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Teach youth to suit their inclinations — Proverbs 22, 6.

Abstract

A taste of the lure of games. It serves a dual purpose: (i) an introduc-
tion for the uninitiated, and (ii) a way to introduce youth and others to
mathematics in a pleasing and delightful way.

1 The lure of games

Games have a natural appeal, that entices both amateurs and professionals to
become addicted to the subject. What is the essence of this appeal? Perhaps
the urge to play games is rooted in our primal beastly instincts; the desire to
corner, torture, or at least dominate our peers. A common expression of these
dark desires is found in the passions roused by local, national and international
tournaments. An intellectually refined version, well hidden beneath the façade
of scientific research, is the consuming drive “to beat them all”, to be more
clever than the most clever, in short — to create the tools to Math-master them
all in hot combinatorial combat! Reaching this goal is particularly satisfying
and sweet in the context of combinatorial games, in view of their inherent high
complexity.1

∗Invited presentation for the traveling games exhibition GAMES & SCIENCE, SCIENCE
& GAMES, which began in Göttingen, Germany, July 17 – Aug 21, 2005. The German
translation, by Niek Neuwahl, is displayed at the exhibition in posters. Readers interested
in mathematical background, too technical to be included here, are invited to contact the
author. Thanks to Roger Eggleton for helpful editorial remarks.

1For application-oriented readers: in addition to a natural appeal of the subject, there are
applications or connections to various areas, including complexity, logic, graph and matroid
theory, networks, error-correcting codes, surreal numbers, on-line algorithms, biology and —
analysis and design of mathematical and commercial games!
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The mainstream of games consists of two-player games with perfect infor-
mation (unlike some card games where information is hidden), without chance
moves (no dice), and outcome restricted to (lose, win), (tie, tie) and (draw,
draw) for the two players who move alternately (no passing). A tie is an end
position with no winner and no loser, as may occur in tic-tac-toe for example.
A draw is a “dynamic tie”, i.e., a non-end position such that neither player can
force a win, but each can find a next non-losing move.

2 Nim

The simplest of games is Nim: Place identical marbles on a directed graph, such
as depicted in Fig. 1, say on circles 1, 2 and 4. A move consists of selecting
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Figure 1: The game of Nim.

a marble and moving it to a neighboring circle, in the direction of an arrow.
Double occupancy is permitted. The player first unable to move loses, and the
opponent wins. Before reading on, answer the following

Question 1. Can you win from the given position? If so, by what move?

Nim has a very simple winning strategy. Write the number of each occupied
circle in binary notation, then add them without carry, such as a kindergarten
child might do. If the Nim-sum is zero you cannot win by beginning to play
from that position: every move necessarily makes the Nim-sum nonzero. But if
it’s nonzero, there is always a move that makes it 0, which is also the value at
the end of the game when all the marbles are in position 0, which is therefore
a winning move. The Nim-sum of the given position is displayed in Fig. 2(a).
The move 4 → 3 causes the Nim-sum to become 0. It is a winning move – in
this case, the only winning move.
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Figure 2: Two Nim-sums in a play of Nim.

3 Fundamental question

Nim and chess and go belong to the same family of games. Why does the former
have such a simple strategy, whereas chess and go seem to be so complex?

Well, there are several mathematical differences between these games. Here
are a few of them.

• Cycles. Nim-like games are finite and “acyclic”: no position is assumed
twice, but this is not true of chess-like games.

• Marble interactions. In Nim-like games, marbles coexist peacefully,
even on the same circle, whereas they interact in various ways such as jumping,
deflecting, capturing, etc., in chess-like games.

• Partisanship. A game is impartial if the set of (direct) followers of every
position is the same for the two players. If this doesn’t hold for all positions,
the game is partisan. Nim-like games are impartial, whereas chess-like games
are partisan (the “black” player cannot move a white piece and vice versa).

In order to throw some light on the fundamental question let us adopt the
Roman Cæsars’ motto:

DIVIDE AND CONQUER .

Thus, instead of trying in vain to scale the vertical cliff separating Nim
from chess, we choose to ascend along scenic trails that lead from sea-level Nim
to alpine chess at a moderate gradient, via intermediate games sampled from
various strategic viewpoints along the trails. This is done by attacking the
above-mentioned mathematical differences between Nim and chess individually,
rather than facing them simultaneously.

4 Cycles

Fig. 3 depicts a directed graph, played the same way as Nim, but it has cycles.
For example, place identical marbles on circles A,B, E, F . A move consists of
selecting a marble and moving it to a neighboring circle along a directed arrow.
Multiple occupancy is permitted. The player first unable to move loses and the
opponent wins. If there is no last move, the outcome is a draw.
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Figure 3: Going in circles.

Question 2. From the given position, can the first player win, or at least
draw, or can the opponent win?

Notice that draws are indeed possible in this game. For example, place a
single marble on Q. The first player will not go to P , since then the opponent
can go to N , winning. Therefore the first player moves to R. It is not difficult to
see that as long as the players stick to the region F, K,L, Q, R, they maintain
a draw, but a player venturing out of this sanctuary can be defeated by the
opponent.

5 Marble interactions

In Fig. 4, identical marbles are placed, say on the starred circles. A move
consists of selecting a marble and moving it to a neighboring circle along a
directed arrow. If the latter is occupied, both marbles are annihilated and
removed from the game. Once again, the first player unable to move loses, and
the opponent wins. Notice that the 3 upper graphs are identical, and so are the
two lower ones. The only difference between an upper and a lower graph is the
orientation of the top arrows. So things look easy, hence the name ”Innocent
Marbles”.

Question 3. From the given position, can the first player win, or at least
draw, or can the opponent win?

Actually, this may not be too easy to answer for the uninitiated, so let’s
begin with two easier questions.

Question 4. Place 4 marbles: one on z0 and one on z2 in one of the graphs;
and one on z0 and one on z2 in another copy. We ask the same question as in
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Figure 4: A game of Innocent Marbles. c©1978-2005 A.S. Fraenkel

Question 3 for this position.

Question 5. Place 4 marbles: one on z0 and one on z2 in one of the graphs;
and one on y0 and one on y2 in another copy. We ask the same question as in
Question 3 for this position.

Now that you have mastered Innocent Marbles, you are ready to attack
the solar system as a homework problem. Consider the stellar configuration
marked by letters in “Interstellar encounter with Jupiter” (Figure 5), where J
is Jupiter, the other letters are various fragments of the Shoemaker–Levy comet,
and all the vertices are “space-stations”. A move consists of selecting Jupiter
or a fragment, and moving it to a neighboring space-station along a directed
trajectory. Any two bodies colliding on a space-station explode and vanish in a
cloud of interstellar dust. Note that 6 space-stations are ”black holes”, where a
body is absorbed and cannot escape. Both players are viciously bent on making
the final move to destroy this solar subsystem. Is the given position a win for
player I or for player II? Or is it a draw, so that a part of this subsystem will
exist forever? And if so, can it be arranged for Jupiter to survive as well? (An
encounter of the Shoemaker–Levy comet with Jupiter took place in mid-July,
1994.)

Note. If an odd number of marbles is placed on any of the 5 graphs of
Innocent Marbles, the outcome of play is trivially a draw, since marbles can
disappear only in pairs. But in Fig. 5, the placement of any number of marbles
makes a priori sense, because of the black holes.
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Figure 5: Interstellar encounter with Jupiter. c©1978-2005 A.S. Fraenkel

6 Partisanship

Two players, Vera and Howie, tile a 10×11 “chessboard” by alternately covering
a pair of adjacent squares with a domino (Fig. 6). Vera tiles vertically and Howie
tiles horizontally. The player first unable to move loses and the opponent wins.
Who can win? Note that draws are not possible. On a 2× 1 board, Vera wins,
on a 1× 2, Howie wins, and on a 2× 2, the first player wins.

Question 6. Determine the winner for all m× n boards, with m at most 3
and n at most 4.

7 Partisanship with marble interaction

The game board for the game Arrows, which is featured in this exhibition, is
shown in Fig. 7. A team of 7 glass marbles is placed on bases A, B,C, D, E, F,G
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Figure 6: Domineering position after the 14th move of Vera.
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Figure 7: Arrows. c©1975-2005 R.B. Eggleton, A.S. Fraenkel

and a team of 7 steel marbles on T,U, V,W,X, Y, Z. Gladys can move only glass
marbles, Steve only steel marbles. At each turn one marble is moved in a straight
line from one base to a neighboring base in the direction of the arrow if the two
bases are joined by an arrow, or along the line (in either direction) if the two
bases are joined by a line. If a player lands on a base occupied by an opposing
marble, the latter marble is captured and removed from the board. A marble
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cannot be moved onto a base that is already occupied by a marble of the same
team. The players move alternately. The winner is the player who captures the
whole team of 7 opposing marbles.

Question 7. Can the first player in Arrows win or at least draw?

8 Mathgames and playgames

Now is the time to answer some of the earlier questions.
The answer to Question 2 is that there is a unique winning move, namely to

move F → C. Every other move leads to a draw or to defeat. For example, see
Conway’s On Numbers and Games2, where this graph is credited to the author.
Conway asked how long it would take Garry Kasparov to find this unique move.

The answer to Question 3 is that there is a unique winning move, which is
y0 → y2. As for Question 4, it should be clear that the second player can at
least draw, by mimicking in one copy the move made by the first player in the
other. But it can be shown that the second player can actually win. Regarding
Question 5, the outcome is a draw, which can be maintained by moving around
on the perimeter of the y copy. These results can be gleaned from the author’s
“Complexity of games”.3

These games have the following common features:

(i) They have an “easy” and “fast” strategy.4

(ii) They leave the uninitiated layman perplexed, because they lack a boardfeel:
the loser doesn’t know whether his position is weak or strong, and may
not even sense that defeat is imminent, only 1 or 2 steps away. The games
do not fire the imagination of laymen, though Innocent Marbles may be a
little more interesting than the game in Fig. 2.

(iii) They are challenging to mathematicians, who will begin searching for an
efficient strategy.

(iv) They become trivial to play, at least to mathematicians, once the under-
lying theory and strategy are known.

We dub games with these features mathgames.

As for Domineering (Fig. 6), several computations, beginning with Conway’s
book mentioned above, have determined the winner for small boards, but no
general method for deciding the winner on arbitrary boards is known. I don’t
know the answer to Question 7, but:

2J.H. Conway On Numbers and Games, Ch. 11 (A K Peters, 2001)
3R.K. Guy (ed.), Combinatorial Games, Proc. Sympos. Appl. Math. Vol. 43, pp. 111–153

(Amer. Math. Soc., Providence, RI, 1991)
4Known as “polynomial time strategy”.
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(i) The game Arrows is “hard”.5 For such games, it is unlikely that a precise
strategy can be computed in reasonable time.

(ii) The game Arrows has a boardfeel and is therefore interesting to play. It’s
a playgame, one of the easiest “hard” games!

(iii) The board was designed so that no player can win by imitating the oppo-
nent’s moves. Moreover, no position consisting of a single glass token and
a single steel token is a draw; one or the other can always force a win.

9 View from the summit

Ascending from Nim, we have reached the alpine heights of chess, which is also
“hard”.6 What magnificent vistas can be viewed from the summit?

Low-lying Nim-like games are mathgames that have considerable mathemat-
ical interest. Further, they have perfect strategies, but players unaware of the
strategy remain dumbfounded. The games have no boardfeel.

High-altitude games, especially those that are partisan and have marble
interactions, are hard; exact strategies are difficult to achieve, but they usually
have a boardfeel, and are candidates to becoming playgames. Elwyn Berlekamp
and his students have analyzed a number of endgames of playgames, notably
the game of Go.7

Thus, paradoxically, games whose strategy we know perfectly are those most
of us don’t know to play, and none of us enjoys to play, whereas hard games for
which we don’t have a perfect strategy, portray a challenging boardfeel which
enables even the nonexpert player to sense whether he is in a weak or strong
position.

10 Concluding remarks

Whereas in everyday life we strive towards solutions or at least approximate
solutions which are “easy”, there are two important human activities in which
high complexity is appreciated. These are cryptography (covert warfare) and
games (overt warfare). The desirability of high complexity in cryptography —
at least for the encryptor! — is clear. As we indicated above, it is also desirable
for games. Incidentally, it’s no accident that games and cryptography team
up: in both there are adversaries, who pit their wits against each other. But
games, where “universal quantifiers” abound, are much harder than cryptogra-
phy, which is an “existential” problem. This makes them the more challenging
and fascinating of the two, besides being fun!

5There is a precise mathematical definition for “hardness”, called “NP-hardness”, which is
an “asymptotic” complexity too technical to elaborate on here.

6A.S. Fraenkel and D. Lichtenstein, “Computing a perfect strategy for n×n chess requires
time exponential in n”, J. Combinatorial Theory (Ser. A) 31 (1981) 199–214.

7E. Berlekamp and D. Wolfe, Mathematical Go, A K Peters, 1994.
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