Algebraic	Geometry	for	Theoretical	Computer	Science
Assignment 4					
Lecturer: Gil Cohen		Hand in date: November 27, 2014			

Instructions: Please write your solutions in $E^{T}E^{X} / Word$ or exquisite handwriting. Submission can be done individually or in pairs.

- 1. Let C be the projective curve defined by the equation $Y^2Z + YZ^2 = X^3 + XZ^2 + Z^3$ over \mathbb{F}_2 . Note that this polynomial equation is the homogenization of the polynomial from problem 2 of the previous assignment. Feel free to use results you got there without reproving your claims.
 - (a) Find all places of degree 1, 2, 3 and 4 on C over \mathbb{F}_2 . You may use a computer to speed things up.
 - (b) Find the intersection divisors $C_{X=0} \cap C$, $C_{Y=0} \cap C$ and $C_{Z=0} \cap C$.
 - (c) Find div(1), div(X/Z), div(Y/Z), div (X^2/Z^2) and div (XY/Z^2) .
 - (d) Let P_{∞} be the point on C at infinity. Find a basis for the Riemann-Roch spaces $\mathcal{L}(P_{\infty})$, $\mathcal{L}(2P_{\infty})$ and $\mathcal{L}(3P_{\infty})$. You may use the fact that the genus of C is 1.
 - (e) Find a basis for the Riemann-Roch space $\mathcal{L}(rP_{\infty})$, for arbitrary nonnegative integer r.