
Curriculum Vitae

Lucas Fresse

Born at Saint-Dié (France), on November 24th, 1979.
French citizenship.

Professional address :
Department of Mathematics, the Weizmann Institute of Science, Rehovot 76100, Israel.

Personal address :
10/3 Kipnis Street, 76303 Rehovot, Israel.

Contact :
Telephone : +972 8934 4283
E-mail : lucas.fresse@weizmann.ac.il
Webpage : http://www.wisdom.weizmann.ac.il/~fresse/index.html

1. Studies

2008- : Post-doc at the Weizmann Institute of Science, Israel.

2007-2008 : Attaché Temporaire d'Enseignement et de Recherche (temporary tea-
ching and research position) at the University Lyon 1.

2003-2007 : Ph.D. in Mathematics, under the supervision of Prof. Olivier Mathieu,
within the algebra team, at the University Lyon 1.
Thesis : Une étude combinatoire de la géométrie des �bres de Springer de type A
(A combinatorial study of the geometry of Springer �bers in type A), defended
on December 12th, 2007.

2002-2003 : 1) DEA in Mathematics (Master degree) at the University Lyon 1, Dis-
sertation : Représentations du groupe spécial linéaire en caractéristique naturelle
(Representations of the special linear group in positive characteristic). Supervi-
sor : Prof. Olivier Mathieu.
2) Agrégation of Mathematics (national competition).

2001-2002 : Maîtrise de Mathématiques at the École Normale Supérieure de Lyon.
Report : Classi�cation des groupes de ré�exions (Classi�cation of re�ection groups).
Supervisor : Prof. David Bessis, at the University Lyon 1.

2000-2001 : Licence de Mathématiques at the École Normale Supérieure de Lyon.
Report : Représentations linéaires des groupes �nis (Linear representations of
�nite groups). Supervisor : Prof. Cédric Bonnafé, at the University of Besançon,
France.

2000-2004 : Scholarship at the École Normale Supérieure de Lyon.

1996-1997 : Baccalauréat.

1



2. Research

Research subject : Geometry of Springer �bers.

Domains : Algebraic geometry, combinatorics and representation theory.

Keywords : Flag manifolds, Springer �bers, nilpotent orbits, orbital varieties, Young
diagrams and tableaux, Springer correspondence, Kazhdan-Lusztig theory.

Works

1. Une étude combinatoire de la géométrie des �bres de Springer de type A, Ph.D.
thesis, University Lyon 1, 2007.

2. Nombres de Betti des �bres de Springer de type A, Comptes-Rendus de l'Acadé-
mie des Sciences, Paris, Série I, volume 347 (2009) pages 283�287.

3. Composantes singulières des �bres de Springer dans le cas deux-colonnes, Com-
ptes-Rendus de l'Académie des Sciences, Paris, Série I, volume 347 (2009) pages
631�636.

4. Betti numbers of Springer �bers in type A, Journal of Algebra, volume 322 (2009)
pages 2566�2579.

5. Singular components of Springer �bers in the two-column case, Annales de l'Ins-
titut Fourier (Grenoble), volume 59 (2009) pages 2429�2444.

6. On the singularity of the irreducible components of Springer �bers in sl(n) (with
A. Melnikov), preprint arXiv:0905.1617 (2009). Accepted for publication in Se-
lecta Mathematica.

7. A uni�ed approach on Springer �bers in the hook, two-row and two-column cases,
preprint arXiv:0803.2183 (2009), 42 pages. Accepted for publication in Trans-
formation Groups.

8. Some characterizations of the singular components of Springer �bers in the two-
column case (with A. Melnikov), preprint arXiv:0909.4008 (2009). Accepted for
publication in Algebras and Representation Theory.

9. On the singularity of some special families of components of Springer �bers, pre-
print (2010), 33 pages, submitted.

3. Talks in seminars

� Algebra seminar of the University Lyon 1 (June 19, 2007).

� Seminar on enveloping algebras of the University Paris 7 (February 15, 2008).

� Algebraic geometry seminar of the University Grenoble 1 (March 31, 2008, June
15, 2009).

� Workshop on Lie theory and symplectic geometry, University Lyon 1 (July 1,
2008).

2



� Representation theory and algebraic geometry seminar, Weizmann Institute (Sep-
tember 24, 2008, November 5, 2008, February 5, 2009, December 4, 2009).

� Algebra seminar of the University of Haifa (November 13, 2008, November 19,
2009).

� Algebra seminar of the Hebrew University of Jerusalem (November 20, 2008).

� Seminar on algebraic combinatorics, University of Bar-Ilan (November 25, 2008).

� Seminar on Lie groups and module spaces of the University of Genève (February
25, 2009).

� Algebra seminar of the Israel Institute of Technology (Technion) (March 16, 2009).

� Seminar on mathematical physics of the University of Dijon (April 2, 2009).

� Algebra and topology seminar of the University ETH Zürich (April 8, 2009).

� Algebra seminar of the University of Besançon (April 16, 2009).

� Seminar on Lie groups and harmonic amalysis of the University Nancy 1 (June 4,
2009).

� Workshop on representation theory, University of Caen (June 9, 2009).

� Algebra seminar of the University Ben Gurion of Beer Sheva (November 4, 2009).

4. Conferences attended

� Workshop on Problems and Progress in Lie Algebraic Theory at the Weizmann
Institute of Science, Israel (July 7�8, 2010), talk.

� Algebraic Groups and Invariant Theory at Ascona, Switzerland (August 30 � Sep-
tember 4, 2009), short talk.

� Structures in Lie Representation Theory at the University of Brême, Germany
(August 9�22, 2009), plenary talk.

� The Israel Mathematical Union annual meeting at the Weizmann Institute of
Science, Israel (April 30 � May 1, 2009), talk in the topology-geometry session.

� Algebraic Lie Structures with Origins in Physics at the Newton Institute, England
(March 2009), poster presented.

� Workshop on Enveloping Algebras and Related Topics at the Weizmann Institute
of Science, Israel (January � February 2008).

� Groupes and geometry at Luminy, France (December 2006).

� Semaine dérivée (week conference on derived categories) at the University Paris
7 (January 2005).

3



5. Activities

Referee for the following journals :

� Annales de l'Institut Fourier,

� Bulletin de la Société Mathématique de France,

� Journal of Algebra,

� Proceedings of the American Mathematical Society.

7. Teaching

Tutorials in mathematics for undergraduate students, at the University Lyon 1. I taught
the following topics :

� �Basic mathematical techniques� (real analysis, limits, continuity, derivation, in-
tegration, trigonometry, �rst order di�erential equations).

� �Math 2� (multivariable calculus, di�erentials, multiple integration).

� �Math 3� (mathematical analysis, series, Fourier series, power series, partial dif-
ferential equations).

� �Math 5� (di�erential calculus, curves, surfaces, volumes).

� �Math II algebra� (basic linear algebra, polynoms).

� �Math IV algebra� (linear algebra, reduction of endomorphisms).

� �Math IV analysis� (topology, metric spaces, di�erential calculus).

For each topic, within the teaching team, I took part to the elaboration of exercice slips,
subjects for exams, marking.

4



Research statement

Research subject : Geometry of Springer �bers.

Domains : Algebraic geometry, combinatorics and representation theory.

Keywords : Flag manifolds, Springer �bers, nilpotent orbits, orbital varieties, Young
diagrams and tableaux, Springer correspondence, Kazhdan-Lusztig theory.

Introduction

Let G be a reductive algebraic group over C et let g denote its Lie algebra. The
set B of the Borel subgroups B ⊂ G is an algebraic projective variety, called the �ag
variety. For a nilpotent element x ∈ g, the set

Bx = {B ∈ B : x ∈ Lie(B)}

is a closed subvariety of B. The variety Bx is called a Springer �ber, since this is the
�ber over x for the Springer resolution X → N , (B, x) 7→ x, where N ⊂ g is the subset
of nilpotent elements and X = {(B, x) ∈ B ×N : x ∈ Lie(B)}.

The variety Bx is an algebraic projective variety, equidimensional, but in general it
is not irreducible.

The study of Springer �bers involves di�erent domains such as algebraic geometry,
representation theory and combinatorics. It takes its origin in the works of T.A. Springer
who obtained a geometric realization of the irreducible representations of Weyl groups in
the cohomology of Springer �bers (cf. [Spr]). D. Kazhdan et G. Lusztig gave a topological
construction of the Springer representations (cf. [KL2]) and they conjectured a link
between the con�guration of the irreducible components in Springer �bers and the
construction of bases for representations of the Hecke algebras (cf. [KL1, �6.3]). The
geometry of Springer �bers and their irreducible components has become an important
topic of study for thirty years.

However, up to now, few questions have been solved, and the Springer �bers remain
misterious objectifs. Even for the type A, there have been few advances, and mainly for
few particular cases.

Results achieved

I have undertaken the study of the geometry of Springer �bers in my Ph.D. thesis
(reference [1]). In my Ph.D. thesis, as well as in subsequent works, I have obtained a set
of new results, which I am going to describe. All along this presentation (and from now
on) we consider Springer �bers for G = GL(Cn), so that x : Cn → Cn is a nilpotent
endomorphism. We denote by λ(x) = (λ1 ≥ . . . ≥ λr) the Jordan block sizes of x.
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Results obtained in my Ph.D. thesis �Une étude combinatoire de la géométrie des
�bres de Springer de type A� (A combinatorial study of Springer �bers in type A)

First, I obtained a calculation of the Poincaré polynomial of the variety Bx. This
calculation is based on the construction of a cell decomposition of Bx. If x = 0, then
Bx is the �ag variety, which admits a decomposition into Schubert cells S(σ) parame-
terized by the elements of the symmetric group σ ∈ Sn, and the codimension of S(σ)
is the inversion number of σ. For x general, I constructed a cell decomposition of Bx

parameterized by a set of row-standard tableaux, and whose codimension of the cells
can be interpreted as a number of inversions (cf. [1, �II]).

I studied the components of Springer �bers by considering the natural action of
the centralizer of x and certain special orbits parameterized again by row-standard
tableaux. In the case of a nilpotent endomorphism of hook, two-row or two-column
type, I obtained necessary and su�cient criteria for such an orbit be contained in a
given component, these criteria involve dominance relations between Young diagrams
and combinatorial algorithms (cf. [1, �III]). I derived some topological properties of
the intersections of components in the same three cases, in particular I determined the
dimension of a general intersection of components (cf. [1, �IV-V]).

Finally, I established a su�cient condition of singularity for components of Springer
�bers in the case where x is of nilpotent order 2 (cf. [1, �V]).

Newer results

After my Ph.D., I obtained several new results on questions related to the sin-
gularity of Springer �ber components. First, I established a necessary and su�cient
criterion of singularity for the components in the case where x is of nilpotent order
2 (cf. [5]). In collaboration with A. Melnikov, I derived from this �rst criterion some
other characterizations of the singular components in the case x2 = 0, which show
in particular analogy between components and Schubert varieties, and a relation with
Kazhdan-Lusztig theory (cf. [8]). For x of general Jordan form, I studied the singularity
for special families of components and especially I began to study the relation between
the singularity of components and the question of existence of dense orbit for the action
of the stabilizer of x. (cf. [9]).

In collaboration with A. Melnikov, I also obtained the complete description of the
Jordan forms λ(x) such that all the components of Bx are nonsingular (cf. [6]) :

Theorem 1 All the irreducible components of Bx are nonsingular exactly in the follo-
wing cases :

(i) λ(x) = (λ1, 1, 1, . . .) (hook case) ;
(ii) λ(x) = (λ1, λ2) (two-row case) ;
(iii) λ(x) = (λ1, λ2, 1) (�two-row-plus-one-box� case) ;
(iv) λ(x) = (2, 2, 2).

In what follows, I describe the above results in more details.
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0. Preliminaries

Let V = Cn, and let x ∈ End(V ) be a nilpotent element. The Springer �ber Bx

interprets as the set of the complete �ags (0 = V0 ⊂ V1 ⊂ . . . ⊂ Vn = V ) which are
stable by x, i.e. x(Vi) ⊂ Vi for all i = 1, . . . , n. We let λ(x) = (λ1 ≥ . . . ≥ λr) denote
the sizes of the Jordan blocks of x, and we let Y (x) be the Young diagram of rows of
lengths λ1, . . . , λr.

The variety Bx is almost all the time reducible (unless x is zero or regular) and
its irreducible components are parameterized by the standard Young tableaux of shape
Y (x). Indeed, following N. Spaltenstein [Spa], there is a natural partition Bx =

⊔
T BT

x

parameterized by the standard tableaux of shape Y (x). The subsets BT
x in the partition

are locally closed, irreducible and all dimBT
x = dimBx (cf. [Spa, �II.5]). It follows that

Bx =
⋃

T BT
x is the decomposition of Bx into irreducible components, and thus all the

components KT := BT
x have the same dimension.

1. Calculation of the Betti numbers and the Poincaré polynomial

The Springer representations consist of a linear action of the symmetric group Sn on
the cohomology spaces Hm(Bx, Q). Moreover, the representation attached to the space
of maximal degree Hmax(Bx, Q) is irreducible and isomorphic to the Specht module cor-
responding to the Young diagram Y (x). In particular, we obtain that dim Hmax(Bx, Q)
is equal to the number of standard tableaux of shape Y (x), which in fact is also implied
by the construction of Spaltenstein presented above.

I have shown that, more generally, each Betti number bm := dim Hm(Bx, Q) can be
described as the cardinal of a set of tableaux. For this calculation of the Betti numbers,
I have constructed a cell decomposition of Bx. The cells are parameterized by the set
of row-standard tableaux of shape Y (x), and the codimension of the cells is interpreted
as an inversion number.

Dé�nition 1 We call row-standard tableau a tableau of shape Y (x), numbered from 1
to n, such that the entries in the rows are increasing from left to right.

Note that, if τ is a row-standard tableau, and if we put the numbers in each column in
increasing order from top to bottom, then we construct a standard tableau st(τ). Thus,
a row-standard tableau can be interpreted as a permutation of a standard tableau.

Example : τ =
2 3 8
4 6 7
1 5

st(τ) =
1 3 7
2 5 8
4 6

Dé�nition 2 Let τ be a row-standard tableau. We call inversion a pair of entries (i, j),
i < j in a same column of τ and such that one of the following conditions is satis�ed :

� i has no neighbor entry on its right and i is situated under j,
� i, j have respective right-neighbor entries i′, j′, and i′ > j′.

We denote by ninv(τ) the number of inversions of τ .
For example, the previous tableau τ has four inversions : the pairs (1, 2), (3, 6), (5, 6),

(7, 8). The inversion number measures the di�erence between τ and its �standardization�
st(τ).
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Let d = dimBx. We have the following result (cf. [1, �II], [2], [4]).

Theorem 2 The variety Bx admits a cell decomposition Bx =
⊔

τ C(τ) parameterized
by the row-standard tableaux of shape Y (x), with the following properties

(a) C(τ) ⊂ BT
x for T = st(τ) the �standardization� of τ .

(b) dim C(τ) = d− ninv(τ).

From the theorem, it follows that bm = 0 for m odd, and the Betti number b2m is
equal to the number of row-standard tableaux τ of inversion number ninv(τ) = d−m.

By studying the combinatorics of the number of inversions, I have derived an explicit
formula for the Poincaré polynomial Px(t) :=

∑d
m=0 bmtm. Moreover, I have established

an inductive formula for the polynomial Px(t) (cf. [4]).

Perspectives

Theorem 2 is somehow related to the theory of symmetric functions, an important
domain in algebraic combinatorics, (cf. [McD]). Speci�cally, A. Garsia and C. Procesi
have described a link between the geometry of Springer �bers and the notion of Kostka
polynomials (cf. [GP]). This link had be established before by G. Lusztig (cf. [L]). It
would be interesting to understand a possible connected between the combinatorics of
number of inversions of row-standard tableaux and the Kostka polynomials.

Moreover it would be interesting to study if the row-standard tableaux could form
a basis for a combinatorial description of the Springer representations of the symmetric
group, generalizing the Specht modules.

2. Computation of irreducible components and their intersections

Following N. Spaltenstein, the irreducible components of Bx are parameterized by
the standard tableaux of shape Y (x), and more precisely each component KT is obtained
as the closure of a subset BT

x ⊂ Bx. However, though the subsets BT
x are well understood,

determining their closures is a di�cult problem. The di�culty is that the study strongly
depends on the Jordan form of x. Until now, the components have been explicitely
described (by a system of equations) only in three particular cases : the cases where the
diagram Y (x) is of hook type (i.e. only one row of length ≥ 2), has two rows (cf. [Fu])
or has two columns (cf. [MP]). In the general case, it is even not possible to say whether
two given components do have a nonempty intersection. Each case is very speci�c.

I have studied the components under the point of view of a family of special ele-
ments : the elements of Bx �xed under the action of the standard torus relative to a
�xed Jordan basis of x. These �ags are parameterized by the row-standard tableaux of
shape Y (x), and we denote by Fτ the �ag corresponding to τ .

These elements are not generic in the components of Bx in general. In [9], I have
described the components containing a generic element of the form Fτ .

In addition, we can show that two components KT ,KS ⊂ Bx have a nonempty
intersection if and only if they contain a common element of the form Fτ .
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We write τ ∈ T if Fτ ∈ KT . In [1, �III], [7], I have studied the relation τ ∈ T ,
combinatorially. I have obtained necessary or su�cient conditions in the general case,
and a complete, common description in the hook, two-row and two-column cases.

For these three cases, I propose two criteria. The �rst criterion relies on the lower
semicontinuity of the rank. It involves dominance relations between two sequences of
Young diagrams attached respectively to the tableaux τ, T .

The second criterion relies on a combinatorial algorithm. This algorithm aims to
reconstruct the tableau τ by successive insersions of its entries 1, 2, . . ., according to
certain rules imposed by T . A failure can occur, and the success of the algorithm means
exactly that τ ∈ T .

The fact to have criteria which are common to the three cases can be underlined.
The proof of the criteria for each case is very di�erent.

Intersections of components

Let us consider the graph whose vertices are the irreducible components K ⊂ Bx,
and with an edge between K,K′ if codimK ∩ K′ = 1. The conjecture [KL1, �6.3] says
that this graph has the structure of a W -graph. This conjecture has motivated the
research on the question of the intersections of components of Springer �bers. Until
today, it has been checked only in the hook, two-row and two-column cases.

For these three cases, I have shown a link between the algorithm mentioned above
and the combinatorics involved in the description of the pairs of components of Bx which
intersect in codimension 1, in [Fu] and [MP] (in particular the parentheses diagrames).
By application, I obtain for instance that, for KT ,KS ⊂ Bx any two components, we
have

codimKT ∩ KS = 1 ⇒ (S ∈ T or T ∈ S).

It follows several topological properties of the components of Bx (cf. [7, �7�8]).

Through a computation relying on the algorithm presented above and on the de-
composition of the �ag variety into Schubert cells, I have determined the dimension of
any �nite intersection of irreducible components of the Springer �ber Bx, for x of hook,
two-row or two-column type (cf. [1, �IV�V]).

Perspectives

The concrete topological study of Springer �ber components in the general case looks
di�cult, it could give at least certain partial answers (for instance, necessary or su�cient
criteria to say whether two given components intersect). On the other hand, point (iii)
of Theorem 1 in the introduction shows that the case λ(x) = (λ1, λ2, 1) is also speci�c.
It would be therefore natural to study the topology of Springer �ber components for
this particular case of the Jordan form, relying on the techniques presented above, and
using possibly in addition other methods which would be better suited for this case.
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3. On the singularity of components

First, let us brie�y sum up the results already achieved about the singularity of the
irreducible components of the Springer �ber Bx.

1) In the cases where x is of hook or two-row type, all the irreducible components
of Bx are smooth (cf. [Va] for the hook case, [Fu] for the two-row case).

2) Singular components exist. J.A. Vargas [Va] has proved that, for x with Jordan
blocks of sizes λ(x) = (2, 2, 1, 1), the variety Bx admits a singular component (and
moreover it is the unique singular component for n ≤ 6).

3) Bx always admits smooth components, for instance the so-called Richardson com-
ponents, de�ned to be the components which are homogeneous under the action of
a parabolic subgroup. J. Pagnon and N. Ressayre [PR] have constructed another
special family of smooth components.

I have continued the study in the three directions, obtaining :
a) a classi�cation of the diagrams Y (x) such that all the components of Bu are
smooth,

b) several characterizations of the singular components in the two-column case,
c) a study of the singularity of certain special components, for Y (x) general.

Concerning a), see Theorem 1 stated in the introduction.

Characterization of the singular components in the two-column case

We suppose that the diagram Y (x) has two columns, equivalently x is of nilpotent
order two. This case presents two speci�c properties : indeed, we can show that in the
two-column case, the group Zx = {g ∈ GL(Cn) : gxg−1 = x} acts on Bx with a �nite
number of orbits, and that there is a unique closed orbit Z0 ⊂ Bx for this action.

I have obtained a �rst necessary and su�cient criterion of singularity for the com-
ponents of Bx, which relies on these properties. First, �xing an element F0 ∈ Z0, we
have that F0 belongs to any component K ⊂ Bx, and moreover K is singular if and only
if F0 is a singular point of K. We introduce a �nite set X0 ⊂ Bx of elements which are
connected to F0 by a projective curve (induced by the action of a one-parameter sub-
group of Zx). Then, for each F ∈ X0 ∩ K we obtain that the curve connecting F to F0

lies in the component K, thus we get an element in the tangent space TF0K. In fact, we
prove that the vectors so-obtained form a basis of TF0K, whence dim TF0K = |X0 ∩ K|.
The following singularity criterion is therefore obtained (cf. [3], [5]).

K is singular ⇔ |X0 ∩ K| > dimK.

Note that this criterion is analogous to criteria of the same kind for the singularity of
Schubert varieties.

In collaboration with A. Melnikov, relying on the previous criterion, I have obtained
three other criteria, more explicit, for the singularity of the irreducible components of
Bx in the two-column case (cf. [8]). The �rst criterion describes precisely the form of
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the standard tableaux T which correspond to the singular components KT ⊂ Bx. The
second criterion is based on the construction of a cell decomposition of each component
(which allows in addition to compute the Poincaré polynomials of the components) and
it is stated as follows :

K ⊂ Bx is smooth if and only if its Poincaré polynomial is palindromic.

It results in particular that K ⊂ Bx is smooth if and only if it is rationally smooth.
Again the property is the same as for Schubert varieties (for simply laced root systems).

The third criterion involves the intersections of components in codimension 1 :

K is smooth ⇔ #{K′ ⊂ Bx component : codimK ∩ K′ = 1} > min(r, s + 1),

where r and s, r ≥ s, denote the lengths of the columns of Y (x). This criterion shows
that the singular components correspond to the vertices with a great number of edges
in the Kazhdan-Lusztig graph (cf. section 2).

On the singularity of certain special components, for Y (x) general

In [9], I have studied the singularity of components for a Jordan form Y (x) general,
but by considering certain special families of components. The �rst two special families
are the following ones.

1) A component K ⊂ Bx is said to be a Richardson component if it is homogeneous
for the action of a parabolic subgroup P ⊂ GL(Cn). Equivalently, K is isomorphic to a
product of �ag varieties.

2) A component K ⊂ Bx is said to be a Bala-Carter component if is contains a
dense orbit of a special type for the action of Zx, the stabilizer of x : the orbit of a �ag
adapted to a Jordan basis, i.e. of the form F = (〈e1, . . . , ei〉)n

i=0 where x(ei) ∈ {0, ei−1}.
These two families are in duality. For a standard tableau T , we denote by T ∗ the

transposed tableau (i.e. th i-th row of T corresponds to the i-th column of T ∗). We
have :

KT is a Bala-Carter component ⇔ KT ∗ is a Richardson component.

Whereas the Richardson components are always smooth, the Bala-Carter compo-
nents are often singular. I have given a characterization of the singular Bala-Carter
components. From this criterion, we get in addition that the Bala-Carter components
are, among the components of Springer �ber, those the most susceptible to be singular,
in the sense that if Bx admits a singular component, then it admits one of Bala-Carter
type.

The third family of components we consider enlarges the family of Bala-Carter
components :

3) We consider the family of components which contain a dense Zx-orbit of the form
ZxF , where F is the �ag adapted to a permutation of a Jordan basis, i.e. of the form
F = (〈eσ1 , . . . , eσi

〉)n
i=0, σ ∈ Sn.
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Equivalently, the components in this family are those which contain a dense orbit
of the form ZxFτ , where Fτ is the �ag like in section 2. I have given a parameterization
of the components of this type by a family of graphs which generalize the parentheses
diagrams.

The fourth family of components we consider enlarges the family of Richardson
components :

4) The family of components which are iterated �ber bundles of projective spaces.
In particular, all the components in this family are smooth. I have shown the follo-

wing relation between the families 3) and 4) :

Theorem 3 If KT contains a dense Zx-orbit of the form ZxF , where F is the �ag
adapted to a permutation of a Jordan basis, then KT ∗ is an iterated �ber bundle of
projective spaces.

In the two-column case, every component is of type 3) and in the two-row case,
every component is of type 4). We retrieve in particular the description due to F. Fung
[Fu] of the structure of iterated bundle of the components in the two-row case.

Perspectives

The study of questions related to the singularity of Springer �ber components can
be continued in the following directions. First, it is natural to make deeper the study of
the singularity in the two-column case (type, singular locus, resolution of singularities).
We could also try to adapt ideas from the two-column case in order to obtain necessary
or su�cient singularity criteria in other cases.

It would be interesting to study whether a version of Theorem 1 can be found for
Springer �bers of other types than type A. Finally, it seems pro�table to continue
the study of the link mentioned above between the singularity of components and the
intersections in codimension one. As for the link between the singularity of components
and the existence of dense orbits for the action of the stabilizer of x.
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