TROMPING GAMES: TILING WITH TROMINOES

SAUL A. BLANCO AND AVIEZRI S. FRAENKEL

ABSTRACT. The game of Domineering is a combinatorial game that has been solved for several boards,
including the standard 8 x 8 board. We create new partizan — and some impartial — combinatorial
games by using trominos instead of and along with dominoes. We analyze these Tromping games for
some small boards providing a dictionary of values. Further, we prove properties that permit expressing
some connected boards as sums of smaller subboards. We also show who can win in Tromping for some
boards of the form m x n, for m = 2,3,4,5 and infinitely many n.

1. INTRODUCTION

1.1. Outline. The game of Domineering was invented by Goéran Andersson around 1973, according to
[BUvdH], [Con], and [Gar]. The two players in Domineering alternately tile a board using a regular
domino (a 2 x 1 tile). The players are usually called Vertical (or Left) and Horizontal (or Right). They
place their tiles, without overlapping, vertically and horizontally, respectively. The player making the
last move wins. The game is partizan, since the set of moves is different for each player. Conway [Con];
and Berlekamp, Conway, and Guy [BCG] have computed the value of Domineering for several small
boards, not necessarily rectangular. D.M. Breuker, J.W.H.M Uiterwijk and H.J. van den Herik [BUvdH]
have determined who wins the game of Domineering for additional boards. In particular, they showed
that the first player can win on the classical 8 x 8 board, which was the original game presented by
Andersson.

In this paper we investigate the game of Tromping, which is played as Domineering, but with larger
tiles instead of, or along with, dominoes. The additional polyominoes are trominoes, also called triomi-
noes. There are 2 trominoes: a “straight” tromino, i.e., a 3 x 1 tile, dubbed I-tromino; and an L-shaped
tromino, i.e., a 2 x 2 tile with one square removed, dubbed L-tromino.

Any nonempty subset of a rectangular board is called a board or subboard in this paper. The bound-
aries of its squares are vertical and horizontal only. In Tromping, Vertical and Horizontal place dominoes
and I-trominoes vertically and horizontally respectively; the L-tromino can be placed by either player in
either one of its four orientations (an “impartial” tromino).

We assume that the reader is familiar with the basic theory of combinatorial games, which can be
found in [BCG], [Con] and [ANW]. A concise 18-page summary with the basic results in combinatorial
game theory can be found in [Con77]. We recall that for a partizan game G, Vertical (Left) can win if
G > 0, Horizontal (Right) can win if G < 0, the second player can win if G = 0, and the first player can
win if G||0 (G is fuzzy (incomparable) with 0). In particular, Horizontal wins as second player if G < 0,
and as first player if G </ 0.

In Section 2 we create new partizan combinatorial games, variations of Domineering, by admitting
the use of larger tiles. For each game we provide dictionaries of values — where squares that cannot be
used during the play (not part of the board) are painted black. We also prove some properties that allow
one to express the value of a “connected” board B as the sum of the values of subboards B; and Bs.

2000 Mathematics Subject Classification. Primary 91A46.
The first-named author was supported, in part, by NSF grant DMS-0555268. He thanks A. S. Fraenkel for introducing
him to the world of Combinatorial Games, and D. J. Crandall for valuable computer support.

1



2 SAUL A. BLANCO AND AVIEZRI S. FRAENKEL

Normally only disjoint subboards form a sum. We point out that all our games are acyclic and short;
that is, there are no repetitions and only finitely many positions .

In Section 3 we discuss some ideas from number theory that can be used to determine the winner of
our variations for particular families of boards. These ideas seem to be implicit in Lachmann, Moore,
and Rapaport [LMR].

In Section 4 we provide several results on our variations. For example, we apply the results from
number theory discussed in Section 3 to determine the winner for particular boards of the form m x n
for m = 2,3,4,5 and infinitely many n. We also include other results about a new impartial game,
M-Tromping.

Finally, for convenience, whenever no confusion arises, we do not distinguish between the board on
which the players are tiling and the actual game.

1.2. Computation of the values. Values and outcomes of the games were computed by constructing
plug-ins for Siegel’s Combinatorial Game Suite (CGS) [Sie]. Such plug-ins were needed in order for CGS
to understand the rules of the variations of Domineering. No changes were done to the code of CGS. In
the computation of the values of the games, CGS considers all possible positions that can be reached in
a game without considering efficiency. This approach differs from that of [BUvdH] where the authors
cut off some positions using an o — 3 search technique to determine the winner.

For the computer experiments, we used a Dell PowerEdge 1750 server with dual 3 GHz Xeon processors
and 4 GB of memory running Linux 2.4.21 and a Sun Enterprise 420R server with quad UltraSPARC
processors and 4GB of memory running Solaris 8.

For those values too long to write down, we only present the winner, according to whether G is positive,
negative, zero, or fuzzy with 0. For example, the value corresponding to the game of I-Tromping (see
below) played on the 6 x 6 board is

£({2[1]11/2}, {{6[5]19/2[[[2[1][1/2}, {6]5]19/2I[]4]0} [{4]0[[[ = 1/2[[ = 1[ =2}, {7/2[[3[2[[| - 1/2[| = 1| = 2}})

which is fuzzy with 0, so the first player wins.

Throughout the paper, we use the notations * = {0,0}, and n* = n+* = {n|n} for all integers n > 1.

2. NEW COMBINATORIAL GAMES

2.1. I-Tromping. In our first game, we substitute the domino by an I-tromino. Its rules are exactly
the same as for Domineering: the two players, Vertical and Horizontal, tile alternately vertically and
horizontally, respectively. Overlapping is not permitted. The player making the last move wins. It might
appear that I-Tromping is simply a scaled version of Domineering, but this is not the case for boards
that are not rectangular. For square boards there is some resemblance, though: In Domineering, the
2 x 2 and 3 x 3 boards both have value £1; for I-Tromping the 3 x 3 and 5 x 5 boards both have value
+2.

TABLE 1. Values of I-Tromping for small rectangular boards.

112 3 4 5 6
1/01]0 -1 -1 -1 -2
21010 -2 -2 -2 —4
312 +2 {81-3/2) | {4~ 117} | {4lofl-1/2|-1]-2}
41]2]  {3/2(-3) +5/2 {3 — 2, -2} | {31-3/2/||-7/4I| - 3-4)
50102 {1,1% -4} {2,2% — 3} +2 {3[|-3, —3*| — 8}
62| 4] {201[1/20l101-4} | {4I317/41113/21-3} | {8]3,3]13) F
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FI1GURE 2. I-Tromping values for some boards with 7 squares.

Figure 1 gives the values of I-Tromping for boards up to six squares, including the 35 boards with
6 squares, excluding their negatives obtained by a right angle turn. Figure 2 displays 59 boards with
seven squares and their values. According to [BCG], Vol. 1, Ch. 5, Extras, there are 108 boards with
seven squares.

We enumerate the rows of a board from top down and its columns from left to right, as is common
when labeling the rows and columns of a matrix. Since a board need not be rectangular, a row or column
can be formed by only one square.

Table 1 depicts the value of I-Tromping for some rectangular boards. We have omitted “messy” values
— those that take considerable space to express. Instead, we have used F to indicate that the first player
wins; V, that Vertical wins; and H, that Horizontal wins. This notation is also used in the tables (below)
containing the values of D-Tromping and L-Tromping (explained below) for small rectangular boards.
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Definition 2.1. A board F'is said to be concatenated to a board G if a domino can be placed horizontally
so that its left square tiles a square of F' and its right square tiles a square of G. Notation: F'G. If the
connecting domino is placed in row i of F' and row j of G, we also use the notation F'G(; ;.

Definition 2.2. Let F'G(; ;) be a concatenation of the board F' to G. If each column of FG; ;) intersects
only one of the two boards, then F is (i, j)-aligned to G. If F is (i, j)-aligned to G for all possible (i, 5),
then we simply say that F' is aligned to G. Otherwise they are not aligned.

FicUure 3. Aligned and non-aligned boards.

Figure 3 depicts an example where A is (1,1)-aligned to B but not (4, 1)-aligned, as AB4 ) will
contain in its third column squares from both boards. Also, C is not (1,1)-aligned to D, but it is
(3,1)-aligned to D. On the other hand, D is aligned to C.

Definition 2.3. A rectangular board is called 2-wide if it has a row with exactly two consecutive squares
and no row or column with three consecutive squares.

Clearly any 2-wide board is a 0-game in I-Tromping, since no player is able to move.

These definitions permit us to express some connected boards as sums of their subboards.

Proposition 2.4. Let F be aligned to G, and G aligned to H, where G is 2-wide. Then in I-Tromping,

(a) FG+GH < FGH,
(b) If FG = F then FGH = F + GH,
(¢) If GH = H then FGH = H + FG.

Proof. (a) It suffices to show that Horizontal can win as second player in G+ GH — FGH (see Figure
4(a)). If Vertical begins by playing exclusively on F' or H, then Horizontal can respond by playing
exclusively on —F or —H respectively, and conversely. Since F' is aligned to G, Vertical has no moves
using squares from both of these boards, and the same holds for G and H. The only way Vertical can
use squares from two boards is on —H and —G or —F and —G. Horizontal can counter these moves by
using squares from H and G or F' and G, respectively. These are the only options of Vertical since G
is 2-wide, so no player can move exclusively on G or move using squares from all three boards. Hence
Horizontal can win.

FI1GURE 4. Illustrating the proof of Proposition 2.4.
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(b) We first prove that FGH < F + GH by showing that FGH — F — GH < 0 (see Figure 4(b)). If
Vertical, as first player, plays exclusively on F' or H, then Horizontal can respond by playing exclusively
on —F or —H, respectively, and conversely. Further, if Vertical plays using squares from —H and —@G,
then Horizontal can move using squares from H and G, respectively. Since these are the only options
for Vertical, Horizontal can win.

To complete the proof, we use the result just proved and part (a):
FGH<F+GH=FG+ GH < FGH,
and the result follows.
(c) The proof is the same as for (b). W
Corollary 2.5. Let F' be aligned to L], and (10 aligned to H. Then
(a) O+ [I'H < F[TH,

(b) If A0 = F then FITH = F + [(TH,
(¢) IfTH = H then FITH = H + 11 .

Proof. These are special cases of Proposition 2.4 (a) — (¢) with G =1 . N

Remarks.

(1) The condition that the boards must be aligned is necessary: Figure 5(a) depicts a case where G
is not aligned to H, with G 2-wide. Proposition 2.4 (a) does not hold, for otherwise * + {0| — 1} + 1 =
{1*]*} <0, which is false since {1*|*} is positive.

(2) The condition that G must be 2-wide is also necessary. Figure 5(b) exhibits a case where G =0
is not 2-wide and the proposition does not hold, since it is easy to verify that

{1 =3} + {1[1/2} = {203/2]] = 2| = 5/2} £ {2[3/2]] - 2| = 3}.

(@) Flel ] 4+ [cn i 3 [€m [}
T {0}-1} T
CT 1] ] i
® e+ F 1]
T 1 1 'TE £ ' - +:
1]-3} {11/2} {2(3/2|-2|-3}

FIGURE 5. Boards alignment and 2-wideness are necessary.

(3) If G # 0, then Proposition 2.4 does not hold. Consider F' = G = H = the 3 x 1 tile. Then
FGH = £2 (Table 1), and FG = GH = 2. Clearly, 2+ 2 £ +2, so (a) does not hold.

(4) Proposition 2.4 holds also for playing with a “straight” n-polyomino (an n x 1 tile), if we require
G to be (n — 1)-wide. The proof of this claim is entirely analogous to the above. For increasing n, there
is a growing set of (n — 1)-wide boards G, for each of which Proposition 2.4 holds. For Domineering,
however, Proposition 2.4 holds if and only if G is the 1 x 1 tile (see also Proposition 2.6 below).

The last remark shows that for increasing size of the (smallest) tiling polyomino, the power of Propo-
sition 2.4 increases, as it permits to express as sums a growing variety of boards that are not disjoint.
This can already be observed for I-Tromping. In Figure 6 we have applied Proposition 2.4(b) to two
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different cases: The first one with G being the 2 x 2 board, F' the 3 x 3 board, and H the 3 x 1 tile.
In the second case, we take G to be a 2 x 2 board with one square removed. Note that G need not be
rectangular. From Figure 6 we see that

{21]] = 2[ =3} = £2+{0] - 1}
+(2)% = £2 4 %

HH s 2-wide, H = = = *H

|+
[ =]
I+
[ 2]
oy
2
-
&
]
=
1+
[E*]
ot
=
1
[ey

H s 2-wide, 5 = = = + HH
12 +2 T()* 12 ®

FIGURE 6. Two sample applications of Proposition 2.4 (b).

In general we cannot divide a “connected” board into pieces so that the value of the original board
equals the sum of the values of the smaller boards, but here we can.

2.2. D-Tromping. Here Vertical and Horizontal alternate in tiling with either a domino or an I-tromino.
The player making the last move wins. A dictionary of values for boards of up to six squares is depicted
in Figure 7. Table 2 presents some of the values of rectangular boards.

Proposition 2.6. Let F' be aligned to O, and O aligned to H. Then for D-Tromping we have,
(a) FO+[H < FH,
(b) If FO = F then FLH = F + [H,
(¢) IfCH = H then FUH = H + FO .

Proof. Same as Proposition 2.4 with G replaced by 0. N

This proposition holds also for Domineering; see [Con] Ch. 10.

mﬁ&%@#&:mw@%

172 {1]0} *1 = 1 1 =
il nEEn - ]
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* ;1 1_2 1= 130:' T * -
{1]0} 3/2 1= 372 {2]1} 12 {210} 7
PE 0 A B AR
11 LT | [] H_I [ L] [ 11
o 0 T 1oy 1+ 172 {2]*} 1 1= {1|*=}{1]=} 1= {1]0} 32
e T B A R T
| | T M 11 | I
' H HHHHH B H e Yo
1* {1]=} {2|=} {2|D} 34 N 3/4 +1 +1 +1 {2|-1}{2]-1] {1]*}

FIGURE 7. D-Tromping values for boards up to 6 squares.
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TABLE 2. Values of D-Tromping for small rectangular boards.

1 2 3 4 5
1[0 -1 -1 —2 —2
2|1 +1 {21-1} {20]|-1%} {0, {3[0}-1,{0}-2}}
311 {1-2} +2 {2127} | {=1,{3I=1} = 7/4,{-1]-4}}
412 {1¥]|0}-2} (2112} £1* F
512 {1,{2(0}[0, {0I-3}} | {7/4, {4|1}|1, {1]-3}} ¥ F

2.3. L-Tromping. In this game we tile with an L-tromino in addition to the I-tromino and domino.
The L-tromino adds a total of 4 new moves to the set of moves of each player, since it can be rotated
and placed in 4 different positions on a rectangular board. A dictionary of values of this game for small
boards is exhibited in Figures 8 and 9, and Table 3 depicts the values of L-Tromping for some rectangular
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Fi1GURE 8. L-Tromping values for boards up to 6 squares.

TABLE 3. Values of L-Tromping for small rectangular boards.

1 2 3 1 5
1[0 -1 —1 —2 —2
2|1 +1 {21-1} | {1%,{2/0}}-1%} | {0,{3|0}|0, {0]-2}}
301 {1-2} £2 H H
al2| {1*{o|-2}, 1%} \% F F
512 {0,{2/0}0,{0|-3}} | V F F

As can be seen in the dictionaries of Figures 8 and 9, the value *2 is attained several times on small
boards of L-Tromping. The first time is on a board of only 6 squares. For domineering, on the other
hand, it is not so easy to construct a board with value *2. Such a board was recently constructed by
G.C. Drummond-Cole [Dru]. It appears that the values of L-Tromping are hotter than those of our
preceding games. If this is indeed the case in general, it may be due to the L-tromino, which can be
used by both players. Thus the game resembles more an impartial game in which every nonzero value
is hot.

L-Tromping also satisfies Proposition 2.6 of D-Tromping.

Here is another property of L-Tromping:
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FIGURE 9. L-Tromping values for some boards with 7 squares.

Lemma 2.7. Let B be a board and let B’ be a subboard obtained from B by removing either a single
k x 1 subboard S of B, where k € {2,3} or an L-tromino. Then in L-Tromping, B < 0 implies B’ # 0.

Proof. Suppose that Vertical begins tiling on B with a 2 x 1 or 3 x 1 tile or with an L-tromino, so that
B’ results. If B’ > 0, then Vertical can win as player I on B, so B||0 or B > 0, a contradiction. Hence
B #0. 1

Remark 2.8. An analogous statement holds for Domineering, I-tromping, D-Tromping, by removing a
2x1,3x1,kx1(ke{2,3}) subboard, respectively.

3. CONNECTION WITH THE FROBENIUS PROBLEM

Definition 3.1. Let n € Z+g, and A C Z~ a finite set. We say that A is a nonnegative integer basis
for Z~,, if every integer greater than n can be written as a linear nonnegative integer combination of
elements of A.

Example. A = {4,5,6}. One can easily see that A is a nonnegative basis for Z-7. Indeed, any
nonnegative integer combination of elements of A has the form 4k; 4 5kg + 6k3 for k1, k2, k3 € Z>(, not
all of them zero: Considering the positive integers modulo 4 we get

For n of the form 4k, k > 0, we use ko = k3 = 0.

For n of the form 4k + 1,k >0, weuse ky =k — 1, ko =1, k3 = 0.
For n of the form 4k + 2,k >0, weuse ky =k — 1, ko =0, k3 = 1.
For n of the form 4k + 3,k > 1, weuse k1 =k —2, ko =1, k3 = 1.

It is clear that there can be more than one nonnegative basis for Z~.,,, n € Z~(. For example, consider

= {12,...,23} and By = {4,9,11,14}. The set B; is a nonnegative integer basis for Z-i; by
Proposition 3.2 below. Furthermore we can see that By is also a nonnegative integer basis for Z~1; (we
can follow the preceding example, noting that B, is a complete system of remainders modulo 4).

The following is a result on nonnegative bases.



TROMPING GAMES 9

Proposition 3.2. If k € Z~o, then the set A = {k,k+1,...,2k — 1} forms a nonnegative basis for
Lsp—1.

Proof. For any n € Z>j, n can be written uniquely in the form n = gk+r, with ¢ € Z>o and k < r < 2k,
sorcA. B

For example, the set {3,4,5} forms a nonnegative basis for Z 5.

While playing a game, a board B will normally be divided into smaller boards. For example, in
I-Tromping, Vertical can divide a 3 X n board into two as soon as he performs his first move. On the
other hand, Horizontal also has the power of dividing a board, by avoiding certain moves. For example,
if the game takes place on a 3 x 8 board, Horizontal can divide such a board into two 3 x 4 subboards
by not tiling squares from the fourth and fifth column in the same move.

The above observation shows that, when playing I-Tromping or D-Tromping, if Horizontal can divide
an m X n board into subboards in which he wins, the whole board will be won by Horizontal.

More concretely, fix m € Zsq and let A = {ny,na,...,n;} C Zsg so that Horizontal wins I-Tromping
or D-Tromping on the m x n; board, ¢ = 1,...,k. Then Horizontal wins on the m x n board, for
n= Zleami and a; € Zsg fori=1,... k.

As an interesting connection with Number Theory, the largest integer N for which there is no solution
to the Diophantine equation N = Zle x;n; in nonnegative integers x; is known as the Frobenius number
for A. See [Guy], C7. Finding the Frobenius number for a given set of positive integers is known as the
Frobenius problem (sometimes referred to as Frobenius coin problem or coin problem).

So in particular, if we can find a nonnegative integer basis B for Z>j with each element n; € B
representing a subboard m x n; (for fixed m) that can be won by Horizontal, then Horizontal will win
all m x n boards, where n > k. This is the use of nonnegative bases in our study.

The above application relies on the following theorem, which is a generalization of a result implicit in
[LMR].

Theorem 3.3. Let F = {Fi,...,Fy} be a set of boards such that F; is aligned to F; for all i,j €
{1,...,k}, and F; < 0 for all i. If G is constructed by concatenating any finite number of copies of
boards from F, not necessarily distinct copies, then, for 1-Tromping and D-Tromping, G < 0.

Proof. The idea is to notice that Horizontal has the power to divide G into smaller boards by refraining
to tile more than one subboard. The following is a winning strategy for Horizontal: Divide G into
subboards and play exclusively on a given copy of a game, without ever tiling across the border of
2 adjacent subboards. Vertical is unable to play on more than one copy by alignment. In this way,
Horizontal establishes vertical boundaries, which cannot be crossed by Vertical. Since F; < 0, for
i =1,...,k, Horizontal can force a win on each subboard. In this fashion, G becomes the sum of the
copies of elements of F, and so Horizontal can win G. W

Note that this method cannot be applied directly to L-Tromping, as each player is allowed to use
an L-tromino, and so Horizontal no longer has the advantage of restricting the play to a given copy.
Perhaps Theorem 3.3 still holds anyway.

4. WHO WINS ON HORIZONTAL STRIPS?

4.1. Results for particular boards. We will focus on games of the form m x n, where m = 2,3,4,5.
The tables were computed using the plug-in for the CGS software.
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As mentioned earlier, we denote in the tables a win for Horizontal by H, a win for Vertical by V, and
a win for the first player by F.

We apply the following method: For fixed m, we try to find several values n; for which the games
played on the m x n; board are negative. Then by Theorem 3.3, concatenating any number of those
boards will produce a negative game. If the n;s also form a nonnegative basis for Z~, for some k € Z~,
then we can determine the winner for a game played on an m x n board, n > k.

Note that Horizontal wins I-Tromping on 2 X n boards for all n > 3, as Vertical cannot move at all on
any such board. For n € {1, 2}, the first player loses. Of course all results for boards of the form m x n
have a similar version for boards of the form n x m, with the respective changes. More specifically, the
board of the form n x m is the negative of the m x n board. If a board is a win for Horizontal, its
negative is a win for vertical, and vice-versa. If a board is a win for the first (second) player, its negative
is also a win for the first (second) player, respectively.

4.2. I-Tromping for 3 x n boards. Many values found so far are fuzzy, as seen in Table 4. More
information is needed to determine the winner for an arbitrary n. However, since Horizontal wins in the
3 x 6 game, Theorem 3.3 implies that Horizontal wins for all boards of the form 3 x 6k for k € Z>,.

Remark 4.1. If we concatenate (in an aligned manner) a board A that is won by Horizontal and a
board B that is won by the first player we obtain a board that is won by either Horizontal or the first
player. This observation is made in [LMR], Table (2-3). Indeed if Horizontal plays first, he can start
in B and counter Vertical’s moves in A. For instance, since 19 = 6 + 13, we can conclude the winner
of I-Tromping on the 3 x 19 board is either Horizontal or the first player, for Horizontal wins the 3 x 6
board and the first player wins the 3 x 13 board. Similarly, from Table 4 we conclude that either the
first player or Vertical wins [-Tromping on the 3 x m board, where

m € {3467, 4+67, 5+65, T+6k, 9+6k, 10-+6k, 1146k, 13461, 14461, 15461, 1661, 17461 | j, k,1 € Z>3, k,1 € Z>5}

Remark 4.2. Notice that we cannot tell who wins in the concatenation of a board that is won by
Vertical and one that is won by the first player since Horizontal can cross the vertical boundaries of
these two boards.

TABLE 4. [-Tromping values for 3 x n boards

n|1|2[3[4|5|6|7|8]9|10|11 12|13 |14 |15|16 |17 |18
V|V|F|F|F/H|F|V|F|F|F H|F|F|F|F|F|H

4.3. I-Tromping for 4 x n boards. We find that the boards for n € {6, ..., 11} have negative values.
Further, {6,...,11} forms a nonnegative basis for Z-5 by Proposition 3.2. Hence, Horizontal wins
[-Tromping on 4 x n boards for all n > 6, by Theorem 3.3. Table 5 shows the winner for n < 6.

TABLE 5. I-Tromping values for 4 x n boards

n|1l|2]|3]4]5
VIV|F|F|F

4.4. I-Tromping for 5 x n boards. By Table 6, H can win for all n € {6,...,11}, so Proposition 3.2
implies that Horizontal can win all games with n > 6. The table also shows who wins for n < 6.

TABLE 6. I-Tromping values for 5 x n boards

n|1|2]3|4|5|6|7|8]9|10]11
VIVIFIFIFIHHHH H H
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4.5. D-Tromping for 2 x n boards. By computation, 2 x n boards have negative values for n €
{4,9,11,14}. This set forms a nonnegative basis for Z~11. Table 7 shows the values for boards of width
less than 12. Therefore, we know who wins D-Tromping on boards of the form 2 x n for all n > 1.

TABLE 7. D-Tromping values for 2 x n boards

n|1|2]3|4]5|6|7|8]9/|10]11
VIFIFIH/F/FIF/HH|F|H

4.6. D-Tromping for 3 X n boards. The game has negative values for n € {4,5,6}. Hence by the
example in Section 3 Horizontal also wins the game for n > 7. Table 8 gives the values for n < 7. So
the winner of D-Tromping on boards of the form 3 x n is known for all n > 1.

TABLE 8. D-Tromping values for 3 x n boards

n|1|2[3[4|5|6]|7
VIFIFIH H H|F

4.7. D-Tromping for 4 x n boards. Table 9 summarizes the results we have obtained so far. Since
Horizontal wins the 4 x 6 board, Theorem 3.3 implies that Horizontal also wins on all boards of the form
4x 6k, k € Z~o. Furthermore, Remark 4.1 in Section 4.2 implies that either Horizontal or the first player
is the winner of D-Tromping for boards of the form 4 x m, where m € {4+ 6k,5+6k,7+6k | k € Z>1}.

TABLE 9. D-Tromping values for 4 x n boards

n|1|2]3|4[5|6]|7
VIV|V|F|F H|F

4.8. L-Tromping for 2 x n boards. Table 10 shows who can win for 1 <n < 15.

TABLE 10. L-Tromping values for 2 x n boards

n|{1|2[3[4|5|6|7|8]|9]10]11|12|13]14 |15
VI F|F|F|F|F|F|F|F|F|F|F |F|F|H

4.9. L-Tromping for 3 x n boards. Table 11 summarizes the winner of L-Tromping for 3 x n boards,
n <12.

TABLE 11. L-Tromping values for 3 x n boards

n|1|2[3[4][5|6|7|8]9|10|11]12
FIFIHIHH/F HIH H|H|H

Although we are not certain that Theorem 3.3 holds for L-Tromping, the theorem may be true for
3 x n boards. The key here is the geometry of the board. Horizontal seems to have the upper hand by
tiling squares in the second row, by which he reserves some squares in the first and third row for future
moves.
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4.10. Results on M-Tromping. Motivated by L-Tromping, we create a game in which each of the
two players is only allowed to use L-trominoes. Since the sets of moves for each player are identical,
M-Tromping is an iMpartial game. The Sprague-Grundy theory tells us that its values are nimbers. So
for each game of M-Tromping G, we have,

G = {xa1, *ag, -+ ,*a,| *a1, *ag, - ,*a, } = mex{*ay, *as, - ,*ap} ,

where for any set S C Z>g, mex.S = minZsg \ S = smallest nonnegative integer not in S.

We present the value of M-Tromping for small rectangular boards in Table 12. Note that such a table
is symmetric, since every nimber is its own negative.

TABLE 12. Sprague-Grundy values for M-Tromping played on the m x n board.

[m\n][1]2]3]4]5]6]
T [[0]0]0]0]0]0
2 [ol1]2]0|3]1
3 lol2/of1]2]2
4 fojolt]o|1]o
5 |ols2|1]o]1
6 Jol1]2/o]1]1

Let m € Zso and n € Z>o. Denote by G(m,n) the game of M-Tromping played on an m x n
rectangular board. Furthermore, let G;(m,n) be the game of M-Tromping played on an m x n board
with two opposite corners removed (say, the upper-left and lower-right corner) and let Go(m,n) be the
game of M-Tromping played on an m x n board with the first and last square of the first row removed.
It is convenient to define G(m,0) = G1(m,0) = G1(m, 1) = G2(m,0) = Ga(m, 1) = 0. We prove,

Theorem 4.3. The games G(2,n), G1(2,n+ 1), and G2(2,n+ 1) have the same value for all n € Z>g.

Before proving Theorem 4.3, we need some notation to describe moves on G(2,n), G1(2,n + 1), and
G2(2,n+ 1). Label the squares of both rows of G(2,n) and G1(2,n+ 1) from left to right with numbers
from [n] = {1,2,...,n} in increasing order. Similarly, label the squares in the first row of G2(2,n + 1)
with {2,3,4,...,n} in increasing order from left to right and the squares in the second row with [n + 1]
increasingly from left to right (see Figures 10 and 11.) In any of these boards let (a,a+1;a+1) represent
the move where the L-Triomino is covering the squares labeled a,a + 1 from the first row and a + 1 from
the second one, with a,a + 1 € [n]. Define (a,a + 1;a), (a;a,a + 1), (a + 1;a,a + 1) similarly, where the
semicolon is used to separate the labels from different rows.

Proof. It is enough to show that G(2,n) + G1(2,n+ 1) =0 and G(2,n) + G2(2,n+ 1) =0, for n > 0.

We proceed by induction on n. For n = 0,1, all three games have value 0 and for n = 2, all have
value *. For n > 2, suppose that for m < n, G(2,m)+ G1(2,m+1) =0 and G(2,m)+ G2(2,m+1) = 0.

The rules below, depicted in Figure 10, guarantee a win for the second player in G(2,n)+G1(2,n+1):
If the first player’s first move is

(1) (k;k,k+1) in G(2,n) then move (k;k,k+ 1) in G1(2,n + 1), for 1 < k < n.
(2) (k,k+ 1;k) in G(2,n) then move (k;k,k+ 1) in G1(2,n + 1), for 1 <k < n.
(3) (k—1,k;k) in G(2,n) then move (k — 1,k; k) in G1(2,n+ 1), for 1 < k < n.
(4) (ksk—1,k)in G(2,n) then move (k—1,k;k) in G1(2,n+ 1), for 1 <k <n.
(5) (k;k,k+1)in G1(2,n + 1) then move (k; k, k + 1) in G(2,n), for 1 <k < n.
(6) (k—1,k;k) in G1(2,n + 1) then move (k — 1,k; k) in G(2,n), for 1 < k < n.

Now each player has moved exactly once, and the two boards have been divided into at most four
subboards: two rectangular boards T; and Ty with a corner square removed, one G(2,m), and one



TROMPING GAMES 13

G1(2,m + 1) for some 0 < m < n (these last two could be empty). By the induction hypothesis,
G(2,m) + G1(2,m + 1) = 0. Since 77 and T» have the same shape (after rotating and flipping if
necessary), 11 + T> = 0. So after the first move, the second player can turn the game into a zero game.

The rules for the remaining possible first moves of the first player in G(2,n) +G1(2,n+ 1) now follow:

in G(2,n), for 1 < k <n.

(7) (k—1,k;k+1) in G1(2,n+ 1) then move (k,k+ 1;k
k,k in G(2,n), for 1 < k <n.

(8) (k—1;k,k+1)in G1(2,n+ 1) then move (k;k — 1,k

~ —

Now each player has moved exactly once, and the two boards have been divided into at most four
subboards: two rectangular boards 77 and T, with a corner square removed, one G(2,m), and one
G2(2,m + 1) for some 0 < m < n (these last two could be empty). By the induction hypothesis,
G(2,m)+ G2(2,m+1) =0. As above, T and T have the same shape, hence Ty + T5 = 0. So after the
first move, the second player can turn the game into a zero game.

Thus G(2,n) +G1(2,n+1) = 0.

@ 1| 2] 3l 4ls]|6]7]8 1] 2 4 78|
1] 2] 3] 4ls5le6|7 |8 [1]2[3]4]s}e |78
@ 1| 2[ 314]516]7]8 12 als]e]7]s]
1] 2] slals|e|7 |8 [1]2[3]4]s|e |78
@ 1] 2T 3] als]e[7]s als 8 |
1] 2] 3 50678 B 3la) 78
@ 1 3 5/6|7|8 8 |
1] 23] 4ls|6|7 |8 [1]2]3la]5]6[7 |8
© 1 als]e]7]s] 1] 2| 3lals|6|7 |8
B 314|516 |7 |8 1| 2] 3l4[5f6 |78
© 6 8 | 1 5 7
[1]2[3l4)s]6]7 1] 2] 314|5]6|7]8
- 8 | 1] 2] 314|516]7 |8
(1 3[a)5i6]7 |8 1] 2 3lals|e|7]8
@ 1] 21504]s]6[7]8] 1] 2| 3)415|6|7 |8
[1][2]3]4]5]6[7 |8 1| 213lals|6|7]s

FIGURE 10. Second player’s response in the game G(2,8) + G1(2,9) according to the
rules (1)-(8) with k£ = 4. The first player has 8 possible first moves, one for each pair
of the 4 orientations of the L-tromino and the 2 boards GG, G;. First player’s moves are
depicted in the first column of boards; second player’s response in the second column.

The rules below, depicted in Figure 11, guarantee a win for the second player in G(2,n)+G2(2,n+1):
If the first player’s first move is

;kyk+1) in G(2,n) then move (k+ 1;k,k+ 1) in G2(2,n + 1), for 1 < k < n.
Jk+1;k) in G(2,n) then move (k+ 1;k,k+ 1) in G2(2,n+ 1), for 1 <k <n.
) in G(2,n) (
)

(1) (k; )
(2) (ko k n
(3") (k—1,k;k) in G(2,n) then move (k;k,k+ 1) in G2(2,n+ 1), for 1 < k < n.
(4’) (k;k—1,k) in G(2,n) then move (k;k,k+ 1) in G2(2,n+ 1), for 1 < k <mn.
(57) (k
(6") (k

NN NN

+ 1;k,k+1) in G2(2,n+ 1) then move (k;k, k+ 1) in G(2,n), for 1 <k <n.
skyk+1) in G2(2,n 4 1) then move (k; k — 1,k) in G(2,n), for 1 < k < n.
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@) 1] 2| 3} als|6|7|s 2| 3] a 7
1]2/3]4als]6|7]8 [1]2][3l4]sle]7]8]9]
@) 1| 2| 3 516|7|8 2|3 56|78
1] 2l 3lals|6l7 s [1]2][3]4]s/6]7]8]9]
@) 1] 2/ 3|4a[5|6|7|8 2|3 5/6|7)|8
1] 21 304l5|6|7 8 [1]2[3}4[5]e|7]8]9]
2 1| 2| 3 5/6|7]|8 231415678
@) 1] 203l4alsl6|7 s ‘123 516 |7 89‘
) 2 5(6|7 1] 23]als|e|7]8
‘1 2| 3la|sle|7]s 9‘ 1] 2] 3/al5]6|7]8
©) 2] 3 5/6|7]8 1] 2| 3} 4l5]|6
[1]2]3j4a]s]6|7]8]9] 1| 213]als|6|7]8
@ 2] 3 516|7]8 1| 213|4a15|6|7]|8
‘1 2| 31als]e|7]8 9‘ 1] 2| 3lals|e|7]s
213l alslel7]s8 1 6|78
g
&) [1]2]314]5]6|7]8]9] 1] 213)a]s|6|7]8

FIGURE 11. Second player’s response in the game G(2,8) + G2(2,9) according to the
rules (1°)-(8) with k = 4. The first player has 8 possible first moves, one for each pair
of the 4 orientations of the L-tromino and the 2 boards G, Gs. First player’s moves are
depicted in the first column of boards; second player’s response in the second column.

Now, each player has moved exactly once, and the two boards have been divided into at most 4
subboards: two rectangular boards 77 and T with a square removed, one G(2,m), and one G1(2, m+1)
for some 0 < m < n (these last two could be empty). By the inductive hypothesis, G(2,m) + G1(2,m +
1) = 0 and since T} and T, have the same shape (after rotating and flipping if necessary), then T3 +75 = 0.
So after the first move, the second player can guarantee that the game becomes a zero game.

The rules for the remaining possible first moves of the first player in G(2,n) + G2(2,n + 1) now follow

(7) (k,k+1;k) in G2(2,n + 1) then move (k — 1, k; k) in G(2,n), for 1 < k < n.
(8") (k—1,k;k) in Go(2,n + 1) then move (k — 1,k;k — 1) in G(2,n), for 2 < k < n.

Each player has now moved exactly once, and the two boards have been divided into at most four
subboards: two rectangular boards 77 and T with a square removed, one G(2, m), and one G3(2, m+1)
for some 0 < m < n (these last two could be empty). By the inductive hypothesis, G(2,m) + G2(2,m +
1) = 0 and since T} and T» have the same shape (after rotating and flipping if necessary), then 71 +7T» = 0.
So after the first move, the second player can guarantee that the game becomes a zero game.

Thus G(2,n) + G2(2,n + 1) = 0. This completes the proof. N

As noted above, M-Tromping is an impartial game and therefore the winner of this game is either
the first or second player. For example, G(2,3) is a first-player win, and G(2,4) is a second-player win.
Curiously, however, by just removing a corner from a 2 x n board, M-Tromping becomes a first-player
game for all n > 1. We prove this in the following theorem.

Theorem 4.4. Forn > 1, let B(n) be the value of M-Tromping played on a 2 X n board with one corner
removed. Then B(n)||0 for all n.
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Proof. Without loss of generality, we assume that the square removed is the lower-right corner. After
labeling both columns of the board with numbers from [n] in increasing order, we note that the statement
is trivial for n = 2. For n > 2, we recognize two cases,

n is odd: The first player moves (”T'H, ”T'H -1, "7“), this will bisect the board into two pieces
with value B(241 — 1). After this move, the value of the game is B(“* — 1) + B(%H — 1),
which is a zero-game, as B(% — 1) is its one negative. Therefore the first player (who is the
second to play on B(241 — 1) + B(%41 — 1)) can win the game.

n is even: The first player moves (%, § + 1; ). This will split the original board into two pieces:
G(2,5 — 1) and G1(2, §), respectively. By Theorem 4.3, these two pieces have the same value
when playing M-Tromping, and so its sum is 0. Hence the first player (who is the second to play

on G(2,% — 1)+ G1(2, %)) can win the game. W

4.11. Some families of values. When playing I-Tromping or D-Tromping on square boards, notice
that the sets of moves for Horizontal and Vertical are negatives of one another. So these games are either
a first or second-player win. Notice that the winner of both I-Tromping and D-Tromping on the 5 x 5
board is the first player. In contrast, it is shown in [Con] page 116 that Domineering on a 5 x 5 board
is a second player win. We also note that Tables 1 and 2 are antisymmetric, since the value of a game
on a board B is the negative of the game on board B’, where B’ is the rotation of B by 90° about its
center (clockwise or counterclockwise).

Finally, in addition to the dictionaries of values already provided, we present in Figure 12 some
patterns of boards that have a clearly discernible pattern of values. One can prove the validity of some
of these patterns by using the properties that were pointed out in Propositions 2.4 and 2.6. For example,
to prove by induction the validity of the first sequence of I-Tromping , we use Proposition 2.4 (a) and
(b), and the well-known fact that 4+ % 4 - - - + % is 0 if we add an even number of stars, and * if we add
an odd number of them.

The last two lines of Figure 12 constitute a sequence of values for L-Tromping. The values obtained

are,

*, la {l | - 1}7 _1a _1*7 _1la {_1l I - 2}a _27 _2*7 _2l7 {_Q\L | - 3}7 _3a _3*7 _3l e

The emerging pattern is a four-term block of the form {(1 —a) | | — a}, —a,—a*, —a | for a € Z>;
increasing in steps of 1.

We remark, in passing, that the “double cross” in Fig 12 (second board from left in first row of L-
Tromping) has value {{0|—1}, %|*,0,{0|—1}} = {x|0,{0|—1}} (by domination) = {|0} (by reversibility)
= | . Note that, perhaps a bit counterintuitively, the best opening move for Horizontal is to tile with a
domino the middle 2 squares.

5. CONCLUDING REMARKS

e We proved some properties of I-Tromping (Proposition 2.4) which generalize those of Domineer-
ing (Proposition 2.6). This may lead one to think that there could be some isomorphism between
I-Tromping and Domineering. We believe, however, that this is not the case. In particular, we
propose that there is no position in I-Tromping with value

£(0,{{2(0}, 242 [{2|0}, —2}),

which is the value of a 4 x 4 board in Domineering.
e It is natural to generalize the results of this paper to larger polyominoes. Results of the form of
Proposition 2.4 grow stronger with increasing size of the smallest participating polyomino.
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FIGURE 12. Families of patterns.

The games presented here were analyzed for normal play; that is, the player making the last
move wins. One can also analyze these games for misére play, where the player making the last
move loses, but then the usefulness of sums is lost.

For some of the boards, we need more experimental computations. But, since we are dealing
with a very particular kind of board (horizontal strips), perhaps some heuristic techniques can
be used.

We do not know whether Theorem 3.3 can be applied in general for L-Tromping, although this
seems plausible.

M-Tromping on 2 X m boards has interesting properties: while removing two corners basically
does not change the game (see Theorem 4.3 for a precise statement), removing a single corner
makes the game fuzzy.
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