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t. In this paper lim, a re
ently proposed impartial 
ombinatorialruleset, is analyzed. A formula to des
ribe the G-values of lim positions isgiven, by way of analyzing an equivalent 
ombinatorial ruleset lim', 
loselyrelated to the 
lassi
al nim. Also, an enumeration of P-positions of lim with
n stones, and its relation to the Ulam-Warburton 
ellular automaton, is pre-sented.Keywords: Combinatorial game theory, impartial games, Nim, Sprague-Grundy theory, Ulam-Warburton 
ellular automaton.1. Introdu
tionCombinatorial game theory studies perfe
t information games in whi
h there areno 
han
e devi
es (e.g. di
e) and two players take turns moving alternately. Herewe are 
on
erned with games under normal play, where the last player to movewins. This paper is self 
ontained; see [1, 2, 5℄ for ba
kground and [6℄ for a survey.Readers �uent in 
ombinatorial game theory may wish to pro
eed to the subse
tion1.2.1.1. ba
kground on relevant 
ombinatorial game theoryThe options of a game are all those positions whi
h 
an be rea
hed in one move.Using the standard notation for 
ombinatorial game theory of [2℄ where Left andRight are the players, games 
an be expressed re
ursively as G = {GL | GR} where

GL are the Left options and GR are the Right options of G. We distinguish betweenmultiple meanings of the word game by using the words ruleset and game. The wordruleset has a 
on
rete meaning related to some parti
ular set of rules (what is 
alleda �game� informally). The word game, by 
ontrast, has the abstra
t mathemati
almeaning de�ned by Conway [2, 5℄. When we speak of the value of a game, we are1



2 LIM IS NOT SLIMemphasizing that it is being 
onsidered in this latter sense, as an algebrai
 obje
twhi
h 
an be 
ompared for equality with, or added to, other games.An example of a 
ombinatorial ruleset is the 
lassi
 game of nim, �rst studied byC. Bouton [3℄. nim is played with piles of stones. On his turn, ea
h player 
anremove any number of stones from any pile. The winner is the player who takesthe last stone. nim is an example of an impartial ruleset: Left options and Rightoptions are the same for the game and all its followers. The values involved in nimare 
alled nimbers (or stars):
∗k = {0, ∗, . . . , ∗(k − 1) | 0, ∗, . . . , ∗(k − 1)}It is a surprising fa
t that all impartial rulesets take only nimbers as values (Sprague-Grundy Theory, see [7, 11℄).The minimum ex
luded value of a set S is the least nonnegative integer whi
h isnot in
luded in S and is denoted mex(S). The nim-value of an impartial game G,denoted by G(G), is given by
G(G) = mex{G(H) : H is an option of G}.The value of an impartial game G is the nimber ∗G(G). The game G is a previousplayer win, i.e. the next player has no good move, if and only if G(G) = 0. If agame is a previous player win, we say it is a P-position. If a game is a next playerwin, we say it is a N -position. The set of P-positions is noted P and the set of

N -positions is noted N .The nim-sum of two nonnegative integers is the ex
lusive or (XOR), written ⊕,of their binary representations. It 
an also be des
ribed as adding the numbersin binary without 
arrying. The disjun
tive sum of games H and K is written
G = H +K. In this game, the player to move must 
hoose one of H and K andmake a legal move in that game. One important result about impartial games isthe following: if G = H +K, then G(G) = G(H)⊕ G(K) (see [1, 2, 5℄).1.2. The game of limThis paper studies the impartial ruleset lim with very simple rules proposed byJorge Nuno Silva 1. In [9, 10℄, there is a 
orre
t 
onje
ture about the P-positions,but no proof is presented.There are 3 piles. A player takes the same number N of stones from 2 piles andadds N stones to the third. The last player wins (i.e. we 
onsider the normalplay version). There is a board game implementation of lim has a board gameimplementation. The players move a pile of 
he
kers diagonally in one of the threedire
tions depi
ted. If a player moves Southwest or Northeast, he 
an move anumber of 
ells smaller or equal to the number of 
he
kers of the pile and, whenthe move is �nished, the player removes that number of 
he
kers from the pile. Ifa player moves Northwest, when the move is �nished, the player adds the numberof 
he
kers that is equal to the number of traveled 
ells. See Figure 1.1Etymologi
al note: the name lim, aside from rhyming with nim, is an a
ronym for Laura eManuel, the names of Silva's 
hildren (the Portuguese word e �and� is pronoun
ed /i/).
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Figure 1. Moves in the board game implementation of lim.In this paper a 
omplete analysis of lim is presented. Theorem 4.1 gives a formulafor the nim-values of lim. This formula intermixes the ordinary sum and the nim-sum, and thus our analysis ne
essitates establishing some lemmas on how these twonotions of sum intera
t, whi
h we do in se
tion 2. Moreover, it is very 
onvenientfor the analysis of lim to introdu
e an equivalent ruleset lim', a sort of 
oordinatetransform of lim: it turns out that we 
an use nim moves to �nd good moves inlim'. This is the subje
t of Se
tion 3.We also enumerate the P-positions of lim and 
onne
t it to the Ulam-Warburton
ellular automaton in Se
tion 5, exhibiting a bije
tion between P-positions of limwith n stones and 
ells born in a region of this automaton on ti
k n.2. Nim, sums, and nim sumsIn this se
tion we prove some useful general results relating the usual sum andsubtra
tion to the nim sum, 
ulminating with Lemma 2.4 on nim.Lemma 2.1. Let a, b and c be nonnegative integers. Then,(1) a+ b = a⊕ b+ 2(a⊙ b)(2) a+ b+ c = a⊕ b⊕ c+ 2(a⊙ b+ a⊙ c+ b⊙ c)− 4(a⊙ b⊙ c)where ⊙ is the bitwise produ
t (i.e. AND).Proof. For the �rst item we just observe that nim sum 
an
els repeating bits inbinary expansions of a and b. So, in order to obtain the usual sum from nim sum,we have to add the repeating bits twi
e.Again, the nim sum for three summands 
an
els repeating bits in binary expansionsof a, b and c. It is easy to see that a bit of the binary expansion of (a⊙ b+ a⊙ c+
b ⊙ c) − 2(a ⊙ b ⊙ c) is 1 if and only if a, b and c, for that bit, have two or three1s (there are repetitions). So, in order to obtain the usual sum from nim sum, wehave to add (a⊙ b + a⊙ c+ b⊙ c)− 2(a⊙ b⊙ c) twi
e. �



4 LIM IS NOT SLIMLemma 2.2. Let a, b be nonnegative integers. Then,
a− b 6 a⊕ b 6 a+ bProof. a ⊕ b 6 a + b is trivial, as we 
an argue with the previous lemma. For these
ond inequality,

b+ (b ⊕ a) = b⊕ (b⊕ a) + 2(b⊙ (a⊕ b)) = a+ 2(b⊙ (a⊕ b)) > aSo, a− b 6 a⊕ b. �The next lemma is our most te
hni
al. Those not reading in depth may wish toskip ahead to Lemma 2.4, where it is used.Lemma 2.3. Let d be a positive integer, and suppose given four expressions for das a signed sum of distin
t powers of two: that is, let εi,ℓ ∈ {−1, 0, 1} satisfy
d =

∑

i>0

εi,ℓ2
ifor ea
h ℓ = 1, . . . , 4. Suppose that there is no i > 0 su
h that εi,1εi,2εi,3εi,4 = 1.Let i0 be the maximal index su
h that εi0,1 + εi0,2 + εi0,3 + εi0,4 is odd. Then, atleast one of the εi0,ℓ equals 1.Proof. We �rst 
ompare two su
h expansions of d, say with 
oe�
ient sequen
es

{εi,1} and {εi,2}. Let i be the greatest index at whi
h εi,1 di�ers from εi,2. Withoutloss of generality we may take εi,1 > εi,2. The di�eren
e εi,1−εi,2 must equal 1; if itwere greater, then sin
e∑i

j=0 εj,12
j =

∑i

j=0 εj,22
j = d, subtra
ting the disagreeingterms εi,ℓ would yield

i−1
∑

j=0

(εj,1 − εj,2)2
j 6 −2 · 2i,whi
h is impossible sin
e,

i−1
∑

j=0

(εj,1 − εj,2)2
j >

i−1
∑

j=0

−2 · 2j = −2(2i − 1).Moving on to the (i−1)th terms, an argument of the same type shows that εi−1,1−
εi−1,2 6 −1: if instead this di�eren
e were > 0, the remaining terms would have tomake up a dis
repan
y of size 2·2i−1, and 
ould not. Likewise, if εi−1,1−εi−1,2 = −1,then another similar argument shows εi−2,1 − εi−2,2 6 −1. And one 
an 
ontinueiteratively, 
on
luding that if εk,1 − εk,2 = −1 for all k = i − 1, i − 2, . . . , j, then
εj−1,1 − εj−1,2 6 −1.Also, we 
an not have εk,1 − εk,2 = −1 for all k = i − 1, i − 2, . . . , 0 be
ause
∑i−1

j=0 2
j < 2i so, for some k < j, we have εk,1 − εk,2 = −2.Taking up the situation of interest with all four expansions εi,ℓ, let i be the maximalindex su
h that any εi,ℓ is nonzero. Sin
e d is positive, εi,ℓ ∈ {0, 1} for ea
h ℓ. Thenumber of ℓ su
h that εi,ℓ equals 1 
annot be 4 by hypothesis, and if it is 1 or 3then our 
on
lusion is immediate with i0 = i. So we may assume there are twosu
h ℓ, without loss of generality that εi,1 = εi,2 = 1 and εi,3 = εi,4 = 0.



LIM IS NOT SLIM 5Now let us examine the remaining 
oe�
ients εk,ℓ with k < i. By the above,
onsider i0 the �rst bit su
h that εi0,1 − εi0,3 = −2 or εi0,2 − εi0,4 = −2. Say that
εi0,1 − εi0,3 = −2. Therefore, εi0,1 = −1 and εi0,3 = 1. Also, we 
an not have
εi0,2 − εi0,4 = −2 be
ause, by the assumptions of the theorem, εi,1εi,2εi,3εi,4 6= 1.So, it is mandatory that either εi0,2 = −1 and εi0,4 = 0 or εi0,2 = 0 and εi0,4 = 1.This 
ompletes the proof be
ause i0 is indeed the maximal bit sought and at leastone of the εi0,ℓ equals 1. �Lemma 2.4. Consider a, b, c nonnegative integers and 0 < d 6 a⊕ b⊕ c. Then,the nim position (a+ d, b+ d, c+ d) has a move to a nim position of Grundy value
(a⊕ b⊕ c)− d.Proof. It is enough to prove that we 
an not have simultaneously the followingthree inequalities:







((a⊕ b⊕ c)− d)⊕ (b + d)⊕ (c+ d) > a+ d
((a⊕ b⊕ c)− d)⊕ (a+ d)⊕ (c+ d) > b+ d
((a⊕ b⊕ c)− d)⊕ (a+ d)⊕ (b + d) > c+ d.To justify this fa
t, say that ((a⊕b⊕c)−d)⊕(b+d)⊕(c+d)< a+d. If so, we havea nim move from (a+d, b+d, c+d) to ((a⊕b⊕c)−d)⊕ (b+d)⊕ (c+d), b+d, c+d)with Grundy value (a⊕b⊕c)−d. So, if we prove that at least one of the inequalitiesfails, the lemma is proved.Let biti(x) denote the ith bit of the binary expansion of an integer x. De�ne theintegers εi,ℓ ∈ {−1, 0, 1} by
εi,1 = biti(a+ d)− biti(a)

εi,2 = biti(b+ d)− biti(b)

εi,3 = biti(c+ d)− biti(c)

εi,4 = biti(a⊕ b⊕ c)− biti((a⊕ b⊕ c)− d)Of 
ourse, ∑i εi,ℓ2
i = d for ℓ = 1, . . . , 4.There is no i su
h that εi,1εi,2εi,3εi,4 = 1, be
ause that would imply that an oddnumber of biti(a), biti(b), biti(c), and biti(a⊕ b⊕ c) were 1. Therefore Lemma 2.3applies to the εi,ℓ.Ea
h εi,ℓ is odd if and only if the nim-sum of the two bits subtra
ted in its de�nitionis odd, so the i0 of the Lemma 2.3 equals the index of the leading 1 bit in

(a+ d)⊕ a⊕ (b + d)⊕ b⊕ (c+ d)⊕ c⊕ (a⊕ b⊕ c)⊕ ((a⊕ b⊕ c)− d),whi
h therefore equals the leading 1 bit in
(a+ d)⊕ (b + d)⊕ (c+ d)⊕ ((a⊕ b⊕ c)− d).At last, suppose none of a+ d, b+ d, or c+ d have their i0th bit equal to 1. Then

εi,ℓ 6= 1 for ℓ = 1, 2, 3, so εi,4 = 1, implying that biti0(a⊕ b ⊕ c) = 1. But then anodd number of biti0(a) and biti0(b) and biti0(c) equal 1, so an odd number of εi,1and εi,2 and εi,3 are odd, 
ontradi
ting the de�nition of i0.



6 LIM IS NOT SLIMIn 
on
lusion, in i0, the leading 1 bit of
(a+ d)⊕ (b + d)⊕ (c+ d)⊕ ((a⊕ b⊕ c)− d),at least one of the i0th bits of a+ d, b+ d, and c+ d must be 1.This su�
es to argue that one of the initial three inequalities must fail. Say thatwe have the i0th bits of a + d, b + d, c + d, and ((a ⊕ b ⊕ c) − d) equaling 1, 1,

0, and 1. In that 
ase, both the �rst and se
ond inequalities fail. And a similarargument for the other 
ases leads to, at least, one failed inequality. This 
ompletesthe proof. �Example 2.5. Consider the triple (41, 30, 23) and d = 15. Be
ause 41⊕ 30⊕ 23 =
32 > 15 > 0, the hypotheses of Lemma 2.4 are satis�ed. So, it is possible to �nda nim move from (41 + 15, 30 + 15, 23 + 15) = (56, 45, 38) to a nim position withGrundy value 32 − 15 = 17. To �nd su
h a move we 
an perform the following
al
ulations:(1) ((41⊕ 30⊕ 23)− 15)⊕ (30 + 15)⊕ (23 + 15) = 17⊕ 45⊕ 38 = 26(2) ((41⊕ 30⊕ 23)− 15)⊕ (41 + 15)⊕ (23 + 15) = 17⊕ 56⊕ 38 = 15(3) ((41⊕ 30⊕ 23)− 15)⊕ (41 + 15)⊕ (30 + 15) = 17⊕ 56⊕ 45 = 4.In this example, all the three inequalities 56 > 26, 45 > 15 and 38 > 4 hold(all the three inequalities of the proof failed). So, there are three good possibil-ities: (56, 45, 28) −→ (26, 45, 28), (56, 45, 28) −→ (56, 15, 28) or (56, 45, 28) −→
(56, 45, 4). ♦3. The game of lim'In this se
tion we introdu
e and analyze the ruleset lim' whi
h is equivalent tolim. lim' is played on triangles (A,B,C) (that is A + B > C, A + C > B and
B + C > A) su
h that A + B + C ≡ 0 mod 2 and a move 
onsists of subtra
tingfrom a single side length an even number less or equal than this side length. Thereare several 
lassi
al variations of nim; subtra
tion games are played like nim butthe players 
an only remove a number of stones from a pile if it is an element ofa given subtra
tion set {s1, . . . , sk} ([1, 2, 5℄, for more information). lim' is thesubtra
tion game played on triangles de�ned as above whose subtra
tion set is theset of positive even numbers.Lemma 3.1. lim and lim' are equivalent 
ombinatorial rulesets.Proof. Consider the digraphs (P, E) and (P′, E′), where P and P

′ are the sets ofverti
es representing the positions of lim and lim' and E and E′ are the edges
orresponding to the moves of ea
h ruleset. We want to prove that the digraphsare isomorphi
.Consider ψ : P → P
′ su
h that ψ(a, b, c) = (A,B,C) where A = b + c, B = a + c,

C = a + b. It is easy to see that (A,B,C) is a triangle su
h that A + B + C ≡ 0mod 2, so that the image of ψ indeed lies in the set of lim' positions.First, we observe that ψ is a bije
tion. To wit, ψ(a, b, c) = ψ(a′, b′, c′) ⇒ (b +
c, a+ c, a+ b) = (b′ + c′, a′ + c′, a′ + b′) and elementary linear algebra shows that
b + c = b′ + c′, a + c = a′ + c′ and a + b = a′ + b′ implies a = a′, b = b′



LIM IS NOT SLIM 7and c = c′. Also, 
onsider an arbitrary (A,B,C) ∈ P
′. Let a = (−A + B + C)/2,

b = (A−B+C)/2, and c = (A+B−C)/2. Be
ause all the fra
tions are nonnegativeintegers ((A,B,C) is a triangle and A + B + C ≡ 0 mod 2), we have (a, b, c) ∈ Pand ψ(a, b, c) = (A,B,C).As for the edges of our digraphs, 
onsider the lim move (a, b, c) −→ (a−k, b−k, c+
k). Of 
ourse, we have k 6 a, k 6 b, 2k 6 a + b = C, and A + B + C − 2k ≡ 0mod 2. Also, (A,B,C − 2k) is a triangle be
ause C − 2k + A = a + b − 2k +
b + c = B + 2b − 2k > B and the same argument for C − 2k + B > A. So,
(A,B,C) −→ (A,B,C − 2k) is a legal lim' move. Conversely, 
onsider the lim'move (A,B,C) −→ (A,B,C−2k). It is mandatory that (A,B,C−2k) is a triangle.So, C − 2k+B > A⇒ k 6 (−A+B +C)/2 = a (and similarly k 6 b). Therefore,
(a, b, c) −→ (a− k, b− k, c+ k) is a legal lim move. The 
on
lusion is that an edgeis in E if and only if the 
orrespondent edge is in E′. We have a graph isomorphismand this 
ompletes the proof. �To be expli
it, here again are the 
orresponden
es from moves in lim to moves inlim':(1) (a, b, c) −→ (a−k, b−k, c+k) is identi�ed with (A,B,C) −→ (A,B,C−2k)(2) (a, b, c) −→ (a−k, b+k, c−k) is identi�ed with (A,B,C) −→ (A,B−2k, C)(3) (a, b, c) −→ (a+k, b−k, c−k) is identi�ed with (A,B,C) −→ (A−2k,B,C).So, a 
omplete analysis of lim' provides a 
omplete analysis of lim. The followingproposition is su
h a 
omplete analysis.Proposition 3.2. Let (A,B,C) be a lim' position. If (A−g)⊕(B−g)⊕(C−g) = gthen (A,B,C) has G-value g.Proof. We will prove the theorem following the usual indu
tion in A+B+C. Thebase 
ase A = B = C = 0 is trivial. We will show that a position we have assertedto have G-value g has no option of the same G-value, and has an option of G-value
h for ea
h 0 6 h < g.The former is 
lear: if lim'(A,B,C) and lim′(A − k,B,C) had the same G-value
g, so would the nim positions (A− g,B − g, C − g) and (A− k − g,B − g, C − g),whi
h they 
annot.Let 0 6 h < g. Consider (A − g,B − g, C − g) and d = g − h. We have 0 < d 6

(A− g)⊕ (B − g)⊕ (C − g) = g. So, we are in the 
onditions of Lemma 2.4. It ispossible to �nd a nim move from (A−g+d,B−g+d, C−g+d)=(A−h,B−h,C−h)to a position with G-value g − d = h. There exists k su
h that the nim sum of
(A− k − h,B − h,C − h) is h.Now, let us see that (A − k,B,C) is a lim' position and k is a nonnegative evennumber. To begin, B +C > A− k be
ause B +C > A. Also, be
ause A− k− h =
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h⊕ (B − h)⊕ (C − h) implying A− k = h+ (h⊕ (B − h)⊕ (C − h)),

(A− k) +B

= (h+ (h⊕ (B − h)⊕ (C − h))) +B

> (h⊕ (h⊕ (B − h)⊕ (C − h))) +B

= ((B − h)⊕ (C − h)) +B

> ((C − h)− (B − h)) +B

= C.We have used Lemma 2.2 in the previous manipulations. Similarly (A−k)+C > Bso, (A− k,B,C) is a triangle.Also, the nim sum of (A− k−h,B−h,C−h) is h. A simple parity analysis allowsus to observe that (A − h) + (B − h) + (C − h) ≡ h mod 2, and therefore k mustbe even.Finally, be
ause k is even, (A− k) +B + C ≡ 0 mod 2 and (A− k,B,C) is a lim'position. Now, using indu
tion, the G-value of this position is h be
ause the nimsum of (A− k − h,B − h,C − h) is h.
�4. G-values of lim positionsTheorem 4.1. Let (a, b, c) be a lim position. Then,

G(a, b, c) =
1

2

(

(a+ b+ c)− (a⊕ b⊕ c)
)

.This theorem solves lim 
ompletely; Example 4.2 below illustrates this in pra
ti
e.We observe that the P-positions of lim are all those positions (a, b, c) su
h that theusual sum 
oin
ides with nim sum. This observation was �rst published in [9℄ as a
onje
ture, without proof.Proof. As seen in Lemma 2.1, 1
2

(

(a + b + c) − (a ⊕ b ⊕ c)
)

= (a ⊙ b + a ⊙ c + b ⊙
c)− 2(a⊙ b⊙ c) and the ith bit of its binary expansion is 1 if and only if the binaryexpansions of a, b, and c, for that bit, have two or three 1s (there are repetitions).Let g = 1

2

(

(a+ b+ c)− (a⊕ b⊕ c)
). Exhaustively we 
an observe that

biti(g) = biti(a+ b− g)⊕ biti(a+ c− g)⊕ biti(b+ c− g).In fa
t,(1) If biti(a) = 0, biti(b) = 0, and biti(c) = 0, then biti(g) = 0 and
biti(a+ b− g)⊕ biti(a+ c− g)⊕ biti(b+ c− g) = 0⊕ 0⊕ 0 = 0;(2) If biti(a) = 1, biti(b) = 0, and biti(c) = 0, then biti(g) = 0 and
biti(a+ b− g)⊕ biti(a+ c− g)⊕ biti(b+ c− g) = 1⊕ 1⊕ 0 = 0;(3) If biti(a) = 1, biti(b) = 1, and biti(c) = 0, then biti(g) = 1 and
biti(a+ b− g)⊕ biti(a+ c− g)⊕ biti(b+ c− g) = 1⊕ 0⊕ 0 = 1;(4) If biti(a) = 1, biti(b) = 1, and biti(c) = 1, then biti(g) = 1 and
biti(a+ b− g)⊕ biti(a+ c− g)⊕ biti(b+ c− g) = 1⊕ 1⊕ 1 = 1.



LIM IS NOT SLIM 9But biti(g) = biti(a+ b− g)⊕biti(a+ c− g)⊕biti(b+ c− g) implies naturally that
(a + b − g) ⊕ (a + c − g) ⊕ (b + c − g) = g. By Proposition 3.2, this implies that
G(A,B,C) = g where A = b+ c, B = a+ c, C = a+ b and (A,B,C) is the relatedlim' position. This �nishes the proof. �Example 4.2 (An example of playing lim). Consider the game lim(22, 33, 40) +
∗17. By Theorem 4.1,

G(22, 33, 40) =
(22 + 33 + 40)− (22⊕ 33⊕ 40)

2
= 32.Therefore, in order to win the game, we must �nd a move in the lim 
omponent to

∗17.The related lim' position is (33+40, 22+40, 22+33) = (73, 62, 55). Let h = 17, inorder to use Proposition 3.2, we must �nd a nim move in (73− h, 62− h, 55− h) =
(56, 45, 38) to ∗17.The nim move (56, 45, 38) 7→ (26, 45, 38) is su
h a move. This was obtained sub-tra
ting k = 30 from the �rst pile 56 so, in the original lim position, we will add
15 to the �rst pile.Returning again to lim, we must add 15 to the �rst 
omponent of the lim position.Thus lim(22, 33, 40) 7→lim(37, 18, 25) obtains the desired ∗17. ♦5. Enumeration of P-positions of limTheorem 5.1. Consider Pn = {(N1, N2, N3) ∈ P : N1 + N2 + N3 = n} the setof P-positions of lim with n stones. Then, for n = 0, |Pn| = 1, and for n > 0,
|Pn| = (3w(n)−1 + 1)/2, where w(n), the binary weight of n, is the number of 1s inthe binary expansion of n.Proof. If n = 0, the result is trivial.Consider n, a positive integer. To 
ount the P-positions su
h thatN1+N2+N3 = n,we must distribute the bits of the binary expansion of n among the three numbers
N1, N2, N3. There are 3w(n) ways to a

omplish this.This generates 6 repetitions for positions with at most one zero and 3 repetitionsfor positions with two zeros. Be
ause there are exa
tly 3 positions with two zeros,avoiding repetitions brings our 
ount to

3w(n) − 3

6
+

3

3
=

3w(n)−1 + 1

2
.

�The sequen
e (3w(n)−1 + 1)/2, the number of P-positions of lim with n stones(in
luding the sinks (0, 0, n)), is the sequen
e A079318 in the Online En
y
lopediaof Integer Sequen
es [8℄, 
losely related to Ulam's 
ellular automaton. We pro
eedto explain this relation.



10 LIM IS NOT SLIMUlam-Warburton Cellular Automaton. The 
ells are the squares in an in�nitesquare grid, and the neighbors of ea
h 
ell are de�ned to be the four squares whi
hshare an edge with it. At stage 0, a single 
ell is turned ON. Thereafter, a 
ell is
hanged from OFF to ON at stage n if and only if exa
tly one of its four neighborswas ON at stage n − 1. On
e a 
ell is ON it stays ON. Figure 2 gives the �rstseveral stages.

b

Figure 2. Stages 0 through 7 of the evolution of the Ulam-Warburton stru
ture.In [12℄, Ri
hard P. Stanley proposed the following problem. Let L be the integerlatti
e in R
d, i.e., L is the set of points (x1, x2,. . ., xd) with all xj ∈ Z. Considera graph L with vertex set L by de
laring two latti
e points to be adja
ent if thedistan
e between them is 1. De�ne a sequen
e S0, S1, . . . of subsets of L indu
tivelyas follows: S0 = {(0, 0, ..., 0)} and Sn = {P ∈ L \

⋃

0<k<n Sk : P is adja
ent toexa
tly one element of ⋃0<k<n Sk}. Let S be the full subgraph of L whose verti
esare S =
⋃

Sn. Thus, P ∈ S is adja
ent in S to P ′ ∈ S if and only if the distan
ebetween P and P ′ is 1.(a) Chara
terize Sn.(b) How many elements are in Sn?Later, in [4℄, Robin J. Chapman gave some answers. We 
on
entrate on the spe
ial
ase d = 2 whi
h is studied in the present work.(a) Consider the binary expansion n =
∑k

j=1 2
rj , r1 > r2 > . . . > rk >

0. Consider v1 = (1, 0), v2 = (0, 1), v3 = (−1, 0), and v4 = (0,−1).
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Sn is exa
tly the set of latti
e points P that 
an be represented as P =
∑k

j=1 2
rjvj su
h that vj 6= −vj−1 for j > 1. For example, (3, 2) = 4(1, 0)+

2(0, 1) + 1(−1, 0), so (3, 2) ∈ S7.(b) |Sn| = 4 · 3w(n)−1.The last expression and Theorem 5.1 let us guess a relation between the Ulam-Warburton stru
ture and Pn. In fa
t, it is possible to 
onstru
t a one-to-one 
or-responden
e between Pn and an o
tant of the UW 
ellular automaton.Consider n =
∑k

j=1 2
rj and P ∈ Sn with the representation ∑k

j=1 2
rjvj . Let(1) a =

∑k

j=1 αj2
rj where

αj = 1 if vj = (1, 0) or (vj−1 = (−1, 0) and vj = (0,−1)); αj = 0 otherwise(2) b = ∑k

j=1 βj2
rj where

βj = 1 if vj = (0, 1) or (vj−1 = (0,−1) and vj = (−1, 0)); βj = 0 otherwise(3) c = ∑k

j=1 γj2
rj where

γj = 1 if (vj = (−1, 0) and vj−1 6= (0,−1)) or (vj = (0,−1) and vj−1 6=
(−1, 0)); γj = 0 otherwiseWe have (a, b, c) ∈ Pn and a > b > c.Conversely, we have the following inverse asso
iation:Consider (a, b, c) ∈ Pn, a > b > c, and n = a+ b+ c =

∑k

j=1 2
rj .(1) If 2rj is a bit of the binary expansion of a then(a) if the already atta
hed vj−1 = (−1, 0), vj = (0,−1)(b) vj = (1, 0) otherwise(2) If 2rj is a bit of the binary expansion of b then(a) if the already atta
hed vj−1 = (0,−1), vj = (−1, 0)(b) vj = (0, 1) otherwise(3) If 2rj is a bit of the binary expansion of c then(a) if the already atta
hed vj−1 = (1, 0) or vj−1 = (0,−1), vj = (0,−1)(b) if the already atta
hed vj−1 = (0, 1) or vj−1 = (−1, 0), vj = (−1, 0)We get the related P =

∑k

j=1 2
rjvj in the o
tant of the UW 
ellular automaton.For example, (6, 3) ∈ S15 be
ause 15 = 8+ 4+ 2+ 1 and (6, 3) = 8(1, 0)+ 4(0, 1)+

2(−1, 0)+ 1(0,−1). Following the one-to-one 
orresponden
e, this 
ell is related to
(8 + 1, 4, 2) = (9, 4, 2) ∈ P15.We observe that, as expe
ted, |Sn| = 4 · 3w(n)−1 is 
onsistent with Theorem 5.1. Infa
t, �rst we take out four 
ells belonging simultaneously to two o
tants, after wedivide the result by eight and, �nally, we add one 
ell:

4 · 3w(n)−1 − 4

8
+ 1.Simplifying, this is the result obtained in Theorem 5.1.



12 LIM IS NOT SLIM6. Final remarks on enumerating positionsWe have seen in the previous se
tion that the P-positions of lim are enumeratedby sequen
e A079318 in OEIS, 
losely related to Ulam's 
ellular automaton.The rules of lim only allow for positions to have three piles. An enumeration of the
P-positions of nim with 2n stones, allowing for an arbitrary number of piles, is quitedi�
ult. However, in view of the relationship between lim and three-pile nim, it isnot unexpe
ted that Theorem 5.1 relates to enumeration of three-pile P-positionsin nim. Sequen
e A128975 in OEIS nearly enumerates these positions but it insistson three positive piles, ex
luding the positions of the form (n, n, 0): that is, it 
ountsthe unordered triples of positive integers (A,B,C) with A+B+C = n, whose nimsum is zero. If n > 0 then (A,B,C) is a P-position of nim with 2n stones and atmost 3 piles if and only if (A,B,C) is a P-position of lim' with A+B+C = 2n (weare in
luding the 
ases (n, n, 0)). In fa
t, if (A,B,C) is a P-position of lim' then,by Proposition 3.2, A ⊕ B ⊕ C = 0 and, 
onversely, if (A,B,C) is a P-position ofnim, it is ne
essary that A+ B + C ≡ 0 mod 2 and (A,B,C) is a triangle (if not,there would be a bit spoiling the fa
t that A⊕B ⊕ C = 0).To 
ount the P-positions of nim with 2n stones and at most 3 piles, we just need to
ount the P-positions of lim' with A+B +C = 2n. Be
ause of the equivalen
e oflim and lim', this is the same as 
ounting the P-positions of lim with a+b+c = n.Therefore, Theorem 5.1 provides the solution; for n > 0, (3w(n)−1 + 1)/2 is thenumber of di�erent P-positions of nim with 2n stones and 2 or 3 piles, and thenumber of these P-positions is given by OEIS sequen
e A079318.Along these lines, here is a problem for future work: is there a generalization oflim, allowing arbitrarily many piles, whi
h would aid in solving the open problemof des
ribing the number of P-positions of nim with 2n stones and any number ofpiles?A
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