
On Approximating the Number of Relevant Variables

in a Function

Dana Ron∗

School of EE
Tel-Aviv University
Ramat Aviv, Israel

danar@eng.tau.ac.il

Gilad Tsur
School of EE

Tel-Aviv University
Ramat Aviv, Israel

gilad.tsur@gmail.com

July 19, 2011

Abstract

In this work we consider the problem of approximating the number of relevant variables in
a function given query access to the function. Since obtaining a multiplicative factor approx-
imation is hard in general, we consider several relaxations of the problem. In particular, we
consider a relaxation of the property testing variant of the problem and we consider relaxations
in which we have a promise that the function belongs to a certain family of functions (e.g., linear
functions). In the former relaxation the task is to distinguish between the case that the number
of relevant variables is at most k, and the case in which it is far from any function in which
the number of relevant variable is more than (1 + γ)k for a parameter γ. We give both upper
bounds and almost matching lower bounds for the relaxations we study.

∗This work was supported by the Israel Science Foundation (grant number 246/08).

1 Introduction

In many scientific endeavors, an important challenge is making sense of huge datasets. In particular,
when trying to make sense of functional relationships we would like to know or estimate the number
of variables that a function depends upon. This can be useful both as a preliminary process for
machine learning and statistical inference and independently, as a measure of the complexity of the
relationship in question. We mainly focus on Boolean functions over the Boolean hypercube, which
is endowed with the uniform distribution. In the last section we discuss extensions to other finite
domains and ranges (as well as other product distributions).

For a function f : {0, 1}n → {0, 1}, we let r(f) denote the number of variables that f depends
on, which we shall also refer to as the number of relevant variables. A variable xi is relevant to a
function f if there exists an assignment to the input variables such that changing the value of just
the variable xi causes the value of f to change. Given query access to f , computing r(f) exactly
may require a number of queries that is exponential in n (linear in the size of the domain).1

Thus, we would like to consider relaxed notions of this computational task. One natural relax-
ation is to compute r(f) approximately. Namely, to output a value r̂ such that r(f)/B ≤ r̂ ≤ B·r(f)
for some approximation factor B. Unfortunately, this relaxed task may still require an exponential
number of queries (see the example in Footnote 1).

A different type of relaxation that has been studied in the past, is the one defined by property
testing [14, 9]. We shall say that f is a k-junta if r(f) ≤ k. A property testing algorithm is given k
and a distance parameter 0 < ǫ < 1. By performing queries to f , the algorithm should distinguish
between the case that f is a k-junta and the case that it differs from every k-junta on at least an
ǫ-fraction of the domain (in which case we shall say that it is ǫ-far from being a k-junta). This
problem was studied in several papers [7, 6, 2, 3]. The best upper bound on the number of queries
that the algorithm performs (in terms of the dependence on k) is O(k log k) [3], where this upper
bound almost matches the lower bound of Ω(k)[6].

A natural question, which was raised in [7], is whether it is possible to reduce the complexity
below Õ(k) if we combine the above two relaxations. Namely, we consider the following problem:
Given parameters k ≥ 1 and 0 < ǫ, γ < 1 and query access to a function f , distinguish (with
high constant probability) between the case that f is a k-junta and the case that f is ǫ-far from any
(1+γ)k-junta.2 This problem was recently considered by Blais et al. [4]. They apply a general new
technique that they develop for obtaining lower bounds on property testing problems via commu-
nication complexity lower bounds. Specifically, they give a lower bound of Ω

(

min{(kt)2, k} − log k
)

on the number of queries necessary for distinguishing between functions that are k-juntas and func-
tions that are ǫ-far from (k + t)-juntas (for a constant ǫ). Using our formulation, this implies that
we cannot go below a linear dependence on k for γ = O(1/

√
k).

Our Results. What if we allow γ to be a constant (i.e., independent of k), say, γ = 1? Our first
main result is that even if we allow γ to be a constant, then the testing problem does not become
much easier. Specifically, we prove:

1Consider for example the family of functions, where each function in the family takes the value 0 on all points
in the domain but one. Such a function depends on all n variables, but a uniformly selected function in the family
cannot be distinguished (with constant probability) from the all-0 function, which depends on 0 variables.

2 We note that problems in the spirit of this problem (which allow a further relaxation to that defined by “standard”
property testing) have been studied in the past (e.g., [11, 10, 1]).

1

Theorem 1.1 Any algorithm that distinguishes between the case that f is a k-junta and the case
that f is ǫ-far from any (1 + γ)k-junta for constant ǫ and γ must perform Ω(k/ log(k)) queries.

While Theorem 1.1 does not leave much place for improvement of the query complexity as compared
to the O(k log k) upper bound [3] for the standard property testing problem (i.e., when γ = 0), we
show that a small improvement (in terms of the dependence on k) can be obtained:

Theorem 1.2 There exists an algorithm that, given query access to f : {0, 1}n → {0, 1} and
parameters k ≥ 1, and 0 < ǫ, γ < 1, distinguishes with high constant probability between the case
that f is a k-junta and the case that f is ǫ-far from any (1 + γ)k-junta. The algorithm performs

O
(

k log(1/γ)
ǫγ2

)

queries.

Given that the relaxed property testing problem is not much easier than the standard one
in general, we consider another possible relaxation: Computing (approximately) the number of
relevant variables of restricted classes of functions. For example, suppose that we are given the
promise that f is a linear function. Since it is possible to exactly learn f (with high constant
probability) by performing O(r(f) log n) queries, it is also possible to exactly compute r(f) in
this case using this number of queries. On the other hand, Blais et al. [4] show that in order to
distinguish (with constant success probability) between the case that a linear function has k relevant
variables and the case that it has more than k + 1 relevant variables, requires Ω(min{k, n − k})
queries3 (so that Ω(r(f)) queries are necessary for exactly computing r(f)). However, if we allow
a constant multiplicative gap, then we get the following result:

Theorem 1.3 Given query access to a linear function f , it is possible to distinguish with high
constant probability between the case that f has at most k relevant variables and the case that f
has more than (1 + γ)k relevant variables by performing Θ(log(1/γ)/γ2) queries.

By standard techniques, Theorem 1.3 implies that we can obtain (with high constant probability)
a multiplicative approximation of (1 + γ) for r(f) (when f is a linear function), by performing
Õ(log(r(f))/γ2) queries to f .

Theorem 1.3, which deals with linear functions, extends to polynomials:

Theorem 1.4 There exists an algorithm that distinguishes between polynomials of degree at most
d with at most k relevant variables and polynomials of degree at most d that have at least (1 + γ)k

relevant variables by performing O
(

2d log(1/γ)
γ2

)

queries.

Compared to Theorem 1.2, Theorem 1.4 gives a better result for degree-d polynomials when d <
log(k). A natural question is whether in this case we can do even better in terms of the dependence
on d. We show that it is not possible to do much better (even if we also allow the property testing
relaxation):

Theorem 1.5 For fixed values of ǫ (for sufficiently small ǫ), and for d < log(k), any algorithm
that distinguishes between polynomials of degree d with k relevant variables and those that are ǫ-far
from all degree-d polynomials with 2k relevant variables must perform Ω(2d/d) queries.

3A slightly weaker bound of Ω(k/polylog(k)) was proved independently by Chakraborty et al. [5] based on work
by Goldriech [8]).

2

Finally we show that a lower lower bound similar to the one stated in Theorem 1.1 holds when we
have a promise that the function is monotone (except that it holds for ǫ = O(1/ log(k)) rather than
constant ǫ).

Techniques. Our lower bounds build on reductions from the Distinct Elements problem: Given
query access to a sequence of length n, the goal is approximate the number of distinct elements
in the sequence. This problem is equivalent to approximating the support size of a distribution
where every element in the support of the distribution has probability that is a multiple of 1/n [12].
Several works [12, 16, 15] gave close to linear lower bounds for distinguishing between support size
at least n/d1 and support size at most n/d2 (for constant d1 and d2), where the best lower bound,
due to Valiant and Valiant [15], is Ω(n/ log(n)), and this bound is tight [15].

Turning to the upper bounds, assume first that we have a promise that the function f is a
linear function, and we want to distinguish between the case that it depends on at most k variables
and the case that it depends on more than 2k variables. Suppose we select a subset S of the
variables by including each variable in the subset, independently, with probability 1/2k. The first
basic observation is that the probability that S contains at least one of the relevant variables of
f when f depends on more than 2k variables, is some constant multiplicative factor (greater than
1) larger than the probability that this occurs when f depends on at most k relevant variables.
The second observation is that given the promise that f is a linear function, using a small number
of queries we can distinguish with high constant probability between the case that S contains at
least one relevant variable of f , and the case that it contains no such variable. By quantifying the
above more precisely, and repeating the aforementioned process a sufficient number of times, we
can obtain Theorem 1.3

The algorithm for degree-d polynomials is essentially the same, except that the sub-test for
determining whether S contains any relevant variables is more costly. The same ideas are also the
basis for the algorithm for general functions, only we need a more careful analysis since in a general
function we may have relevant variables that have very small influence. Indeed, as in previous work
on testing k-juntas [7, 2, 3], the influence of variables (and subsets of variables), plays a central
role (and we use some of the claims presented in previous work).

Organization. We start by introducing several definitions and basic claims in Section 2. In
Section 3 we prove Theorems 1.1 and 1.2 (the lower and upper bounds for general functions). In
Section 4 we describe our results for restricted function classes, where the algorithms for linear
functions and more generally, for degree-d polynomials, are special cases of a slight variant of the
algorithm for general functions. Finally, in Section 5 we discuss extending the results to general
finite domains and ranges, with arbitrary product distributions.

2 Preliminaries

For two functions f, g : {0, 1}n → {0, 1}, we define the distance between f and g as Prx[f(x) 6= g(x)]
where x is selected uniformly in {0, 1}n. For a family of functions F and a function f , we define
the distance between f and F as the minimum distance over all g ∈ F of the distance between f
and g. We say that f is ǫ-far from F , if this distance is at least ǫ.

Our work refers to the influence of sets of variables on the output of a Boolean function (in
a way that will be described presently). As such, we often consider the values that a function f
attains conditioned on a certain fixed assignment to some of its variables, e.g., the values f may

3

take when the variables x1 and x3 are set to 0. For an assignment σ to a set of variables S we will
denote the resulting restricted function by fS=σ. Thus, fS=σ is a function of {0, 1}n−|S| variables.
When we wish to relate to the variables {x1, . . . , xn} \ S we use the notation S̄.

We now give a definition that is central for this work:

Definition 2.1 For a function f : {0, 1}n → {0, 1} we define the influence of a set of variables
S ⊆ {x1, . . . , xn} as Prσ,y,y′ [fS̄=σ(y) 6= fS̄=σ(y

′)] where σ is selected uniformly at random from
{0, 1}n−|S| and y, y′ are selected uniformly at random from {0, 1}|S|. For a fixed function f we
denote this value by I(S). When the set S consists of a single variable xi we may use the notation
I(xi) instead of I({xi}).

Proofs of the following claims can be found in [7]. The first claim tells us that the influence of sets
of variables is monotone and subadditive:

Claim 2.1 Let f be a function from {0, 1}n to {0, 1}, and let S and T be subsets of the variables
x1, . . . , xn. It holds that I(S) ≤ I(S ∪ T) ≤ I(S) + I(T).

Definition 2.2 For a fixed function f the marginal influence of set of variables T with respect to
a set of variables S is I(S ∪ T) − I(S). We denote this value by IS(T).

The marginal influence of a set of variables is diminishing:

Claim 2.2 Let S, T , and W be disjoint sets of variables. For any fixed function f it holds that
IS(T) ≥ IS∪W (T).

The next claim relates between the distance to being a k-junta and the influence of sets of variables.

Claim 2.3 Let f be a function that is ǫ-far from being a k-junta. Then for every subset S of f ’s
variables of size at most k, the influence of {x1, . . . , xn} \ S is at least ǫ.

The converse of Claim 2.3 follows from the definition of influence:

Claim 2.4 Let f be a function such that for every subset S of f ’s variables of size at most k, the
influence of {x1, . . . , xn} \ S is at least ǫ. Then f is ǫ-far from being a k-junta.

3 Distinguishing between k-Juntas and Functions Far From Every

(1 + γ)k-Junta

In this section we prove Theorems 1.1 and 1.2 (stated in the introduction).

3.1 The Lower Bound

The lower bound stated in Theorem 1.1 is achieved by a reduction from the Distinct Elements
problem. In the Distinct Elements problem an algorithm is given query access to a string s and
must compute approximately and with high probability the number of distinct elements contained
in s. For a string of length t, this problem is equivalent to approximating the support size of a
distribution where the probability for every event is in multiples of 1/t [12]. Valiant and Valiant
[15] give the following theorem (paraphrased here):

4

Theorem 3.1 For any constant ϕ > 0, there exists a pair of distributions p+, p− for which each
domain element occurs with probability at least 1/t, satisfying:

1. |S(p+) − S(p−)| = ϕ · t, where S(D)
def
= |{x : PrD[x] > 0}|.

2. Any algorithm that distinguishes p+ from p− with probability at least 2/3 must obtain Ω(t
log(t))

samples.

While the construction in the proof of this theorem relates to distributions where the probability
of events is not necessarily a multiple of 1/t, it carries to the Distinct Elements problem [17].

In our work we use the following implication of this theorem - Ω(t/ log(t)) queries are required
to distinguish between a string of length t with t

2 distinct elements and one with fewer than t
16

distinct elements (for a sufficiently large t).4

In what follows we assume k = n/8, and later we explain how to (easily) modify the argument
for the case that k ≤ n/8 by “padding”. We set γ = 1 (so that 1+γ = 2), which implies the bound
holds for all γ ≤ 1. Using terminology coined by Raskhodnikova et al. [12], we refer to each distinct
element in the string as a “color”. We show a reduction that maps strings of length t = Θ(n) to
functions from {0, 1}n to {0, 1} such that the following holds: If there exists an algorithm that can
distinguish (with high constant probability) between functions that are k-juntas and functions that
are ǫ-far from any 2k-junta (for a constant ǫ) using q queries, then the algorithm can be used to
distinguish between strings with at most k−Θ(log(k)) colors and strings with at least 8k−Θ(log(k))
colors using q queries.

We begin by describing a parametrized family of functions, which we denote by Fnm. Each
function in Fnm depends on the first log(n) variables and on an additional subset of m variables.5

The first log(n) variables are used to determine the identity of one of these m variables, and
the value of the function is the assignment to this variable. More formally, for each subset U ⊂
{log(n) + 1, . . . , n} of size m and each surjective function ψ : {0, 1}log(n) → U , we have a function
fU,ψ in Fnm where fU,ψ(y1, . . . , yn) = yψ(y1,...,ylog(n)). For a given function fU,ψ we call the variables

{xi}i∈U active variables.

Claim 3.1 For any constant value c and for t > n/c, every function in Fnt/2 is ǫ-far from all

t/4-juntas, for a constant value ǫ.

Proof: From Claim 2.4 we know that it suffices to show that for every function f ∈ Fnt/2, and

for every set of variables S ⊂ {x1, . . . , xn} having size at most t/4, the set of variables S̄ =
{x1, . . . , xn} \ S has influence at least ǫ for a constant ǫ.

Consider a particular function f ∈ Fnt/2. For any set S having size at most t/4, the set S̄

contains at least t/4 active variables. We next show that the influence of a set T of t/4 active
variables is at least 1/8c, and by the monotonicity of the influence (Claim 2.1) we are done. The
influence of T is defined as Prσ,y,y′(fT̄=σ(y) 6= fT̄=σ(y

′)) where σ is selected uniformly at random
from {0, 1}n−|T | and y, y′ are selected uniformly at random from {0, 1}|T |. The probability of

4We note that allowing a bigger gap between the number of distinct elements (e.g., distinguishing between strings
with at least t/d distinct elements for some constant d and strings with at most t1−α distinct elements for a (small)
constant α), does not make the distinguishing task much easier: Ω(t1−o(1)) queries are still necessary [12].

5In fact, it depends on an integer number of variables, and thus depends, e.g., on the ⌈log n⌉ first variables. We
ignore this rounding issue throughout the paper, as it makes no difference asymptotically.

5

xψ(σ1,...,σlog(n)) belonging to T is at least |T |/n = t/4 ≥ n/4c. The probability of this coordinate

having different values in y and y′ is 1/2, and the claim follows.

We now introduce the reduction R(s), which maps a string of colors s (a potential input to the
distinct elements problem) to a function from {0, 1}n to {0, 1} (a potential input to the “k-junta
vs. far from (1 + γ)k-junta” problem):

Let s be a string of length n, where every element i in s gets a color from the set {1, . . . , n −
log(n)}, which we will denote by s[i]. The mapping R(s) = f maps a string with m colors to
a function in Fnm. Informally, we map each color to one of the variables xlog(n)+1, . . . , xn in f ’s
input, and compute f(y1, . . . , yn) by returning the value of the variable that corresponds to the
color of the element in s indexed by the values y1, . . . , ylog(n). More precisely, let b : {0, 1}log(n) →
{0, . . . , n−1} be the function that maps the binary representation of a number to that number, e.g.,
b(010) = 2. We define the function f (that corresponds to a string s) as follows: f(y1, . . . , yn) =
ys[b(y1,...,ylog(n))]+log(n) (recall that the colors of s range from 1 to n− log(n)).
The next claim follows directly from the definition of the reduction.

Claim 3.2 The reduction R(s) has the following properties:

1. For a string s, each query to the function f = R(s) of the form f(y1, . . . , yn) can be answered
by performing a single query to s.

2. For a string s with n/2 colors the function f = R(s) belongs to Fnn/2.

3. For a string s with n/16 colors the function f = R(s) belongs to Fnn/16.

By Claims 3.1 and 3.2, any algorithm that can distinguish (with high constant probability) between
functions that are n/8-juntas and functions that are ǫ-far from all n/4-juntas can be used to
distinguish (with high constant probability) between strings with n/2 distinct elements and strings
with n/16 distinct elements. Given the lower bound from [15], we have that any algorithm that
distinguishes (with high constant probability) between functions with at most n/8 relevant variables
and functions that are ǫ-far from all functions with at most n/4 relevant variables must perform
Ω(n/ log(n)) queries.

Dealing with general k ≤ n/8: In the reductionR described above we have a number of relevant
variables linear in n. We wish to show that we cannot distinguish in better time between k-Juntas
and functions far from every 2k-Junta when k = o(n). This can be established by “padding” the
function in the reduction as follows: Let the input to the reduction now be a string s of length
t = Θ(k). The reduction in the setting described above maps such a string to a function f from
{0, 1}t to {0, 1}. We can define a modified function f ′, which gets as input y ∈ {0, 1}n and returns
f(y1, . . . , yt).

Given the reduction above and the generalization to k ≤ n/8 we obtain Theorem 1.1.

3.2 The Algorithm

In this subsection we present the algorithm referred to in Theorem 1.2. This algorithm uses the
procedure Test-for-relevant-variables (given in Figure 1), which performs repetitions of the
independence test defined in [7]. The number of repetitions depends on the parameters η and δ,
which the algorithm receives as input.

6

Test-for-relevant-variables

Input: Oracle access to a function f , a set S of variables to examine, an influence parameter
η and a confidence parameter δ.

1. Repeat the following m = Θ(log(1/δ)/η) times:

(a) Select σ ∈ {0, 1}n−|S| uniformly at random.

(b) Select two values y, y′ ∈ {0, 1}|S| uniformly at random. If fS̄=σ(y) 6= fS̄=σ(y
′) return

true.

2. Return false.

Figure 1: Test-for-relevant-variables.

Claim 3.3 When given access to a function f , a set S, and parameters η and δ, where S has
influence of at least η, Test-for-relevant-variables returns true with probability at least 1 − δ.
When S contains no relevant variables, Test-for-relevant-variables returns false with probability
1. It performs Θ(log(1/δ)/η) queries.

Claim 3.3 follows directly from the definition of influence and a standard amplification argument.

Separate-k-from-(1 + γ)k
Input: Oracle access to a function f , an approximation parameter γ < 1 and a distance
parameter ǫ.

1. Repeat the following m = Θ(1/γ2) times:

(a) Select a subset S of the variables, including each variable in S independently with
probability 1/2k.

(b) Run Test-for-relevant-variables on f and S, with influence parameter η =
Θ(ǫ/k) and with confidence parameter δ = 1/8m.

2. If the fraction of times that Test-for-relevant-variables returned true passes a thresh-
old τ , return more-than-(1 + γ)k. Otherwise return up-to-k. We determine τ in the
analysis.

Figure 2: Separate-k-from-(1 + γ)k.

Proof of Theorem 1.2: We prove that the statement in the theorem holds for Algorithm
Separate-k-from-(1 + γ)k, given in Figure 2. For a function f that has at most k relevant
variables (i.e., is a k-junta), the probability that S (created in Step 1a of Separate-k-from-

(1 + γ)k) contains at least one such relevant variable is (at most) pk = 1 − (1 − 1
2k)

k (note that
1/4 < pk ≤ 1/2). It follows from the one-sided error of Test-for-relevant-variables that the
probability that it will return true in Step 1b is at most this pk. We will show that if f is ǫ-far from
every (1+γ)k-junta, then the probability of Test-for-relevant-variables returning true in Step 1b
is at least p′k = pk + Ω(γ). Having established this, the correctness of Separate-k-from-(1 + γ)k
follows by setting the threshold τ to τ = (pk + p′k)/2.

7

In the following we assume that when applied to a subset of the variables with influence at least
η, Test-for-relevant-variables executed with the influence parameter η, returns true. We will
later factor the probability of this not happening in even one iteration of the algorithm into our
analysis of the algorithm’s probability of success.

Consider a function f that is ǫ-far from every (1 + γ)k-junta. For such a function, and for any
constant c > 1, by Claim 2.3 one of the following must hold.

1. There are at least (1 + γ)k variables in f each with influence at least ǫ/c(1 + γ)k.

2. There are (more than c(1+γ)k) variables each with influence less than ǫ/c(1+γ)k that have,
as a set, an influence of at least ǫ.

To verify this, note that if Case 1 does not hold, then there are fewer than (1 + γ)k variables in
f with influence at least ǫ/c(1 + γ)k. Recall that by Claim 2.3, the variables of f except for the
(1 + γ)k most influential variables have a total influence of at least ǫ, giving us Case 2.

We first deal with Case 1 (which is the simpler case). We wish to show that the probability that
S (as selected in Step 1a) contains at least one variable with influence Ω(ǫ/(1 + γ)k) is pk + Ω(γ).
As there are at least (1 + γ)k variables with influence Ω(ǫ/(1 + γ)k), it suffices to consider the
influence attributed to these variables, and to bound from below the probability that at least one
of them appears in S. If we consider these (1 + γ)k variables one after the other (in an arbitrary
order), for the first k variables, the probability that (at least) one of them is assigned to S is pk
(as defined above). If none of these were assigned to S, an event that occurs with probability at
least 1− pk ≥ 1/2, we consider the additional γk variables. The probability of at least one of them
being selected is at least γpk, and so we have that the total probability of S containing at least one
variable with influence Ω(ǫ/(1 + γ)k) is at least pk(1 + γ/2). Given that pk > 1/4 we have that the
probability is at least pk + γ/8, as required.

For our analysis of Case 2 we will focus on the set of variables described in the case. Recall
that this set has influence of at least ǫ while every variable in the set has influence of less than
ǫ/c(1 + γ)k. We denote this set of variables by Y = {y1, . . . , yℓ}. We wish to bound from below
the influence of subsets of Y . To this end we assign to each variable from the set Y a value that
bounds from below the marginal influence it has when added to any subset of Y . By the premise
of the claim we have that I(Y) ≥ ǫ. We consider the values I(y1), I

{y1}(y2), . . . , I
{y1,...,yℓ−1}(yℓ).

The sum of these must be at least ǫ by the definition of marginal influence (Definition 2.2). Let us
denote by I ′(yi) the value I{y1,...,yi−1}(yi). We refer to this as the marginal influence of yi. If we
consider adding (with probability 1/2k) each element in Y to S in the order y1, . . . , yℓ, we get by
Claim 2.2 that the total influence of S is no less than the total of the marginal influences of those
variables added to S. It now suffices to show that the sum of marginal influences in S is likely to
be at least ǫ/4k, and we are done.

To see that the sum of marginal influences in S is likely to be Ω(ǫ/k), we first define the random

variables {χi}. The variable χi gets the value of c(1+γ)k
ǫ I ′(yi) if yi is selected and 0 otherwise. We

have:

Exp[χi] =
1

2k

c(1 + γ)k

ǫ
I ′(yi) =

c(1 + γ)

2ǫ
I ′(yi) . (1)

By the linearity of expectation we have

Exp

[

ℓ
∑

i=1

χi

]

=

ℓ
∑

i=1

Exp[χi] =
c(1 + γ)

2ǫ

ℓ
∑

i=1

I ′(yi) ≥
c

2
. (2)

8

Using a multiplicative form of the Chernoff bound we know that

Pr

[

ℓ
∑

i=1

χi <
1

2
Exp

[

ℓ
∑

i=1

χi

]]

≤ e−
c
16 . (3)

For an appropriately selected c this means we are unlikely to have
∑ℓ

i=1 χi that is less than a
constant6, and therefore we are likely to have

∑

yi∈S

I ′(yi) =
ǫ

c(1 + γ)k

ℓ
∑

i=1

χi = Ω(ǫ/k) , (4)

as required.
We now turn to lower bounding the algorithm’s probability of success. By the choice of δ =

1/8m, the probability that any of the m runs of Test-for-relevant-variables fails to detect a
set with influence Ω(ǫ/(1 + γ)k) is at most 1/8. Conversely, when the set S contains no variables
with influence, Test-for-relevant-variables never accepts. Thus, for a function with at most k
relevant variables, Test-for-relevant-variables accepts with probability at most pk. On the other
hand, for a function that is ǫ-far from all functions with at most (1 + γ)k relevant variables,Test-

for-relevant-variables accepts with probability at least pk + γ/8. We therefore set the threshold
τ to pk + γ/16. Recall that the number of iterations performed by the algorithm is m = Θ(1/γ2).
By an additive Chernoff bounds (for a sufficiently large constant in the Θ notation), conditioned
on Test-for-relevant-variables returning a correct answer in each iteration, the probability that
we “fall on the wrong side of the threshold” is at most 1/8. Try to improve phrasing. Thus, with
probability at least 3/4 our algorithm returns a correct answer.

Finally, we bound the query complexity of the algorithm. The algorithm perform m = Θ(1/γ2)
iterations. In each iteration it runs Test-for-relevant-variables with influence parameter η =
Θ(ǫ/k) and with confidence parameter δ = 1/8m. The query complexity of the procedure Test-

for-relevant-variables is Θ(log(1/δ)/η), giving a total of Θ(k log(1/γ2)
γ2ǫ

) queries.

4 Restricting the Problem to Classes of Functions

Given that in general, distinguishing between functions that are k-juntas and functions that are
ǫ-far from (1 + γ)k juntas requires an almost linear dependence on k, we ask whether this task can
be performed more efficiently for restricted function classes (and possibly without the introduction
of the distance parameter ǫ). In particular, let Cη be the class of functions where every variable has
influence at least η. As we shall see later, there are natural families of functions that are subclasses
of Cη.
Theorem 4.1 Given query access to a function f ∈ Cη, it is possible to distinguish with high
constant probability between the case that f has at most k relevant variables and the case that f
has more than (1 + γ)k relevant variables by performing Θ(log(1/γ)

γ2η
) queries.

Proof: We use the exact same algorithm as we use in the general case (that is, Separate-k-
from-(1 + γ)k given in Figure 2) with the following exception. In Step 1b, instead of setting the
influence parameter to Θ(ǫ/k), we set it to Θ(η). The proof of correctness follows Case 1 in the
general proof of correctness.

6Recall that we can select c. It determines the constant hidden in the algorithms Θ notation for ǫ′.

9

4.1 Linear Functions

A well studied class of functions for which we can test whether a function in the class has k relevant
variables or more than (1+γ)k relevant variables, by performing a number of queries that depends
only on γ, is the class of linear functions. For each function in the class, every influential variable
has influence 1/2. As a corollary of Theorem 4.1 we get Theorem 1.3 (stated in the introduction).

A natural question is whether this result can be improved to distinguish between, e.g., linear
functions that depend on at most k variables and linear functions that depends on more than k
variables. While distinguishing between linear functions that depend on k vs. k + 1 variables is
easy (simply compare f(~0) to f(~1)), Goldreich [8] presents two families of linear functions, one with
n/2 relevant variables and one with n/2 + 2 variables, and shows they can’t be distinguished with
o(
√
n) queries. Building on another result of Goldreich [8], Chakraborty et al. [5] show that it is

not possible to distinguish with constant success probability between linear functions with at most
k variables and linear functions with at least k+2 variables by performing o(k/polylog(k)) queries.
Finally, Blais et al. [4] show that Ω(min(k, n− k)) queries are required to distinguish between such
functions.

4.2 Polynomials over GF (2)

It is well known that every Boolean function can be represented by a polynomial over GF (2). Such
a polynomial is the parity of several monomials. That is, a function f can be written as

⊕

i φ
i

where every monomial φi is the product of variables, i.e., φi = Πj∈Ji
xj where Ji ⊆ [n]. Monomials

over GF (2) have a natural logical interpretation, and from here on we think of monomials as
conjunctions of variables, that is, φi =

∧

j∈Ji
xj where Ji ⊆ [n]. The degree of a polynomial p is

the number of variables in the largest monomial in p. It is convenient for us to work with a small
variation on the concept of monomials.

Definition 4.1 A Generalized Monomial over GF (2) is a conjunction of literals (variables and
their negations).

We note that if a function f can be computed as the parity of generalized monomials with a
number of variables at most d in each such generalized monomial, it can also be computed by a
“standard” polynomial with degree at most d. As polynomials in this section are characterized by
their degree, we describe them without loss of generality as the parity of generalized monomials.

We first wish to show (using Theorem 4.1) that we can distinguish between polynomials of degree
at most d with at most k variables and those with at least (1+γ)k variables using O(2d log(1/γ)/γ2)
queries. We will then show that the exponential dependence on d cannot be significantly improved.

The following is a well known fact:

Claim 4.1 Let us denote by Ph the probability of a function h to take the value 1 when the input
is chosen uniformly at random, and let p be a polynomial of degree d that isn’t the 0 polynomial. It
holds that Pp ≥ 2−d.

The proof follows by induction on d. We include the proof of the following claim for the sake
of completeness:

Claim 4.2 Let p be a polynomial of degree d. For every variable xj in p such that I(xj) 6= 0 it
holds that I(xj) ≥ 2−d.

10

Proof: Let p =
∑m

i=1 φ
i be a polynomial of degree d. We consider, without loss of generality, the

influence of the variable x1 that appears in the monomials φ1, . . . , φk. The variable x1 effects the
value of p (given an assignment to all other variables) when the polynomial p′ =

∑k
i=1 φ

i
x1=1 does

not equal 0. Indeed, the influence of x1 is exactly half the probability that p′ does not equal 0. As
p′ is of degree at most d − 1 this happens with probability at least 2−d+1 by Claim 4.1, and thus
I(xj) ≥ 2−d as required.

The next theorem now follows from Claim 4.2 and Theorem 4.1:
As in the proof of Theorem 1.1 we perform a reduction from the Distinct Elements problem.

We now describe a parametrized family of functions, which we denote Fnm,d.
7 Each function in

Fnm,d : {0, 1}n → {0, 1} is a polynomial of degree d that depends on the first d− 1 variables and on
an additional subset of m variables. The setting of the first d− 1 variables determines a particular
subset of the m variables, of size r = (n − d + 1)/2d−1, and the value of f is the parity of the

variables in this subset. More formally, let the sets U1, . . . , U2d−1
be consecutive sets of variables

from the variables xd, . . . , xn. That is, U1 = {xd, . . . , xd+r−1}, U2 = {xd+r, . . . , xd+2r−1} etc. Let
Ψ : {0, 1}d−1 → {1, . . . , 2d−1} be a function that maps an assignment of the first d− 1 variables to
m/r values in the range {1, . . . , 2d−1}. All functions of the form f(x1, . . . , xn) =

⊕

UΨ(x1,...,xd−1)

(and only these functions) are members of Fnm,d, where
⊕

U is used to denote the parity of all
variables in a set U . We refer to variables in {xd, . . . , xn} that are relevant variables as active
variables. Observe that the total number of relevant variables for each function in Fnm,d is m+d−1.
Here we consider m = Θ(n), so that the number of relevant variables in Θ(n) as well. As in the
case of the lower bound for general functions, the argument can be easily adapted to a number of
relevant variables that is significantly smaller than n using “padding”.

Claim 4.3 Each function in Fnm,d is realizable by a degree-d polynomial.

Proof: To prove the claim consider a polynomial that has, for every assignment y1, . . . , yd−1 to the
first d− 1 variables, and for the set U that corresponds to it, |U | generalized monomials. Each of
these generalized monomial has d literals - a variable in U and for each 1 ≤ i ≤ d− 1, the literal xi
if yi = 1, and the literal x̄i if yi = 0. Such a polynomial is of degree d (as all generalized monomials
in it are over d literals) and computes a function in Fnm,d (since for the assignment y1, . . . , yd−1, by
the definition of polynomials, the function takes the value

⊕

U). Furthermore, such a polynomial
exists for every function in Fnm,d.

Claim 4.4 Functions in Fnn/2,d are ǫ-far from all functions with at most n/4 relevant variables, for
a constant value ǫ.

Proof: From Claim 2.4 we know that it suffices to show that for every function f ∈ Fnn/2,d, and

for every subset S ⊂ {x1, . . . , xn} of size at most n/4, the set S̄ = {x1, . . . , xn} \ S has influence at
least ǫ.

Consider a particular function f ∈ Fnn/2,d. For any set S of size at most n/4 the set S̄ contains

more than n/8 active variables (for a sufficiently large n). These variables must belong to at least
n/8
r > n/8

n/2d−1 = 2d−1

8 different sets {U i}. As these are active variables, each such set U i has at least

one assignment x1, . . . , xd−1 = y1, . . . , yd−1 such that f{x1,...,xd−1}=y1,...,yd−1
=
⊕

U i. Let us denote
the set of such assignments Y . That is,

Y = {y1, . . . , yd−1 : Uψ(y1,...,yd−1) ∩ S̄ 6= ∅} .
7We assume that m is a multiple of (n − d + 1)/2d−1.

11

In such a restricted function f{x1,...,xd−1}=y1,...,yd−1
the set S̄ has influence 1/2. Therefore we have

that

I(S̄) ≥ 1

2
Pry∈{0,1}n [y1 . . . yd−1 ∈ Y] ≥ 1

2

2d−1

8
/2d−1 =

1

16
,

as required.
We now introduce the reduction R(s), which maps a string of colors (a potential input to the
distinct elements problem) to a degree-d polynomial from {0, 1}n to {0, 1} (a potential input to the
“k vs. (1 + γ)k-junta problem” for degree-d polynomials):

Let s be a string of length 2d−1, where every element i in s gets a color from the set {1, . . . , 2d−1},
which we will denote by s[i]. We denote the number of distinct colors in s as χ(s). For a fixed
value n the mapping R(s) = f maps s to a function in Fnχ(s)r,d. We map each color to one of the

sets U1, . . . , U2d−1
in f ’s input, and compute f ’s output on an input y ∈ {0, 1}n by returning the

parity of the input variables that correspond to the color of the element in s indexed by the values
y1, . . . , yd−1. More precisely, let b : {0, 1}d−1 → {0, . . . , 2d−1 − 1} be the function that maps the
binary representation of a number to that number, e.g., b(010) = 2. We define the function f that
corresponds to a string s as follows: f(y1, . . . , yn) =

⊕

U s[b(y1,...,yd−1)+1].
The next claim follows directly from the definition of the reduction:

Claim 4.5 The reduction R(s) has the following properties:

1. For a string s, each query to the function f = R(s) of the form f(y1, . . . , yn) can be answered
by performing a single query to s.

2. For a string s with 2d−1/2 colors, the function f = R(s) belongs to Fn(n−d+1)/2,d.

3. For a string s with 2d−1/16 colors, the function f = R(s) belongs to Fn(n−d+1)/16,d.

As in the general case (and using Claims 4.3 and 4.4), this means that any algorithm that
can distinguish (with high constant probability) between degree-d polynomials with at most n/8
relevant variables and degree-d polynomials that are ǫ-far from all degree-d polynomials with at
least n/4 relevant variables can be used to distinguish strings of length 2d−1 that either have at
most 2d−1/16 distinct elements or that have at least 2d−1/2 distinct elements. Given the lower
bound from [15] we have that any algorithm that distinguishes (with high constant probability)
degree-d polynomials with at most n/8 relevant variables from those that are ǫ-far from all degree-d
polynomials with at least n/4 relevant variables must perform Θ(2d/d) queries. Theorem 1.5 (which
is stated for general k) follows by applying a “padding” argument as in the general case.

4.3 Monotone Functions

In this subsection we give a lower bound for the number of queries required to determine whether
a monotone function depends on at most k variables or is ǫ-far from every function that depends
on 2k variables. Here monotone functions are defined in the standard manner - we say a function
f : {0, 1}n → {0, 1} is monotone if for all y, y′ ∈ {0, 1}n it holds that y > y′ ⇒ f(y′) > f(y′). The
relation y > y′ holds when yi ≥ y′i for all i, and yi > y′i for some i. One could hope that restricting
the family of functions we’re dealing with to monotone functions could significantly decrease the
number of required queries. This is the case for at least one property of Boolean functions - average
influence [?]. We show:

12

Theorem 4.2 Any algorithm that distinguishes (with constant probability) between monotone func-
tions with k variables and monotone functions that are Θ(1/

√

log(k))-far from all those with 2k
variables must perform Ω(k/ log(k)) queries.

It follows from Theorem 4.2 that any algorithm for the problem (stated in the claim) whose
dependence on 1/ǫ is polynomial, must perform a number of queries that is almost linear in k.

The construction for monotone functions is similar to that for general functions. The con-
structions differ in one aspect, leading the lower bound (for monotone functions) to hold only
for algorithms that can distinguish between monotone functions that depend on k variables and
functions that are Θ(1/

√

log(k))-far from those depending on (1 + γ)k variables.
Due to this similarity we only state the points where it differs from the general construction.

We again describe a parametrized family of functions, which we denoteMn
m. Each function inMn

m is
monotone, and depends on the first log(n) variables and on an additional subset of m variables. For

a function f ∈Mn
m and a value y ∈ {0, 1}n, if

∑log(n)
i=1 yi < ⌊log(n)/2⌋ we have f(y) = 0. Likewise,

if
∑log(n)

i=1 yi > ⌊log(n)/2⌋ we have f(y) = 1. When we have exactly
∑log(n)

i=1 yi = ⌊log(n)/2⌋, then
the first log(n) variables are used to determine the identity of one of the m additional variables, and
the value of the function is the assignment to this variable. More specifically, denoting by {0, 1}ℓ1/2
bit strings of length ℓ that contain exactly ⌊ℓ/2⌋ values of 1, for each subset U ⊂ {log(n)+1, . . . , n}
of size m and each surjective function ψ : {0, 1}log(n)

1/2 → U we have a function fU,ψ in Mn
m where

fU,ψ(y1, . . . , yn) = yψ(y1,...,ylog(n)). For a given function fU,ψ we call the variables in the set U active
variables.

The next claim follows directly from the definition of Mn
m.

Claim 4.6 Functions in Mn
m are monotone.

Claim 4.7 Functions in Mn
n/2 are Θ(1/

√

log(n))-far from all n/4-juntas.

To see that Claim 4.7 holds, observe that the distance of interest is only on assignments y ∈ {0, 1}n
where

∑log(n)
i=1 yi = ⌊log(n)/2⌋. These constitute Θ(1/

√

log(n)) of all assignments. Claim 4.7 follows
from an analysis similar to that of Claim 3.1.

The reduction from the Distinct Elements problem follows the same lines as the general case,
with obvious modifications - the string we reduce from is of length Θ(n/

√

log(n)), and the positive
and negative families of functions (as stated above) are Θ(1/

√

log(n))-far from each other. The
proof of Theorem 4.2 follows lines similar to those used in the general case.

13

5 Extending the results to general finite domains and ranges

In this section we show that Theorem 1.2 extends to the more general case of functions over finite
domains and ranges over product distributions, and that the same holds for Theorem 4.1. We also
observe that Theorems 1.3 and 1.4 extend to linear functions and degree-d polynomials over finite
fields, respectively.

5.1 Preliminaries

Let f : Y → R where Y = Y1 × · · · × Yn is a finite domain and R is a finite range. An input
y1, . . . , yn ∈ Y to the function f is drawn according to a product distributionD = D1×D2×· · ·×Dn.
We assume that we can draw an input y ∈ Y according to D (though it is not assumed that D is
known). A case of special interesting, which we have dealt with up till now, is when Yi = {0, 1} for
each i, R = {0, 1}, and D is the uniform distribution over Y = {0, 1}n.

Given the underlying distribution D, for two functions f, g : Y → R, we define the distance
between f and g (with respect to D) as Prx[f(x) 6= g(x)] where x is selected from Y according to
D. For a family of functions F and a function f , we define the distance between f and F as the
minimum distance over all g ∈ F of the distance between f and g (with respect to D). We say that
f is ǫ-far from F (with respect to D), if this distance is greater or equal to ǫ.

We next extend the notion of the influence of a set of variables where we shall use the following
notation: For a set S of variables, we let YS be the domain restricted to S (i.e., for S = {xi1 , . . . , xiℓ}
we have YS = Yi1 × . . .× Yiℓ), and let DS be the product distribution induced on the variables in
the set S.

Definition 5.1 For a function f : Y → R we define the influence of a set of variables S ⊆
{x1, . . . , xn} as Prσ,y,y′ [fS̄=σ(y) 6= fS̄=σ(y

′)] where σ is selected from YS̄ according to DS̄ and y
and y′ are selected from YS according to DS. For a fixed function f and distribution D we denote
this value by I(S). When the set S consists of a single variable xi we may use the notation I(xi)
instead of I({xi}).

While Fischer et al. [7] address in some of their claims the case of general domains and ranges,
they consider the notion of the variation of a set rather than the influence (as in Definition 5.1).
When the function is a Boolean function, the two notions essentially coincide, but this is not the
case for a larger range. However, Blais [3] considers the notion of the influence of a set, and hence
we build on the claims that he establishes (and in one case provide a proof that we have not found
elsewhere). In particular, Claim 2.1 extends to the general case of finite domains and ranges [3]:

Claim 5.1 Let f : Y → R be a function and let S and T be subsets of the variables x1, . . . , xn. It
holds that I(S) ≤ I(S ∪ T) ≤ I(S) + I(T).

The same holds for Claim 2.3 (whose proof can also be found in [3]), and the simple proof of
Claim 2.4 is easily extended. We restate them here for the sake of completeness.

Claim 2.3. Let f be a function that is ǫ-far from being a k-junta. Then for every subset S of f ’s
variables of size at most k, the influence of {x1, . . . , xn} \ S is at least ǫ.

Claim 2.4. Let f be a function such that for every subset S of f ’s variables of size at most k,
the influence of {x1, . . . , xn} \ S is at least ǫ. Then f is ǫ-far from being a k junta.

14

The definition of the marginal influence of a set of variables (Definition 2.2) remains as is:

IS(T)
def
= I(S ∪ T) − I(S) (for the extended notion of the influence). It only remains to prove

Claim 2.2 for the general case.

Claim 2.2. Let S, T , and W be disjoint sets of variables. For any fixed function f : Y → R it
holds that IS(T) ≥ IS∪W (T).

Proof: For a set S of variables and an assignment σ to S from YS , we let pS(σ) be the probability
that σ is selected according to the underlying distribution DS . observe that:

I(T) = Prσ,y,y′ [fT̄=σ(y) 6= fT̄=σ(y
′)]

= 1 −
∑

σ

pT̄ (σ) · Pry,y′ [fT̄=σ(y) = fT̄=σ(y
′)]

= 1 −
∑

σ

pT̄ (σ) ·
∑

ρ∈R

Pry,y′ [fT̄=σ(y) = ρ and fT̄=σ(y
′) = ρ]

(where σ ∈ YT̄ is selected according to DT̄ and y, y′ ∈ YT are selected according to DT). We would
like to show that

I(S ∪ T) − I(S) ≥ I(S ∪W ∪ T) − I(S ∪W) .

Let Q = S ∪W ∪ T . We introduce one more notation: For σ ∈ YQ, α ∈ YT , β ∈ YW and an output

value ρ ∈ R, let pσ,α,βQ,T,W (ρ) denote the probability that the output of the function f is ρ, conditioned
on Q = σ, T = α, and W = β, where the probability is taken over all assignments to the variables
in S. Using this notation we have:

I(S ∪W ∪ T) = 1 −
∑

σ∈YQ

pQ(σ)
∑

ρ∈R

∑

α∈YT

∑

β∈YW

pT (α)pW (β)pσ,α,βQ,T,W (ρ)

2

,

I(S ∪ T}) = 1 −
∑

σ∈YQ

pQ(σ)
∑

β∈YW

pW (β)
∑

ρ∈R

∑

α∈YT

pT (α)pσ,α,βQ,T,W (ρ)

2

,

I(S ∪W}) = 1 −
∑

σ∈YQ

pQ(σ)
∑

α∈YT

pT (α)
∑

ρ∈R

∑

β∈YW

pW (β)pσ,α,βQ,T,W (ρ)

2

,

I(S) = 1 −
∑

σ∈YQ

pQ(σ)
∑

α∈YT

pT (α)
∑

β∈YW

pW (β)
∑

ρ∈R

(pσ,α,βQ,T,W (ρ))2 .

Therefore,

I(S ∪ T) − I(S)

=
∑

σ∈YQ

pQ(σ)
∑

ρ∈R

∑

β∈YW

pW (β)

∑

α∈YT

pT (α)(pσ,α,βQ,T,W (ρ))2 −

∑

α∈YT

pT (α)pσ,α,βQ,T,W (ρ)

2

 .

15

Similarly,

I(S ∪W ∪ T) − I(S ∪W)

=
∑

σ∈YQ

pQ(σ)
∑

ρ∈R

∑

α∈YT

pT (α)

∑

β∈YW

pW (β)pT (α)pσ,α,βQ,T,W (ρ)

2

−

∑

α∈YT

pT (α)
∑

β∈YW

pW (β)pσ,α,βQ,T,W (ρ)

2

 .

Fixing σ and ρ, let us simplify our notations as follows. Let |YT | = N and |YW | = M . For an
arbitrary order over YT , let ar = pT (α) for α that is the rth element in YT , and similarly define

bq = pW (β) and cr,q = pσ,α,βQ,T,W (ρ). We would like to show the following:

M
∑

q=1

bq

N
∑

r=1

ar(cr,q)
2 −

(

N
∑

r=1

arcr,q

)2

≥
N
∑

r=1

ar

M
∑

q=1

bqcr,q

2

−

N
∑

r=1

ar

M
∑

q=1

bqcr,q

2

.

Let us denote:

Ψa1,...,aN
(z1, . . . , zN) =

N
∑

r=1

ar(zr)
2 −

(

N
∑

r=1

arzr

)2

Then we would like to show that:

M
∑

q=1

bq · Ψa1,...,aN
(c1,q, . . . , cN,q) ≥ Ψa1,...,aN

M
∑

q=1

bqc1,q, . . . ,

M
∑

q=1

bqcN,q

 (5)

(where we may use
∑N

r=1 ar = 1 and
∑M

q=1 bq = 1). We next show that Ψ = Ψa1,...,aN
is convex,

and hence Equation (5) follows by Jensen’s inequality.
In order to show that Ψ is convex, we consider the (Hessian) matrix H defined by Hi,j =

∂2Ψ(z1,...,zN)
∂zi∂zj

. We shall verify that H is positive semi-definite. We have that Hi,i = 2(ai − a2
i), and

Hi,j = −2aiaj for j 6= i. In order to establish that H is positive semidefinite, we consider any
vector ~y = y1, . . . , yN , and show that ~yH~yt ≥ 0. We start by computing ~w = ~yH. Observe that
the jth column of H, denoted Hj , is of the following form: Hj

j = 2aj − 2a2
j and Hj

i = −2aiaj for
i 6= j. Therefore,

wj = ~yHj = 2yjaj − 2yja
2
j −

∑

i6=j

2yiaiaj = 2ajyj − 2aj

n
∑

i=1

yiai .

16

Now,

~yH~yt =

n
∑

j=1

wjyj

= 2

N
∑

j=1

ajy
2
j − 2

N
∑

j=1

(

ajyj ·
N
∑

i=1

yiai

)

= 2

N
∑

j=1

ajy
2
j −

(

n
∑

j=N

ajyj

)2

 .

Since
∑N

i=1 ai = 1, by Jensen’s inequality we get a non-negative value.

5.2 Extending Theorem 1.2

We claim that Theorem 1.2 extends to general finite domains and ranges.

Theorem 5.1 There exists an algorithm that, given query access to f : Y → R, sampling access
to a product distribution D over Y , and parameters k ≥ 1, and 0 < ǫ, γ < 1, distinguishes with
high constant probability between the case that f is a k-junta and the case that f is ǫ-far from any

(1 + γ)k-junta. The algorithm performs O
(

k log(1/γ)
ǫγ2

)

queries.

The algorithm referred to in Theorem 5.1 is Algorithm Separate-k-from-(1 + γ)k, which remains
exactly as is. Algorithm Test-for-relevant-variables, which is called as a subroutine from Algo-
rithm Separate-k-from-(1 + γ)k remains as is except that σ is selected from YS̄ according to DS̄ ,
and y and y′ are selected from YS according to DS . The proof of Theorem 5.1 is the same as the
proof of Theorem 1.2 (where it relies on Claim 2.3 and Claim 2.2, which holds for general functions
over finite domains and ranges). Theorem 4.1 is established as before.

5.3 Extending Theorems 1.3 and 1.4

Let F be a finite field. Here we consider the case that Y = Fn, R = F , and D is the uniform
distribution over Fn. For every linear function f : Fn → F we have that each relevant variable
has influence 1 − 1

|F | (where influence is measured with respect to the uniform distribution). As a
corollary of Theorem 4.1 we get:

Theorem 5.2 Given query access to a linear function f : Fn → F (with the uniform distribution
on inputs), it is possible to distinguish with high constant probability between the case that f has at
most k relevant variables and the case that f has more than (1+γ)k relevant variables by performing
Θ(log(1/γ)/γ2) queries.

Now consider a polynomial f : Fn → F of degree d. The probability such a polynomial takes

the value 0 is at most
(

|F |−1
|F |

)d
, and thus, similarly to what was proved in Claim 4.2, every variable

in such a polynomial has influence at least
(

|F |−1
|F |

)d
. As a corollary of Theorem 4.1 we get:

17

Theorem 5.3 Given query access to a polynomial f : Fn → F of degree d (with the uniform
distribution on inputs), it is possible to distinguish with high constant probability between the case
that f has at most k relevant variables and the case that f has more than (1+γ)k relevant variables

by performing O
(

|F |d

(|F |−1)d · log(1/γ)
γ2

)

queries.

References

[1] N. Alon, S. Dar, M. Parnas, and D. Ron. Testing of clustering. SIAM Journal on Discrete
Math, 16(3):393–417, 2003.

[2] E. Blais. Improved bounds for testing juntas. In Proceedings of the Twelveth International
Workshop on Randomization and Computation (RANDOM), pages 317–330, 2008.

[3] E. Blais. Testing juntas nearly optimally. In Proceedings of the Fourty-First Annual ACM
Symposium on the Theory of Computing, pages 151–158, 2009.

[4] E. Blais, J. Brody, and K. Matulef. Property testing lower bounds via communication com-
plexity. To appear in the 26th Conference on Computational Complexity (CCC), 2011.

[5] S. Chakradorty, D. Garćıa-Soriano, and A. Matsliah. Private communication, 2010.

[6] H. Chockler and D. Gutfreund. A lower bound for testing juntas. Information Processing
Letters, 90(6):301–305, 2004.

[7] E. Fischer, G. Kindler, D. Ron, S. Safra, and S. Samorodnitsky. Testing juntas. Journal of
Computer and System Sciences, 68(4):753–787, 2004.

[8] O. Goldreich. On testing computability by small width OBDDs. In Proceedings of the Four-
teenth International Workshop on Randomization and Computation (RANDOM), pages 574–
587, 2010.

[9] O. Goldreich, S. Goldwasser, and D. Ron. Property testing and its connection to learning and
approximation. Journal of the ACM, 45(4):653–750, 1998.

[10] M. Kearns and D. Ron. Testing problems with sub-learning sample complexity. Journal of
Computer and System Sciences, 61(3):428–456, 2000.

[11] M. Parnas and D. Ron. Testing the diameter of graphs. Random Structures and Algorithms,
20(2):165–183, 2002.

[12] S. Raskhodnikova, D. Ron, A. Shpilka, and A. Smith. Strong lower bonds for approximating
distributions support size and the distinct elements problem. SIAM Journal on Computing,
39(3):813–842, 2009.

[13] D. Ron and G. Tsur. On approximating the number of relevant variables in a function.
Technical Report TR11-041, Electronic Colloquium on Computational Complexity (ECCC),
2011.

[14] R. Rubinfeld and M. Sudan. Robust characterization of polynomials with applications to
program testing. SIAM Journal on Computing, 25(2):252–271, 1996.

18

[15] G. Valiant and P. Valiant. Estimating the unseen: an n/ log(n)-sample estimator for entropy
and support size, shown optimal via new CLTs. In Proceedings of the Fourty-Third Annual
ACM Symposium on the Theory of Computing, pages 685–694, 2011. See also ECCC TR10-179
and TR10-180.

[16] P. Valiant. Testing symmetric properties of distributions. In Proceedings of the Fourtieth
Annual ACM Symposium on the Theory of Computing, pages 383–392, 2008.

[17] P. Valiant. Private communications, 2011.

19

	Introduction
	Preliminaries
	Distinguishing between k-Juntas and Functions Far From Every (1+)k-Junta
	The Lower Bound
	The Algorithm

	Restricting the Problem to Classes of Functions
	Linear Functions
	Polynomials over GF(2)
	Monotone Functions

	Extending the results to general finite domains and ranges
	Preliminaries
	Extending Theorem ??
	Extending Theorems 1.2 and ??

