Algebraic	Geometry	for	Theoretical	Computer	Science
Assignment 2					
Lecturer: Gil Cohen			Hand in date: November 13, 2014		

Instructions: Please write your solutions in $E^{T}E^{X}$ / Word or exquisite handwriting. Submission can be done individually or in pairs.

1. In this exercise we consider a special and important class of codes known as *cyclic codes*. This will give us a good opportunity to practice some notions from algebra since, as we'll see, cyclic codes are related to ideals in a certain ring. A code $C \subseteq \mathbb{F}_q^n$ is said to be cyclic if whenever $(c_0, \ldots, c_{n-1}) \in C$, it also holds that $(c_{n-1}, c_0, \ldots, c_{n-2}) \in C$. Let $R_n = \mathbb{F}_q[x]/(x^n - 1)$. We think of elements of R_n as polynomials of degree at most n - 1, where multiplication is done as usual except that we identify x^n with 1.

For a code C we define

$$I_C = \{c_0 + c_1 x + \dots + c_{n-1} x^{n-1} \mid (c_0, c_1, \dots, c_{n-1}) \in C\}.$$

- (a) Prove that R_n is a ring.
- (b) Prove that if C is a cyclic code then I_C is an ideal of R_n .
- (c) Let I be an ideal of R_n and let $g(x) \in I$ be a monic polynomial of minimal degree deg g = d. Prove that g(x) is the unique monic polynomial in I with degree d.
- (d) Prove that I = (g(x)).
- (e) Prove that g(x) divides $x^n 1$ as an element of $\mathbb{F}_q[x]$.
- (f) Assume $I = I_C$ for some cyclic code C. Prove that $\dim(C) = n d$, where d is as defined above.
- (g) Find all cyclic codes of \mathbb{F}_2^7 with dimension 4. Hint:

$$x^{7} - 1 = (x + 1)(x^{3} + x + 1)(x^{3} + x^{2} + 1).$$

- 2. (a) Let F be a field. Let O ⊊ F be a ring that contains 1, with the following property: for any z ∈ F, at least one of z, z⁻¹ is contained in O. Let P = {z ∈ O | z⁻¹ ∉ O}. Prove that P is the unique maximal ideal of O. (A ring with a unique maximal ideal is called a *local ring*.)
 - (b) Let k be a field, and k(x) be the field of rational functions on x. For $\alpha \in k$, define the set

$$\mathcal{O}_{\alpha} = \left\{ \frac{f}{g} \mid f, g \in k[x] \text{ are relatively prime, and } g(\alpha) \neq 0 \right\} \subset k(x).$$

Prove that \mathcal{O}_{α} satisfies the condition from the previous item.

- (c) What is the unique maximal ideal associated with \mathcal{O}_{α} ? Denote this ideal by P_{α} .
- (d) To which field the quotient field $\mathcal{O}_{\alpha}/P_{\alpha}$ is isomorphic to? *Hint: consider* the mapping $\varphi : \mathcal{O}_{\alpha} \to k$, defined by $\varphi(z) = z(\alpha)$. That is, φ is the evaluation mapping at point α . Identify ker(φ), and apply the first homomorphism theorem.