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ABSTRACT. In this paper Lim, a recently proposed impartial combinatorial
ruleset, is analyzed. A formula to describe the G-values of LiMm positions is
given, by way of analyzing an equivalent combinatorial ruleset rim’, closely
related to the classical Nim. Also, an enumeration of P-positions of Lim with
n stones, and its relation to the Ulam-Warburton cellular automaton, is pre-
sented.

Kevyworbps: Combinatorial game theory, impartial games, Nim, Sprague-
Grundy theory, Ulam-Warburton cellular automaton.

1. INTRODUCTION

Combinatorial game theory studies perfect information games in which there are
no chance devices (e.g. dice) and two players take turns moving alternately. Here
we are concerned with games under normal play, where the last player to move
wins. This paper is self contained; see [I, 2} 5] for background and [6] for a survey.
Readers fluent in combinatorial game theory may wish to proceed to the subsection
1.2.

1.1. BACKGROUND ON RELEVANT COMBINATORIAL GAME THEORY

The options of a game are all those positions which can be reached in one move.
Using the standard notation for combinatorial game theory of [2] where Left and
Right are the players, games can be expressed recursively as G = {GF | G} where
GL are the Left options and GE are the Right options of G. We distinguish between
multiple meanings of the word game by using the words ruleset and game. The word
ruleset has a concrete meaning related to some particular set of rules (what is called
a “game” informally). The word game, by contrast, has the abstract mathematical
meaning defined by Conway [2, [5]. When we speak of the value of a game, we are
1
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emphasizing that it is being considered in this latter sense, as an algebraic object
which can be compared for equality with, or added to, other games.

An example of a combinatorial ruleset is the classic game of NIM, first studied by
C. Bouton [3]. NIM is played with piles of stones. On his turn, each player can
remove any number of stones from any pile. The winner is the player who takes
the last stone. NIM is an example of an impartial ruleset: Left options and Right
options are the same for the game and all its followers. The values involved in NIM
are called nimbers (or stars):

sk =10,%,...,%(k—1)]0,%,...,%(k—1)}

It is a surprising fact that all impartial rulesets take only nimbers as values (Sprague-
Grundy Theory, see [7, 11]).

The minimum excluded value of a set S is the least nonnegative integer which is
not included in S and is denoted mex(S). The nim-value of an impartial game G,
denoted by G(G), is given by

G(G) = mex{G(H) : H is an option of G}.

The value of an impartial game G is the nimber *G(G). The game G is a previous
player win, i.e. the next player has no good move, if and only if G(G) = 0. If a
game is a previous player win, we say it is a P-position. If a game is a next player
win, we say it is a N -position. The set of P-positions is noted P and the set of
N -positions is noted N.

The nim-sum of two nonnegative integers is the exclusive or (XOR), written &,
of their binary representations. It can also be described as adding the numbers
in binary without carrying. The disjunctive sum of games H and K is written
G = H + K. In this game, the player to move must choose one of H and K and
make a legal move in that game. One important result about impartial games is
the following: if G = H + K, then G(G) = G(H) ® G(K) (see [1} 2, []).

1.2. THE GAME OF LIM

This paper studies the impartial ruleset LiM with very simple rules proposed by
Jorge Nuno Silva [. In [0, 10], there is a correct conjecture about the P-positions,
but no proof is presented.

There are 3 piles. A player takes the same number N of stones from 2 piles and
adds N stones to the third. The last player wins (i.e. we consider the normal
play version). There is a board game implementation of LIM has a board game
implementation. The players move a pile of checkers diagonally in one of the three
directions depicted. If a player moves Southwest or Northeast, he can move a
number of cells smaller or equal to the number of checkers of the pile and, when
the move is finished, the player removes that number of checkers from the pile. If
a player moves Northwest, when the move is finished, the player adds the number
of checkers that is equal to the number of traveled cells. See Figure[Il

1Etymological note: the name riM, aside from rhyming with Nim, is an acronym for Laura e
Manuel, the names of Silva’s children (the Portuguese word e “and” is pronounced /i/).
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FI1GURE 1. Moves in the board game implementation of LIM.

In this paper a complete analysis of LIM is presented. Theorem ] gives a formula
for the nim-values of LIM. This formula intermixes the ordinary sum and the nim-
sum, and thus our analysis necessitates establishing some lemmas on how these two
notions of sum interact, which we do in section 2l Moreover, it is very convenient
for the analysis of LIM to introduce an equivalent ruleset LIM’, a sort of coordinate
transform of LIM: it turns out that we can use NIM moves to find good moves in
LiM’. This is the subject of Section Bl

We also enumerate the P-positions of LIM and connect it to the Ulam-Warburton
cellular automaton in Section [l exhibiting a bijection between P-positions of LM
with n stones and cells born in a region of this automaton on tick n.

2. NiM, SUMS, AND NIM SUMS

In this section we prove some useful general results relating the usual sum and
subtraction to the nim sum, culminating with Lemma 24 on NIM.

Lemma 2.1. Let a, b and ¢ be nonnegative integers. Then,

(1) a+b=adb+2(a®b)
(2) a+b+c=a@bBc+2a0b+adc+bOc)—4(a®bOc)
where © is the bitwise product (i.e. AND).

Proof. For the first item we just observe that nim sum cancels repeating bits in
binary expansions of a and b. So, in order to obtain the usual sum from nim sum,
we have to add the repeating bits twice.

Again, the nim sum for three summands cancels repeating bits in binary expansions
of a, b and c. It is easy to see that a bit of the binary expansion of (¢ ®@b+a ®c+
bO®c)—2(a®beec)is 1if and only if a, b and ¢, for that bit, have two or three
1s (there are repetitions). So, in order to obtain the usual sum from nim sum, we
have to add (a®b+a®c+b®c) —2(a®bO c) twice. O
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Lemma 2.2. Let a, b be nonnegative integers. Then,

a—b<a®db<a+b

Proof. a ®b < a+ b is trivial, as we can argue with the previous lemma. For the
second inequality,

b+(b@a)=b®(b®a)+2000(a®b)=a+200C (a®b)) >a
So,a—b<a®b. O

The next lemma is our most technical. Those not reading in depth may wish to
skip ahead to Lemma [2.4] where it is used.

Lemma 2.3. Let d be a positive integer, and suppose given four expressions for d
as a signed sum of distinct powers of two: that is, let ;0 € {—1,0,1} satisfy

d= 281'7@21.
i>0
for each £ =1,...,4. Suppose that there is no i > 0 such that €;1€;2¢;3€5,4 = 1.

Let i be the mazimal index such that €;,1 + €iy,2 + €iy,3 + €ip,a @5 0odd. Then, at
least one of the €;, ¢ equals 1.

Proof. We first compare two such expansions of d, say with coefficient sequences
{€i1} and {e; 2}. Let i be the greatest index at which ¢; ; differs from ¢; . Without
loss of generality we may take ;1 > €; 2. The difference €; 1 —¢; 2 must equal 1; if it
were greater, then since Z;:o £j12) = Z;:o £;227 = d, subtracting the disagreeing
terms €; , would yield

i—1
D (eja—ej2)? <22,
§=0
which is impossible since,
i—1 i—1
Dlegi—eg2)? 2y —2-2 = 202"~ 1),
=0 =0

Moving on to the (i —1)th terms, an argument of the same type shows that e;,_1 1 —
€i—1,2 < —1: if instead this difference were > 0, the remaining terms would have to

make up a discrepancy of size 2-2¢=1, and could not. Likewise, ife;_11—;-12 = —1,
then another similar argument shows €;,_21 — €;_22 < —1. And one can continue
iteratively, concluding that if 1 —exo = —1forall k =¢—1,i—2,...,7, then
€j—1,1 —€j—1,2 < —1L.

Also, we can not have g1 —¢ego = —1 forall kK =i —1,i —2,...,0 because
Z;;E 27 < 2% so, for some k < j, we have ex 1 — g2 = —2.

Taking up the situation of interest with all four expansions ¢; ¢, let ¢ be the maximal
index such that any ;¢ is nonzero. Since d is positive, €; ¢ € {0,1} for each £. The
number of ¢ such that ¢; ¢ equals 1 cannot be 4 by hypothesis, and if it is 1 or 3
then our conclusion is immediate with ip = 7. So we may assume there are two
such ¢, without loss of generality that ;1 =¢;2=1and g;3 =¢;4 = 0.



LIM IS NOT SLIM 5

Now let us examine the remaining coefficients 3, with £ < 7. By the above,

consider i the first bit such that ;,,1 — 45,3 = —2 or €;,,2 — €45,4 = —2. Say that
€ip,1 — €ip,3 = —2. Therefore, ¢;,1 = —1 and ¢;, 3 = 1. Also, we can not have
€ip,2 — €ip,a = —2 because, by the assumptions of the theorem, ¢; 1€; 25 354 # 1.
So, it is mandatory that either ¢;, o = —1 and €;,,4 =0 or £;,0 = 0 and ¢;, 4 = 1.
This completes the proof because i is indeed the maximal bit sought and at least
one of the €;, ¢ equals 1. O

Lemma 2.4. Consider a, b, ¢ nonnegative integers and 0 < d < a @ b® c. Then,
the NIM position (a +d, b+ d,c+ d) has a move to a NIM position of Grundy value
(a®b®c)—d.

Proof. 1t is enough to prove that we can not have simultaneously the following
three inequalities:

((adbdc)—d)e(b+d)P(c+d)>a+d
(adb®c)—d)®(a+d)®(c+d)>b+d
(a@b®c)—d)®(a+d)® (b+d) > c+d.

To justify this fact, say that ((a®b®c)—d)® (b+d) @ (c+d) < a+d. If so, we have
a NIM move from (a+d,b+d,c+d) to ((a®bPc)—d)® (b+d) B (c+d),b+d,c+d)
with Grundy value (a®bPc)—d. So, if we prove that at least one of the inequalities
fails, the lemma is proved.

Let bit;(x) denote the ith bit of the binary expansion of an integer z. Define the
integers ¢, ¢ € {—1,0,1} by

€;,1 = bit;(a + d) — bit;(a)

€i,2 = bit;(b+ d) — bit;(b)

€;,3 = bit;(c + d) — bit,(c)

gi4=Dbit;(a®b®c) —bit;((a B b® c) —d)
Of course, Y ;&2 =dfor {=1,...,4.

There is no 4 such that €; 1€ 2¢;,3654 = 1, because that would imply that an odd
number of bit;(a), bit;(b), bit;(c), and bit;(a ® b® ¢) were 1. Therefore Lemma 2.3
applies to the &; 4.

Each ¢; ¢ is odd if and only if the nim-sum of the two bits subtracted in its definition
is odd, so the iy of the Lemma 23] equals the index of the leading 1 bit in

(a+d)@ad(b+d)dbd(c+d)Pcd(adbdc)d(a®bBc)—d),
which therefore equals the leading 1 bit in
(a+d)d(b+d)@(c+d) D ((a®bDc)—d).
At last, suppose none of a + d, b + d, or ¢ + d have their igth bit equal to 1. Then
g0 # 1for £ =1,2,3,50¢;4 = 1, implying that bit;,(a ® b P ¢) = 1. But then an

odd number of bit;,(a) and bit;, (b) and bit,,(c) equal 1, so an odd number of ¢; 1
and €; 2 and €; 3 are odd, contradicting the definition of ig.
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In conclusion, in ig, the leading 1 bit of
(a+d)@b+d)@(c+d) @ (a®bDc)—d),
at least one of the igth bits of a + d, b+ d, and ¢ + d must be 1.

This suffices to argue that one of the initial three inequalities must fail. Say that
we have the igth bits of a +d, b+ d, ¢+ d, and ((a & b ® ¢) — d) equaling 1, 1,
0, and 1. In that case, both the first and second inequalities fail. And a similar
argument for the other cases leads to, at least, one failed inequality. This completes
the proof. O

Example 2.5. Consider the triple (41, 30,23) and d = 15. Because 41® 30 23 =
32 > 15 > 0, the hypotheses of Lemma 2.4 are satisfied. So, it is possible to find
a NIM move from (41 + 15,30 4 15,23 4+ 15) = (56,45, 38) to a NIM position with
Grundy value 32 — 15 = 17. To find such a move we can perform the following
calculations:

(1) ((41® 30 23) —15) @ (30 + 15) @ (23 4 15) = 17 ® 45 @ 38 = 26
(2) (41 ®30623) —15)@ (41 +15) & (23 4 15) = 176 56 & 38 = 15
(3) ((41® 30 23) — 15) @ (41 + 15) & (30 + 15) = 17 & 56 & 45 = 4.

In this example, all the three inequalities 56 > 26, 45 > 15 and 38 > 4 hold
(all the three inequalities of the proof failed). So, there are three good possibil-
ities: (56,45,28) — (26,45,28), (56,45,28) — (56,15,28) or (56,45,28) —
(56,45,4). O

3. THE GAME OF LIM’

In this section we introduce and analyze the ruleset LiM’ which is equivalent to
LIM. LIM’ is played on triangles (A, B,C) (thatis A+ B > C, A+ C > B and
B+ C > A) such that A+ B+ C = 0 mod 2 and a move consists of subtracting
from a single side length an even number less or equal than this side length. There
are several classical variations of NIM; subtraction games are played like NIM but
the players can only remove a number of stones from a pile if it is an element of
a given subtraction set {si,...,sx} ([I, 2, 5], for more information). LIM’ is the
subtraction game played on triangles defined as above whose subtraction set is the
set, of positive even numbers.

Lemma 3.1. LIM and LIM’ are equivalent combinatorial rulesets.

Proof. Consider the digraphs (P, E) and (P, E’), where P and P’ are the sets of
vertices representing the positions of LM and LIM’ and E and E’ are the edges
corresponding to the moves of each ruleset. We want to prove that the digraphs
are isomorphic.

Consider ¢ : P — P’ such that ¢(a,b,c) = (A, B,C) where A=b+¢, B=a+ec¢,
C = a+b. It is easy to see that (A4, B,C) is a triangle such that A+ B+ C =0
mod 2, so that the image of ¢ indeed lies in the set of LIM’ positions.

First, we observe that 1 is a bijection. To wit, ¥(a,b,c) = ¥(a’,0',) = (b +
c,at+c,a+b) =0 +,a +,a’ +b) and elementary linear algebra shows that
b+c=bV+cd,a+c=d +c and a+b =4d +V impliesa = d, b = ¥



LIM IS NOT SLIM 7

and ¢ = ¢/. Also, consider an arbitrary (4, B,C) € P'. Let a = (—A+ B+ C)/2,
b= (A—-B+C(C)/2,and ¢ = (A+B—C)/2. Because all the fractions are nonnegative
integers ((A, B,C) is a triangle and A + B + C = 0 mod 2), we have (a,b,c) € P
and ¥(a,b,c) = (A, B, C).

As for the edges of our digraphs, consider the LIM move (a,b,¢) — (a—k,b—k,c+
k). Of course, we have k < a, k < b, 2k <a+b=C,and A+ B+C—-2k=0
mod 2. Also, (4, B,C — 2k) is a triangle because C — 2k + A = a + b — 2k +
b+c = B+ 2b— 2k > B and the same argument for C — 2k + B > A. So,
(A,B,C) — (A,B,C — 2k) is a legal LIM’ move. Conversely, consider the LIM’
move (4, B,C) — (A, B,C —2k). It is mandatory that (A4, B, C'—2k) is a triangle.
So,C—2k+B>A=k<(—A+B+(C)/2=a (and similarly k£ < b). Therefore,
(a,b,¢) — (a—k,b—k,c+k) is a legal LIMm move. The conclusion is that an edge
is in F if and only if the correspondent edge is in /. We have a graph isomorphism
and this completes the proof. O

To be explicit, here again are the correspondences from moves in LIM to moves in

(1) (a,b,¢) — (a—k,b—Ek,c+k) is identified with (4, B,C) — (A, B,C —2k)
(2) (a,b,¢) — (a—k,b+k,c—k)is identified with (4, B,C) — (A, B—2k,C)
(3) (a,b,¢) — (a+k,b—k,c—k)is identified with (4, B,C) — (A—2k, B, C).

So, a complete analysis of LIM’ provides a complete analysis of LiM. The following
proposition is such a complete analysis.

Proposition 3.2. Let (A, B,C') be a LIM’ position. If (A—g)®(B—g)®(C—g) =g
then (A, B,C) has G-value g.

Proof. We will prove the theorem following the usual induction in A+ B+ C. The
base case A = B = C = 0 is trivial. We will show that a position we have asserted
to have G-value g has no option of the same G-value, and has an option of G-value
h for each 0 < h < g.

The former is clear: if LIM’(A, B, C) and LIM'(A — k, B, C) had the same G-value
g, so would the NIM positions (A —g¢g,B —¢,C —g) and (A—k—g,B—g,C —g),
which they cannot.

Let 0 < h < g. Consider (A—g¢g,B—g,C —g) and d = g—h. We have 0 < d <
(A—g)®(B—-g)® (C —g)=g. So, we are in the conditions of Lemma 24l It is
possible to find a NIM move from (A—g+d, B—g+d,C—g+d)=(A—h,B—h,C—h)
to a position with G-value ¢ — d = h. There exists k such that the nim sum of
(A—k—h,B—h,C —h)is h.

Now, let us see that (A — k, B,C) is a LIM’ position and k is a nonnegative even
number. To begin, B+ C > A — k because B+ C > A. Also, because A —k —h =
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h& (B—h)® (C —h)implying A—k=h+ (h® (B—h)® (C —h)),
(A-k)+B

= (h+(heB-ha(C—-h))+B
> (heo(h®(B—-h)®(C—h))+B
= (B-h)®(C—-h))+B

> (C-h)—(B—-h))+B

= C.

We have used Lemma [22]in the previous manipulations. Similarly (A—k)+C > B
so, (A —k, B, C) is a triangle.

Also, the nim sum of (A—k —h, B—h,C —h) is h. A simple parity analysis allows
us to observe that (A — h) + (B —h) 4+ (C — h) = h mod 2, and therefore & must
be even.

Finally, because k is even, (A — k) + B+ C =0 mod 2 and (A —k, B,C) is a LIM’
position. Now, using induction, the G-value of this position is A because the nim
sum of (A—k—h,B—h,C —h)is h.

O

4. G-VALUES OF LIM POSITIONS

Theorem 4.1. Let (a,b,c) be a LIM position. Then,

g(a,b,c):%((a+b+c)7(a®b@c)).

This theorem solves LiM completely; Example below illustrates this in practice.
We observe that the P-positions of LIM are all those positions (a, b, ¢) such that the
usual sum coincides with nim sum. This observation was first published in [9] as a
conjecture, without proof.

Proof. As seen in Lemma ZT] 3((a+b+c¢) — (adb@c)) = (@0b+a®c+bO
¢) —2(a®b® c) and the ith bit of its binary expansion is 1 if and only if the binary
expansions of a, b, and ¢, for that bit, have two or three 1s (there are repetitions).

Let g = 3((a+b+c)— (a® b c)). Exhaustively we can observe that
bit;(g) = bit;(a + b — g) @ bit;(a + ¢ — g) ® bit;(b+ ¢ — g).
In fact,

(1) If bit;(a) = 0, bit;(b) = 0, and bit,;(c) = 0, then bit;(¢g) = 0 and
bit;(a +b— g) ® bit;(a+c—g) B bit;(b+c—g) =005 0 = 0;
(2) If bit;(a) = 1, bit;(b) = 0, and bit,;(c) = 0, then bit;(g) = 0 and
biti(a +b— g) ®biti(a+c—g) ®biti(b+c—g) =1®1®0 = 0;
(3) If bit;(a) = 1, bit;(b) = 1, and bit;(c) = 0, then bit;(¢g) =1 and
bit;(a +b—g) ® bit;(a+c—g) B bit;(b+c—g)=10000=1;
(4) If bit;(a) = 1, bit;(b) = 1, and bit;(c) = 1, then bit;(¢g) = 1 and
bit;(a +b—g) ® bit;(a+c—g) B bit;(b+c—g)=1d1P1=1.
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But bit;(g) = bit;(a +b— g) @ bit;(a+ c— g) @ bit;(b+ ¢ — g) implies naturally that
(a+b—g)®(a+c—g)® (b+c—g) =g. By Proposition B2 this implies that
G(A,B,C) =g where A=b+c¢, B=a+c¢, C =a+band (4, B,C) is the related
LIM’ position. This finishes the proof. O

Example 4.2 (An example of playing LiM). Consider the game 1.1M(22, 33, 40) +
*17. By Theorem [41]

(22 + 33 4 40) — (22 & 33 @ 40)
2

G(22,33,40) = = 32.

Therefore, in order to win the game, we must find a move in the LIM component to
*17.

The related LM’ position is (33 + 40,22+ 40, 22 4+ 33) = (73,62,55). Let h = 17, in
order to use Proposition B:2] we must find a NIM move in (73 — h,62 — h,55 — h) =
(56,45, 38) to +17.

The NIM move (56,45, 38) — (26,45, 38) is such a move. This was obtained sub-
tracting £ = 30 from the first pile 56 so, in the original LIM position, we will add
15 to the first pile.

Returning again to LM, we must add 15 to the first component of the LiM position.
Thus LIM(22, 33, 40) —LIM(37, 18, 25) obtains the desired *17. &

5. ENUMERATION OF P-POSITIONS OF LIM

Theorem 5.1. Consider P, = {(N1, N3, N3) € P : Ny + No + N3 = n} the set
of P-positions of LIM with n stones. Then, for n = 0, |P,| = 1, and for n > 0,
|P,| = (30 =1 1-1)/2, where w(n), the binary weight of n, is the number of 1s in
the binary expansion of n.

Proof. If n =0, the result is trivial.

Consider n, a positive integer. To count the P-positions such that N1+ No+ N3 = n,
we must distribute the bits of the binary expansion of n among the three numbers
N1, Ny, N3. There are 3¥(") ways to accomplish this.

This generates 6 repetitions for positions with at most one zero and 3 repetitions
for positions with two zeros. Because there are exactly 3 positions with two zeros,
avoiding repetitions brings our count to
w3 3 gwim-141
- = =
6 3 2
O

The sequence (3*(™)~1 4 1)/2, the number of P-positions of LIM with n stones
(including the sinks (0,0,n)), is the sequence A079318 in the Online Encyclopedia
of Integer Sequences [§], closely related to Ulam’s cellular automaton. We proceed
to explain this relation.



10 LIM IS NOT SLIM

Ulam-Warburton Cellular Automaton. The cells are the squares in an infinite
square grid, and the neighbors of each cell are defined to be the four squares which
share an edge with it. At stage 0, a single cell is turned ON. Thereafter, a cell is
changed from OFF to ON at stage n if and only if exactly one of its four neighbors
was ON at stage n — 1. Once a cell is ON it stays ON. Figure [2] gives the first

several stages.

FIGURE 2. Stages 0 through 7 of the evolution of the Ulam-
Warburton structure.

= o

In [12], Richard P. Stanley proposed the following problem. Let £ be the integer
lattice in RY, i.e., £ is the set of points (z1, 2,..., z4) with all z; € Z. Consider
a graph L with vertex set £ by declaring two lattice points to be adjacent if the
distance between them is 1. Define a sequence Sy, S1, ... of subsets of £ inductively
as follows: Sy = {(0,0,...,0)} and S,, = {P € L\ Uycpc, Sk : P is adjacent to
exactly one element of ( J,_, ., Sk}. Let S be the full subgraph of L whose vertices
are S = JS,. Thus, P € S is adjacent in S to P’ € S if and only if the distance
between P and P’ is 1.

(a) Characterize Sy,.
(b) How many elements are in S,,?

Later, in [4], Robin J. Chapman gave some answers. We concentrate on the special
case d = 2 which is studied in the present work.

(a) Consider the binary expansion n = Z?=1 2"y > rg > .. > T 2
0. Consider v; = (1,0), v2 = (0,1), v3 = (=1,0), and vy = (0,—1).



LIM IS NOT SLIM 11

S, is exactly the set of lattice points P that can be represented as P =
Z§=1 27iv; such that v; # —v;_; for j > 1. For example, (3,2) = 4(1,0) +
2(0,1) + 1(—1,0), so (3,2) € S7.

(b) |S,| =4-3wm-1,

The last expression and Theorem [B.] let us guess a relation between the Ulam-
Warburton structure and P,. In fact, it is possible to construct a one-to-one cor-
respondence between P,, and an octant of the UW cellular automaton.

Consider n = Z?Zl 2" and P € S,, with the representation Z?Zl 2"v;. Let

(1) a= Z?Zl «;2"  where
a; =1ifv; = (1,0) or (vj—1 = (—1,0) and v; = (0, —1)); a; = 0 otherwise

(2) b=3F_ 32" where
B; =1ifv; =(0,1) or (vj—1 = (0,—1) and v; = (—1,0)); B; = 0 otherwise

(3) c= Z?Zl v;2"  where
v; = 1if (v; = (-1,0) and v;—; # (0,—1)) or (v; = (0,—1) and v;_1 #
(—1,0)); v; = 0 otherwise

We have (a,b,¢) € P, and a > b > c.
Conversely, we have the following inverse association:

Consider (a,b,¢) € Pp,az2b>c,andn=a+b+c= 2?212’3‘.

(1) If 2" is a bit of the binary expansion of a then
(a) if the already attached v;_1 = (—1,0), v; = (0,—1)
(b) v; = (1,0) otherwise

(2) If 2" is a bit of the binary expansion of b then
(a) if the already attached v;—; = (0, —1), v; = (—1,0)
(b) v; = (0,1) otherwise

(3) If 2" is a bit of the binary expansion of ¢ then
(a) if the already attached v;—1 = (1,0) or v;_1 = (0, —1), v; = (0, —1)
(b) if the already attached v;_1 = (0,1) or v;_; = (—1,0), v; = (—1,0)

We get the related P = 2?21 2"7v; in the octant of the UW cellular automaton.

For example, (6,3) € Si5 because 15 =8+4+2+ 1 and (6,3) = 8(1,0)+4(0,1) +
2(—1,0) +1(0,—1). Following the one-to-one correspondence, this cell is related to
(8 + 1,4, 2) = (9, 4, 2) € Pis.

We observe that, as expected, |S,| =4- 3w(=1 is consistent with Theorem (.1l In
fact, first we take out four cells belonging simultaneously to two octants, after we
divide the result by eight and, finally, we add one cell:

4.3wm—1 4

1.
3 +

Simplifying, this is the result obtained in Theorem [G.11
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6. FINAL REMARKS ON ENUMERATING POSITIONS

We have seen in the previous section that the P-positions of LIM are enumerated
by sequence A079318 in OEIS, closely related to Ulam’s cellular automaton.

The rules of LM only allow for positions to have three piles. An enumeration of the
P-positions of NIM with 2n stones, allowing for an arbitrary number of piles, is quite
difficult. However, in view of the relationship between LIM and three-pile NiMm, it is
not unexpected that Theorem [5.1] relates to enumeration of three-pile P-positions
in NIM. Sequence A128975 in OEIS nearly enumerates these positions but it insists
on three positive piles, excluding the positions of the form (n,n,0): that is, it counts
the unordered triples of positive integers (A, B, C) with A+ B+ C = n, whose nim
sum is zero. If n > 0 then (A, B,C) is a P-position of NIM with 2n stones and at
most 3 piles if and only if (A, B, C) is a P-position of LIM’ with A+ B+ C = 2n (we
are including the cases (n,n,0)). In fact, if (A, B,C) is a P-position of LM’ then,
by Proposition B2, A @ B ¢ C = 0 and, conversely, if (A, B,C) is a P-position of
NIM, it is necessary that A+ B + C = 0 mod 2 and (4, B,C) is a triangle (if not,
there would be a bit spoiling the fact that A@® B¢ C = 0).

To count the P-positions of NIM with 2n stones and at most 3 piles, we just need to
count the P-positions of LIM’ with A + B 4+ C' = 2n. Because of the equivalence of
LIM and LIM’, this is the same as counting the P-positions of LIM with a+b+c = n.
Therefore, Theorem [5.1] provides the solution; for n > 0, (3¥(=1 4-1)/2 is the
number of different P-positions of NIM with 2n stones and 2 or 3 piles, and the
number of these P-positions is given by OEIS sequence A079318.

Along these lines, here is a problem for future work: is there a generalization of
LIM, allowing arbitrarily many piles, which would aid in solving the open problem
of describing the number of P-positions of NIM with 2n stones and any number of
piles?
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