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Abstract

For fusing combinatorial game theory with combinatorics on words,
we begin with some relevant background on words and automata the-
ory, followed by devising and analyzing a triple of games derived from
a generalization of the Thue-Morse word.

1 Introduction

It is always nice to make connections between different areas of mathematics.
There are already some connections between combinatorial game theory and
combinatorics on words. But they are few [5, 6, 7, 8]. We thought that it
would be interesting to explore the possibility of deriving a game from the
ubiquitous Thue-Morse word or even from a generalization thereof.

In this spirit we formulate three game rule sets for three new games
derived from a generalization of the Thue-Morse word, and present their
winning strategies.

In section 2 we give some basics on infinite words. In section 3 we
present connections between words and games, and in the central section 4
we present and analyse a triple of games derived from the generalized Thue-
Morse word. We wrap up in the final section 5.
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2 Basics on infinite words

We assume that the reader is more familiar with combinatorial game theory
than with words and automata theory. Let us start with a few classical
definitions from combinatorics on words. For a general reference, see, for
instance, [10, 12].

Definition 1. An alphabet is a finite set. The elements of the alphabet are
usually called letters. Let A be an alphabet. A finite word of length ` ≥ 1
is a finite sequence of letters or, formally, a map w : {0, . . . , ` − 1} → A.
We usually write wi instead of w(i), where w(i) denotes the i-th letter of w.
The length of w is denoted by |w|. The empty word is denoted by ε. It has
length zero and corresponds to the empty sequence. The set of finite words
over A is denoted by A∗. Endowed with the product of concatenation of
words, A∗ is a monoid with neutral element ε. An infinite word over A is
an element in AN, i.e., a map from N to A.

Definition 2. A morphism (or precisely, an endomorphism) of A∗ is a map
f : A∗ → A∗ such that f(uv) = f(u)f(v) for all u, v ∈ A∗. If f(a) = au
with a ∈ A and u ∈ A∗ and if limn→+∞ |fn(a)| = +∞, then f is said to be
prolongable on a.

In this paper, we only deal with non-erasing morphisms, i.e., |f(a)| ≥ 1
for all letters a ∈ A.

Example 1. The morphism f2 : {0, 1}∗ → {0, 1}∗ defined by f(0) = 01 and
f(1) = 10 is prolongable on both letters 0 and 1. Indeed, |fn(0)| = |fn(1)| =
2n for all n > 0. This morphism is called the Thue–Morse morphism.

Let x,y ∈ AN. One can define in a natural way a distance d over AN by

d(x,y) = 2−|p(x,y)|

where p(x,y) is the longest common prefix of the two words. If x = y, we
set d(x,y) = 0. We can therefore define converging sequences of elements in
AN. We now extend this definition to a sequence of finite words converging
to a limit infinite word.

Definition 3. Let α be a new letter not in A. If x is a finite word, we denote
by xαω the infinite word obtained by concatenating infinitely many copies
of α to the right of x. Formally, it is an infinite word defined by (xαω)i = xi
if i < |x| and (xαω)i = α for i ≥ |x|. Doing this, A∗ is embedded into
(A ∪ {α})N.
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A sequence (x(n))n≥0 of finite words over A converges to an infinite word
y ∈ AN, if the sequence (x(n)αω)n≥0 of infinite words converges to y. Oth-
erwise stated, for every `, there exists N such that for all n ≥ N , the words
x(n) and y share a common prefix of length `.

Example 2. Continuing Example 1, the first few iterations of f2 gives the
words

0, f2(0) = 01, f22 (0) = 0110, f32 (0) = 01101001, . . . ,

and it is easy to see that fn2 (0) is the prefix of length 2n of fn+1
2 (0). This

will ensure the convergence to a limit infinite word.

In particular, a morphism f of A∗ can be extended to a map from AN to
AN. If w = w0w1w2 · · · is an infinite word, consider the converging sequence
(f(w0 · · ·wi))i≥0 and we define f(w) as its limit. For references for the next
proposition, see, for instance, [1, p. 10] or [12, Section 2.1].

Proposition 1. Let f : A∗ → A∗ be a morphism prolongable on a ∈ A.
The sequence (fn(a))n≥0 converges to an infinite word w denoted by fω(a).
This infinite word is a fixed point of f , i.e., f(w) = w.

Definition 4. An infinite word w is pure morphic, if there exists a morphism
f : A∗ → A∗ prolongable on a letter a ∈ A such that fω(a) = w.

The k-automatic words are obtained by iterating a morphism of constant
length k (and an extra coding is allowed). See, for instance, [1, 13].

Definition 5. Let k ≥ 2 be an integer. An infinite word w ∈ AN is k-
automatic if there exists an infinite word v ∈ BN, a morphism f : B∗ → B∗

prolongable on a letter a ∈ B and a morphism g : B∗ → A∗ such that
fω(a) = v, g(v) = w and |f(b)| = k and |g(b)| = 1 for all b ∈ B.

Example 3. The Thue–Morse word t is the fixed point of the morphism f2
given in Example 1. A prefix of t = fω2 (0) is given by

01101001100101101001011001101001

The Thue–Morse word is an example of a pure morphic word and it is also
a 2-automatic word. With the notation of the previous definition, g is the
identity map.

A theorem of Cobham links k-automatic words with finite automata and
base-k expansions.
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Definition 6. A deterministic finite automaton with output (DFAO) is a
6-tuple M = (Q, q0, A, δ,B, τ) where Q is a finite set of states, q0 ∈ Q is
the initial state, δ : Q × A → Q is the transition function, τ : Q → B
is the output function and A and B are respectively the input and the
output alphabets. As usual δ can be extended to Q×A∗ by δ(q, ε) = q and
δ(q, aw) = δ(δ(q, a), w) for all q ∈ Q, a ∈ A, w ∈ A∗.

Theorem 1. [1, 3] Let k ≥ 2 be an integer. An infinite word

w = w0w1w2 · · · ∈ Bω

is k-automatic if and only if there exists a DFAO

M = (Q, q0, {0, . . . , k − 1}, δ, B, τ)

such that, for all n ≥ 0,

wn = τ(δ(q0, ρk(n))),

where ρk(n) denotes the usual base-k representation of n.

The proof of this theorem is constructive. A DFAO can be derived from
the morphism and conversely.

Example 4. The nth letter occurring in the Thue–Morse word t can be ob-
tained by feeding the DFAO depicted in Figure 1 with the base-2 expansion
of n. The initial state is represented with an in-going arrow. The output
function is written inside the states. The labels of the edges give the tran-
sition function. Otherwise stated, if s2(n) denotes the sum-of-digits of the
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Figure 1: A DFAO over {0, 1} generating the Thue–Morse word

base-2 expansion of n, then

tn = s2(n) mod 2. (1)

The Thue–Morse word is ubiquitous. See, for instance, [2] for a nice
survey. It has applications in combinatorics on words: it is an overlap-
free word (i.e., it does not contain any factor (subword) of the form auaua
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where a is a letter and u is a word or empty), in number theory: it provides
a solution to the Prouhet–Tarry–Escott problem, in symbolic dynamics, in
chess, in differential geometry, etc.

One can think about several generalizations of this word. In this paper,
motivated by (1), we will consider the following family of infinite words. Let
m ≥ 2 be an integer. The infinite word tm over {0, . . . ,m− 1} is defined by

tm(n) = sm(n) mod m

where sm(n) is the sum-of-digits of the base-m expansion of n. In particular,
for m = 2 we get the usual Thue–Morse word. The word t3 starts with

012120201120201012201012120 · · · . (2)

For instance, this latter word is called “a generalized Thue–Morse word” in
[11] and arithmetic progressions of maximal length occurring in this word
are characterized.

Let us briefly describe how the word tm can be obtained. It is an easy
exercise about automatic words. Let Σm := {0, . . . ,m− 1}.

Proposition 2. Let m ≥ 2. The word tm := (sm(n) mod m)n≥0 is the
fixed point over {0, . . . ,m − 1} starting with 0 of the morphism fm defined
by

fm(i) = i (i+ 1 mod m) · · · (i+m− 1 mod m), ∀i ∈ Σm.

Otherwise stated, tm = fωm(0).
It is an m-automatic word generated by the DFAO Mm having Σm as

set of states, 0 as initial state, δ(i, j) = i+ j mod m as transition function
for all i, j ∈ Σm and the identity as output function.

Corollary 1. Let m ≥ 2. The word tm is the concatenation of words of
length m containing exactly one occurrence of every letter in {0, . . . ,m−1}.
Each of these factors is a cyclic permutation of 01 · · · (m− 1).

Example 5. Consider the word t3. It is the fixed point starting with 0 of
the morphism f3 defined by f3(0) = 012 , f3(1) = 120 and f3(2) = 201. The
nth letter in t3 (starting with 0 as first index) is obtained by feeding the
DFAO depicted in Figure 2 with the base-3 expansion of n.
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Figure 2: A DFAO over {0, 1, 2} generating t3.

3 Origin of the problem

The idea about this paper came from the reading of [13] by the first author,
and follows his participation in the workshop Automatic Sequences held in
Liège in May 2015. Only a few recent papers deal with the connection
between combinatorial game theory and combinatorics on words [5, 6, 7, 8].
It is desirable to have a game whose set of P -positions is coded by an infinite
word with particular properties. One may ask whether a generalized Thue–
Morse word corresponds to some ‘interesting’ game. As an example, the
celebrated Wythoff game is coded by the Fibonacci word f as presented
below. See, for instance, [4].

Example 6. The Fibonacci word is the fixed point of the morphism a 7→ ab,
b 7→ a. It starts with

abaababaabaababaababaabaababaabaab · · ·

If positions inside f are counted from 1, then the position of the nth letter
a (resp. b) is denoted An (resp. Bn), n ≥ 1. For instance, A1 = 1, A2 = 3,
A3 = 4, B1 = 2, B2 = 5, B3 = 7.

In [5] the following characterization of Wythoff’s sequence using the
Fibonacci word is given.

Proposition 3. The sequence (An, Bn)n≥1 defined in Example 6 is exactly
the Wythoff sequence, i.e., the set of P -position of the Wythoff game.

Remark 1. When generating k-automatic words, it is more convenient to
have indices starting with 0, but when dealing with codings of P -positions,
it is sometimes useful to start with index 1 as in the previous example. This
does not make any difference about the considered infinite words but we
have to take this shift into account.
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Given the generalized Thue–Morse word tm, similarly to Proposition 3,
our aim is to define a subtraction game on m piles of tokens such that the
set of P -positions of this game is coded by tm.

4 A triple of subtraction games

• Throughout m denotes the number of piles from which we remove
tokens. Throughout we assume m ≥ 2.

• Throughout xi denotes the size of pile i. Throughout the piles are un-
ordered. For convenience we list them by nondecreasing size. Specif-
ically, for games 1 and 2, game positions are denoted by (x1, . . . , xm)
with x1 ≤ · · · ≤ xm. For game 3, game positions are denoted by
(x0, . . . , xm−1) with x0 < · · · < xm−1. For the three games, after re-
moving tokens from some piles, the piles are reordered to satisfy these
inequalities.

• Throughout we consider two-player games; and normal play, that is,
the player first unable to move loses.

4.1 Game 1

The following is the rule-set for the game G1tm , played on m ≥ 2 piles of
tokens.

1. The end position is (1, . . . ,m). Thus for every position (x1, . . . , xm)
we have xi ≥ i, 1 ≤ i ≤ m.

2. If all the piles are of distinct size, a player may remove any positive
number of tokens from up to m− 1 piles, subject to rule 1.

3. If two (or more) piles have the same size, a player may remove any
positive number of tokens from up to all m piles, subject to rule 1.

Let P1
tm be the set consisting of all m-tuples of adjacent integers whose

smallest member is ≡ 1 (mod m). Thus

P1
tm = {(1, . . . ,m), (m+ 1, . . . , 2m), (2m+ 1, . . . , 3m), . . .}.

More succinctly, P1
tm = {km+ 1, km+ 2, . . . , (k + 1)m | k ≥ 0}.

Let us explain the connection between the latter set and the infinite word
tm. By Corollary 1, for all k ≥ 0, the position of the (k + 1)th occurrence
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of any symbol i in tm belongs to {km + 1, . . . , (k + 1)m} (if positions in
tm are counted from 1) and the factor (km+ 1) · · · (k + 1)m of tm contains
exactly one occurrence of i. As an example, for the word t3 (see 2), the
first few occurrences of 0 are 1, 6, 8, 12, 14; the first occurrences of 1 are
2, 4, 9, 10, 15 and those for 2 are 3, 5, 7, 11, 13. Proceed as in Proposition 3
and consider the sequence of m-tuples made of the (k + 1)th occurrences
of the symbols 0, . . . ,m − 1. For m = 3, this sequence starts with (1, 2, 3),
(6, 4, 5), (8, 9, 7), (12, 10, 11), (14, 15, 13). Recall that for Game 1, game
positions are denoted by (x1, . . . , xm) with x1 ≤ · · · ≤ xm, thus we reorder
the m-tuples accordingly. For instance, we replace the triple (6, 4, 5) by
(4, 5, 6). In that respect, we can say that P1

tm is coded (up to reordering)
by the generalized Thue-Morse word tm.

Theorem 2. The game G1tm defined above has P1
tm as its set of P -positions.

Proof. The set P1
tm is absorbing: We prove that for any position (x1, . . . , xm)

not in P1
tm , there is an option (direct follower) in P1

tm .
We have x1 = km+ j, k ≥ 0, 0 ≤ j < m; k, j not both 0, since x1 ≥ 1.
Assume first that all the pile sizes xi are distinct: 1 ≤ x1 < · · · < xm. If

j = 0, reduce the sizes of all xi, i > 1, to produce the P -position ((k−1)m+
1, (k− 1)m+ 2, . . . , km). If j > 0, we also leave x1 put, and reduce the sizes
of at most m− 1 piles to fill in the positions (km+ 1, km+ 2, . . . , (k+ 1)m).

Secondly, assume that there are two piles of the same size. If j = 0, then
the above argument holds, and we can again move to ((k−1)m+1, . . . , km).
So we may assume j > 0.

If xi ≥ km + i for all 1 ≤ i ≤ m, then also the above argument is
valid and by reducing at most m− 1 piles we reach (km+ 1, . . . , (k+ 1)m).
However, we may have, say, xi = km+ i = xi+1 < km+ i+ 1, or, say, xi =
km+i+1 = xi+1 = xi+2 < km+i+2. In these cases, (km+1, . . . , (k+1)m)
cannot be reached. But then we can reach, say, ((k − 1)m+ 1, . . . , km), by
reducing all m piles.

Let (x1, . . . , xm) = (km + 1, . . . , (k + 1)m) be an arbitrary P -position
with k > 0. To move it to another P -position (`m + 1, . . . , (` + 1)m) with
` < k, we clearly need to reduce all m pile sizes x1, . . . , xm. But rule 3 is
not applicable to P -positions. Thus P1

tm is independent.

Example 7. For m = 3, the following are some examples of moves from N -
to P -positions, following the order of cases dealt with in the proof.

(6, 8, 11)→ (4, 5, 6); (5, 8, 11)→ (4, 5, 6). We reduced m− 1 = 2 piles in
these two examples. (5, 6, 6)→ (4, 5, 6). Also here we had to reduce only two
piles. Notice that (5, 6, 6) is not reachable from any P -position. But it can
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be an initial game-position. {(4, 4, 6), (4, 5, 5), (5, 5, 5), (7, 8, 8)} → (1, 2, 3).
Here all m = 3 piles have to be reduced. ((7, 8, 8) may also be reduced to
(4, 5, 6).)

4.2 Game 2

For the game G2tm , played on m ≥ 2 piles of tokens, we define the following
rule-set:

1. The end position is (1, . . . ,m). Thus for every position (x1, . . . , xm)
we have xi ≥ i, 1 ≤ i ≤ m.

2. If all the piles are of distinct size, a player may remove any positive
number of tokens from up to m− 1 piles, subject to rule 1.

3. If 2 ≤ i < m piles have the same size, a player may remove any positive
number of tokens from up to all m piles, subject to rule 1.

4. From a position (x, . . . , x), x > m, only the following moves are per-
mitted:

(x, . . . , x)→ (x−(m+i), x−(m+i−1), x−(m+i−2), . . . , x−(i+1)),

for all i = 0, . . . ,m− 2.

Notice that the first two rules are identical to those for G1tm ; rule 3 and
the new rule 4 are restrictions of rule 3 of G1tm : if all piles have the same
size we cannot anymore remove from all piles any number of tokens; we are
constrained by the restriction of rule 4.

We let P2
tm = P1

tm .

Theorem 3. The game G2tm defined above has P2
tm as its set of P -positions.

Proof. The set P2
tm is absorbing: the first part is proved exactly as in the

proof of Theorem 2. It remains only to deal with rule 4. Consider the
position (x, . . . , x), x > m. Let x = km+ j, k ≥ 1, 0 ≤ j ≤ m.

If j = 0, one copy of x stays put as the largest pile of the P -position we
will move to. The remaining m − 1 copies are reduced so as to reach the
position ((k − 1)m+ 1, (k − 1)m+ 2, . . . , km).

We may thus assume j ≥ 1. Choose i = j − 1. Then 0 ≤ i ≤ m − 2,
consistent with rule 4. Moreover, by rule 4,
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(x, . . . , x)→
(km+ j − (m+ j − 1), km+ j − (m+ j − 2), . . . , km+ j − j)
= ((k − 1)m+ 1, (k − 1)m+ 2, . . . , km) ∈ P2

tm .

The fact that the set P2
tm is independent is proved as in the proof of

Theorem 2, since rule 4, same as rule 3, does not apply to P -positions.

Example 8. As for Example 7, we illustrate moves from N - to P -positions.
For m = 2, rule 3 does not apply. For rule 4 we have i = 0. For k ≥ 1,

(4k, 4k)→ (4k − 1, 4k) (j = 0), but (3k, 3k)→ (3k − 2, 3k − 1) (rule 4).
For m = 3, i ∈ {0, 1}. (6, 6, 6) → (4, 5, 6) (j = 0); (7, 7, 7) → (4, 5, 6)

(j = 1, i = 0); (8, 8, 8)→ (4, 5, 6) (j = 2, i = 1).

Remark 2. It is of independent interest to note that G1tm and G2tm are two
games with distinct game rules, that, nevertheless, share an identical set of
P -positions.

4.3 Game 3

Informally, a subtraction game is invariant if its rule-set is independent
of the game positions; in other words, every move can be made from any
position, provided only that the result is nonnegative. Otherwise the game
is variant. Invariance gives a game some measure of robustness. The notion
was introduced in [9] and expanded on in [6].

The two games defined above have some deficiencies:

• Both are variant: moves depend on whether or not there are piles of
the same size.

• The end position (1, . . . ,m) is connived: further subtractions could
be made. Usually in subtraction games the end position is such that
any further subtraction would lead to a negative result or a result that
would upset a rule other than the end position rule.

• The first element of the generalized Thue-Morse word is tagged by the
number 1. In combinatorics on words it is normally tagged by 0 (see,
for instance, [1, Lemma 6.3.1]).

In the following game, all three deficiencies disappear.
The following is the rule-set for the game G3tm , played on m ≥ 2 piles of

tokens.
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1. The end position is (0, . . . ,m−1). Thus for every position (x0, . . . , xm−1)
we have xi ≥ i, 0 ≤ i ≤ m− 1.

2. Throughout play, the piles have distinct sizes.

3. A player may remove any positive number of tokens from up to m− 1
piles, subject to rules 1 and 2.

Let P3
tm be the set consisting of all m-tuples of adjacent integers whose

smallest member is ≡ 0 (mod m). Thus

P3
tm = {(0, . . . ,m− 1), (m, . . . , 2m− 1), (2m, . . . , 3m− 1), . . .}.

More succinctly, P3
tm = {km, km + 1, . . . , (k + 1)m − 1 | k ≥ 0}. The

set P3
tm is but a left shift of P1

tm = P2
tm . Again, by Corollary 1, for all

k ≥ 0, the position of the (k + 1)th occurrence of any symbol i in tm
belongs to {km, . . . , (k + 1)m − 1} (if positions in tm are counted from 0)
and the factor km · · · (k + 1)m − 1 of tm contains exactly one occurrence
of i. Recall that for Game 3, game positions are denoted by (x0, . . . , xm−1)
with x0 < · · · < xm−1, thus we reorder the m-tuples accordingly. In that
respect, we can say that P3

tm is coded (up to reordering) by the generalized
Thue-Morse word tm.

Remark 3. (i) The game is invariant. (ii) The end position is natural,
since removing any token from it would result in a position violating move
rule 2. (iii) The P -positions now correspond to a word whose initial element
is tagged by 0. (iv) The rule-set for game 3 is simpler than for games 1 and
2. One may argue whether this is an advantage or disadvantage.

Theorem 4. The game G3tm defined above has P3
tm as its set of P -positions.

Proof. The set P3
tm is absorbing: Let (x0, . . . , xm−1) /∈ P3

tm , x0 = km + j,
k ≥ 1, 0 ≤ j < m. Leaving x0 put, we reduce at most the remaining m− 1
piles so as to reach (km, km+ 1, . . . , (k + 1)m− 1).

Let (km, . . . , (k+ 1)m− 1) ∈ P3
tm be an arbitrary P -position, k ≥ 1. To

reduce it to a P -position (`m, . . . , (`+1)m−1), we clearly have ` < k. Since
xi ≥ km for all i, all m piles have to be reduced, violating rule 3. Hence
P3
tm is independent.

5 Conclusion

We gave some background on combinatorics on words, and considered a
generalized Thue-Morse word. We then devised and analysed three games
related to this word.
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Suggested further work:

• Compute the Sprague-Grundy function of the games.

• Formulate a winning strategy for the games in misère play (first player
unable to move wins).

• Find rule-sets for more games derived from the generalized Thue-Morse
word.

• Consider the case of ordered piles: Find a subtraction game with a ’rea-
sonable’ rule-set (i.e., with no direct relation to tm) in such a way that
its set of P -positions is exactly given by the m-tuples corresponding
to the kth occurrences of the m symbols. As an example, for m = 3,
devise a game whose first few P -positions are exactly (1, 2, 3), (6, 4, 5),
(8, 9, 7), (12, 10, 11), (14, 15, 13). So (6,4,5) means 6 tokens in the first
pile, 4 in the second and 5 in the third, and we would not be allowed
to reorder the piles.
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