$\sim$wolfe/games/} \point D.~Wolfe [2002], Go endgames are PSPACE-hard, in: {\em More Games of No Chance, \emph{Proc. MSRI Workshop on Combinatorial Games, July, 2000, Berkeley, CA, MSRI Publ.}\/} (R.~J. Nowakowski, ed.), Vol.~42, Cambridge University Press, Cambridge, pp. 125--136, MR1973009 (2004b:91052). \point D.~Wolfe [2009], On day $n$, in: {\em Games of No Chance 3, \emph{Proc. BIRS Workshop on Combinatorial Games, July, 2005, Banff, Alberta, Canada, MSRI Publ.}\/} (M.~H. Albert and R.~J. Nowakowski, eds.), Vol.~56, Cambridge University Press, Cambridge, pp. 125--131. \point D.~Wolfe and W.~Fraser [2004], Counting the number of games, {\em Theoret. Comp. Sci.\/} {\bf 313}, 527--532, special issue of Dagstuhl Seminar ``Algorithmic Combinatorial Game Theory'', Feb. 2002, MR2056944. \point D.~Wood [1981], The towers of Brahma and Hanoi revisited, {\em J. Recr. Math.\/} {\bf 14}, 17--24. \point D.~Wood [1983], Adjudicating a towers of Hanoi contest, {\em Intern. J. Comput. Math.\/} {\bf 14}, 199--207. \point J.-S. Wu and R.-J. Chen [1992], The towers of Hanoi problem with parallel moves, {\em Inform. Process. Lett.\/} {\bf 44}, 241--243. \point J.-S. Wu and R.-J. Chen [1993], The towers of Hanoi problem with cyclic parallel moves, {\em Inform. Process. Lett.\/} {\bf 46}, 1--6. \point J.~Wu and X.~Zhu [2006], Relaxed game chromatic number of outer planar graphs, {\em Ars Combin.\/} {\bf 81}, 359--367, MR2267825 (2007f:05067). \point J.~Wu and X.~Zhu [2008], Lower bounds for the game colouring number of partial {$k$}-trees and planar graphs, {\em Discrete Math.\/} {\bf 308}(12), 2637--2642, MR2410475 (2009c:05093). \newline\urlprefix\url{http://dx.doi.org/10.1016/j.disc.2007.05.023} \point J.~Wu and X.~Zhu [2008], The 6-relaxed game chromatic number of outerplanar graphs, {\em Discrete Math.\/} {\bf 308}(24), 5974--5980, MR2464888 (2009j:91044). \newline\urlprefix\url{http://dx.doi.org/10.1016/j.disc.2007.11.015} \point Y.~Wu [2009], Lit-only sigma game on a line graph, {\em European J. Combin.\/} {\bf 30}(1), 84--95, 2460219 (2009k:91039). \newline\urlprefix\url{http://dx.doi.org/10.1016/j.ejc.2008.02.003} \point W.~A. Wythoff [1907], A modification of the game of Nim, {\em Nieuw Arch. Wisk.\/} {\bf 7}, 199--202. \point A.~M. Yaglom and I.~M. Yaglom [1967], {\em Challenging Mathematical Problems with Elementary Solutions\/}, Vol.~II, Holden-Day, San Francisco, translated from Russian by J. McCawley, Jr., revised and edited by B. Gordon. \point T.~Yamada and K.~Sakai [2006], On flatness and tameness of classes of impartial games, {\em Publ. Res. Inst. Math. Sci.\/} {\bf 42}(2), 383--390, 2250065 (2007c:91040). \newline\urlprefix\url{http://projecteuclid.org/getRecord?id=euclid.prims/1166% 642107} \point Y.~Yamasaki [1978], Theory of division games, {\em Publ. Res. Inst. Math. Sciences, Kyoto Univ.\/} {\bf 14}, 337--358. \point Y.~Yamasaki [1980], On mis\`ere Nim-type games, {\em J. Math. Soc. Japan\/} {\bf 32}, 461--475. \point Y.~Yamasaki [1981], The projectivity of $Y$-games, {\em Publ. Res. Inst. Math. Sciences, Kyoto Univ.\/} {\bf 17}, 245--248. \point Y.~Yamasaki [1981], Theory of Connexes I, {\em Publ. Res. Inst. Math. Sciences, Kyoto Univ.\/} {\bf 17}, 777--812. \point Y.~Yamasaki [1985], Theory of connexes II, {\em Publ. Res. Inst. Math. Sciences, Kyoto Univ.\/} {\bf 21}, 403--409. \point Y.~Yamasaki [1989], {\em Combinatorial Games: Back and Front\/}, Springer Verlag, Tokyo (in Japanese). \point Y.~Yamasaki [1989], Shannon switching games without terminals II, {\em Graphs Combin.\/} {\bf 5}, 275--282. \point Y.~Yamasaki [1991], A difficulty in particular Shannon-like games, {\em Discrete Appl. Math.\/} {\bf 30}, 87--90. \point Y.~Yamasaki [1992], Shannon switching games without terminals III, {\em Graphs Combin.\/} {\bf 8}, 291--297. \point Y.~Yamasaki [1993], Shannon-like games are difficult, {\em Discrete Math.\/} {\bf 111}, 481--483. \point Y.~Yamasaki [1997], The arithmetic of reversed positional games, {\em Theoret. Comput. Sci. \emph{(Math Games)}\/} {\bf 174}, 247--249, also in {\it Discrete Math.} {\bf 165/166} (1997) 639--641. \point B.~Yang, D.~Dyer and B.~Alspach [2004], Sweeping graphs with large clique number, in: {\em Algorithms and computation\/}, Vol. 3341 of {\em Lecture Notes in Comput. Sci.\/}, Springer, Berlin, pp. 908--920, 2158389. \newline\urlprefix\url{http://dx.doi.org/10.1007/978-3-540-30551-4_77} \point B.~Yang, D.~Dyer and B.~Alspach [2009], Sweeping graphs with large clique number, {\em Discrete Math.\/} {\bf 309}(18), 5770--5780, 2567982 (2010k:05324). \newline\urlprefix\url{http://dx.doi.org/10.1016/j.disc.2008.05.033} \point C.~Yang [2011], Sliding puzzles and rotating puzzles on graphs, {\em Discrete Math.\/} {\bf 311}(14), 1290--1294, 2795539 (2012f:05139). \newline\urlprefix\url{http://dx.doi.org/10.1016/j.disc.2011.03.011} \point D.-q. Yang [2005], The complete game coloring number of the line graph of a forest, {\em J. Fuzhou Univ. Nat. Sci. Ed.\/} {\bf 33}(2), 135--138, 2139826 (2005m:05099). \point D.~Yang [2009], Activation strategy for relaxed asymmetric coloring games, {\em Discrete Math.\/} {\bf 309}, 3323--3335, 2526751 (2010g:05247). \newline\urlprefix\url{http://dx.doi.org/10.1016/j.disc.2008.09.047} \point D.~Yang [2009], Relaxed very asymmetric coloring games, {\em Discrete Math.\/} {\bf 309}, 1043--1050, 2493523 (2010d:05064). \newline\urlprefix\url{http://dx.doi.org/10.1016/j.disc.2007.11.058} \point D.~Yang [2012], Coloring games on squares of graphs, {\em Discrete Math.\/} {\bf 312}, 1400--1406. \point D.~Yang and H.~A. Kierstead [2008], Asymmetric marking games in line graphs, {\em Discrete Math.\/} {\bf 308}(9), 1751--1755, MR2392616 (2009a:05081). \newline\urlprefix\url{http://dx.doi.org/10.1016/j.disc.2007.03.082} \point D.~Yang and X.~Zhu [2008], Activation strategy for asymmetric marking games, {\em European J. Combin.\/} {\bf 29}, 1123--1132, MR2419216 (2009b:91039). \newline\urlprefix\url{http://dx.doi.org/10.1016/j.ejc.2007.07.004} \point D.~Yang and X.~Zhu [2010], Game colouring directed graphs, {\em Electron. J. Combin.\/} {\bf 17}(1), Research Paper 11, 19, 2578906 (2011d:05150). \newline\urlprefix\url{http://www.combinatorics.org/Volume_17/Abstracts/v17i1r% 11.html} \point J.~Yang, S.~Liao and M.~Pawlak [2001], On a decomposition method for finding winning strategy in Hex game, in: {\em Proceedings ADCOG: Internat.\ Conf.\ Application and Development of Computer Games\/} (A.~L.~W. Sing, W.~H. Man and W.~Wai, eds.), City University of Honkong, pp. 96--111. \point Y.~Ye, M.~Zhai and Y.~Zhang [2012], Pebbling number of squares of odd cycles, {\em Discrete Math.\/} {\bf 312}(21), 3174--3178. \point Y.~Ye, P.~Zhai and Y.~Zhang [2012], Pebbling number of squares of even cycles, {\em Discrete Math.\/} {\bf 312}(21), 3203--3211. \point L.~J. Yedwab [1985], On playing well in a sum of games, M.Sc. Thesis, MIT, MIT/LCS/TR-348. \point Y.~N. Yeh [1995], A remarkable endofunction involving compositions, {\em Stud. Appl. Math\/} {\bf 95}, 419--432. \point Y.~Yesha [1978], Theory of annihilation games, Ph.D. Thesis, Weizmann Institute of Science, Rehovot, Israel. \point Y.~K. Yu and R.~B. Banerji [1982], Periodicity of Sprague--Grundy function in graphs with decomposable nodes, {\em Cybernetics and Systems: An Internat. J.\/} {\bf 13}, 299--310. \point S.~Zachos [1988], Probabilistic quantifiers and games, {\em J. Comput. System Sci.\/} {\bf 36}, 433--451. \point M.~Zaker [2005], Grundy chromatic number of the complement of bipartite graphs, {\em Australas. J. Combin.\/} {\bf 31}, 325--329, MR2113717 (2005h:05087). \point M.~Zaker [2006], Results on the {G}rundy chromatic number of graphs, {\em Discrete Math.\/} {\bf 306}(23), 3166--3173, MR2273147. \point D.~Zeilberger [2001], Three-rowed Chomp, {\em Adv. in Appl. Math.\/} {\bf 26}, 168--179, MR1808446 (2001k:91009). \point D.~Zeilberger [2004], Chomp, recurrences and chaos(?), {\em J. Difference Equ. Appl.\/} {\bf 10}, 1281--1293, MR2100728 (2005g:39014). \point E.~Zermelo [1913], \"Uber eine Anwendung der Mengenlehre auf die Theorie des Schachspiels, {\em Proc. 5th Int. Cong. Math.\, Cambridge 1912\/}, Vol.~II, Cambridge University Press, pp. 501--504. \point X.~Zhu [1999], The game coloring number of planar graphs, {\em J. Combin. Theory \emph{(Ser.~B)}\/} {\bf 75}, 245--258, MR1676891 (99m:05064). \point X.~Zhu [2000], The game coloring number of pseudo partial $k$-trees, {\em Discrete Math.\/} {\bf 215}, 245--262, MR1746462 (2000m:05102). \point X.~Zhu [2008], Game coloring the {C}artesian product of graphs, {\em J. Graph Theory\/} {\bf 59}, 261--278, MR2463181 (2009h:05095). \newline\urlprefix\url{http://dx.doi.org/10.1002/jgt.20338} \point X.~Zhu [2008], Refined activation strategy for the marking game, {\em J. Combin. Theory Ser. B\/} {\bf 98}(1), 1--18, 2368019 (2008k:91049). \newline\urlprefix\url{http://dx.doi.org/10.1016/j.jctb.2007.04.004} \point M.~Zieve [1996], Take-away games, in: {\em Games of No Chance, \emph{Proc. MSRI Workshop on Combinatorial Games, July, 1994, Berkeley, CA, MSRI Publ.}\/} (R.~J. Nowa\-kowski, ed.), Vol.~29, Cambridge University Press, Cambridge, pp. 351--361. \point U.~Zwick [2002], Jenga, {\em Proceedings of SODA 2002\/}, pp. 243--246. \point U.~Zwick and M.~S. Paterson [1993], The memory game, {\em Theoret. Comput. Sci. \emph{(Math Games)}\/} {\bf 110}, 169--196. \point U.~Zwick and M.~S. Paterson [1996], The complexity of mean payoff games on graphs, {\em Theoret. Comput. Sci. \emph{(Math Games)}\/} {\bf 158}, 343--359. \point W.~S. Zwicker [1987], Playing games with games: the hypergame paradox, {\em Amer. Math. Monthly\/} {\bf 94}, 507--514.