Algebraic	Geometry	for	Theoretical	Computer	Science
Assignment 3					
Lecturer: Gil Cohen			Hand in date: November 20, 2014		

Instructions: Please write your solutions in LATEX / Word or exquisite handwriting. Submission can be done individually or in pairs.

1. In this exercise we will learn about two important functions – the *trace* and the *norm* of finite field extensions. Let L/K be a finite field extension, and let $\operatorname{Aut}(L/K)$ denote the Galois group of L/K. The trace function $\operatorname{Tr}_{L/K} \colon L \to K$ is defined by

$$\operatorname{Tr}_{L/K}(x) = \sum_{\sigma \in \operatorname{Aut}(L/K)} \sigma(x).$$

If K, L are clear from context, then we omit them from the subscript, and write Tr(x). In this course we care mainly about finite fields and finite field extensions.

(a) Let q be a prime power, and $n \ge 1$ an integer. Show that

$$\operatorname{Tr}_{\mathbb{F}_{q^n}/\mathbb{F}_q}(x) = \sum_{i=0}^{n-1} x^{q^i}$$

- (b) Prove that $\operatorname{Tr}_{\mathbb{F}_{q^n}/\mathbb{F}_q}$ is an \mathbb{F}_q -linear function. Namely, for all $x, y \in \mathbb{F}_{q^n}$ and $a \in \mathbb{F}_q$, it holds that $\operatorname{Tr}(x + ay) = \operatorname{Tr}(x) + a\operatorname{Tr}(y)$.
- (c) Prove that $\operatorname{Tr}_{\mathbb{F}_q^n/\mathbb{F}_q}$ has indeed range \mathbb{F}_q .
- (d) Consider the representation of \mathbb{F}_8 as $\mathbb{F}_2[\omega]/(\omega^3 + \omega + 1)$. What is $\operatorname{Tr}_{\mathbb{F}_8/\mathbb{F}_2}$?

The trace function got its name for the following reason. Fix $x \in \mathbb{F}_{q^n}$, and consider the function $m_x \colon \mathbb{F}_{q^n} \to \mathbb{F}_{q^n}$, defined by $m_x(y) = xy$. Note that m_x is a linear function. Therefore, it can also be represented as an $n \times n$ matrix M_x over \mathbb{F}_q , once a representation for \mathbb{F}_{q^n} has been fixed. As it turns out, regardless of the way we choose to represent \mathbb{F}_{q^n} , the "matrix-theory trace" of M_x (namely, sum of entries on the diagonal) is exactly $\operatorname{Tr}(x)$ as defined above.

- (e) Consider again \mathbb{F}_8 represented as $\mathbb{F}_2[\omega]/(\omega^3 + \omega + 1)$. What is the matrix that corresponds to multiplication by the element $x = a + b\omega + c\omega^2$, in terms of a, b and c? Verify that this matrix's trace is the same as the one you computed in the previous item.
- (f) We finish the discussion on the trace function with the following useful characetrization of the kernel of Tr. Show that $\operatorname{Tr}(x) = 0 \iff \exists y \in \mathbb{F}_{q^n}$ such that $x = y^q y$.

A second important function in our course will be the *norm* function, which we now define. Let L/K be a finite field extension. The norm function $N_{L/K}: L \to K$ is defined by

$$N_{L/K}(x) = \prod_{\sigma \in Aut(L/K)} \sigma(x) .$$

When $L = \mathbb{F}_{q^n}$ and $K = \mathbb{F}_q$, where q is a prime power, and $n \ge 1$ an integer, we have that

$$N_{\mathbb{F}_{q^n}/\mathbb{F}_q}(x) = \prod_{i=0}^{n-1} x^{q^i} = x^{1+q+q^2+q^3+\dots+q^{n-1}}.$$

It is worth mentioning that N(x) is the determinant of the matrix M_x defined above. We conclude this exercise with the following item, which will also be useful later in the course.

- (g) How many solutions does the equation $\operatorname{Tr}_{\mathbb{F}_{q^n}/\mathbb{F}_q}(x) = \operatorname{N}_{\mathbb{F}_{q^n}/\mathbb{F}_q}(y)$ have over \mathbb{F}_{q^n} ?
- 2. Let $f(x,y) = y^2 + y x^3 x 1$ be a polynomial over \mathbb{F}_2 , and let C_f be the affine plane curve associated with f.
 - (a) What is the homogenization F of f, and the projective closure $\widehat{C_f}$ of C_f ?
 - (b) Prove that $\widehat{C_f}$ is nonsingular.
 - (c) Find all points in \widehat{C}_f over \mathbb{F}_2 .
 - (d) Find all points in \widehat{C}_f over \mathbb{F}_4 .
 - (e) Find all points in \widehat{C}_f over \mathbb{F}_8 .