Instructions: Please write your solutions in \LaTeX{} / Word or exquisite handwriting. Submission can be done individually or in pairs.

In this exercise we will study the field of constants, defined as follows.

Definition 1 Let F/K be a function field. The field of constants of F/K is defined by

\[\tilde{K} = \{ z \in F \mid z \text{ is algebraic over } K \} \]

Why care about the field of constants? The motivation for this definition is the following. It could be the case that in the field extension F/F_q, where F_q is the field of q elements, the elements of F_{q^2}, say, are contained in F. Thus, even though we “started” from F_q, we got the elements of F_{q^2} inside F.

1. Give an example of an algebraic function field F/F_2 such that $F_4 \subseteq F$.

Let F/K be a field extension. Recall that the extension is called finite if $[F : K] < \infty$. The extension F/K is called algebraic if any $x \in F$ is algebraic over K. That is, there exists a polynomial f with coefficients in K, such that $f(x) = 0$.

2. Prove that any finite extension is algebraic.

3. For an element $a \in F$, consider the field $K(a)$ obtained by adjoining a to K. Prove that $K(a)/K$ is a finite extension.

We are now ready to prove that \tilde{K} is a field. This is not obvious – if a, b are algebraic, namely, there exist f_a, f_b polynomials over K, such that $f_a(a) = f_b(b) = 0$, what should be the polynomial over K having root $a + b$?

4. Prove that \tilde{K} is a field. *Guidance: given $a, b \in \tilde{K}$, use the previous two items to show that $K(a, b)$ is an algebraic extension of K.*

Informally speaking, in the rest of the exercise you will be asked to show that K can be “replaced” by \tilde{K} in the results we have seen so far during the course. From here on, F/K is an algebraic function field, \mathcal{O} is a valuation ring of F/K, with the corresponding place P, and discrete valuation v.

5. Show that $\tilde{K} \subseteq \mathcal{O}$, and that $\tilde{K} \cap P = \{0\}$.

6. Let $x \in \tilde{K}$. Prove that $v(x) = 0$.

6-1
7. In class we showed that K is embedded in F_P, the residue class field of P. Extend this and show that \tilde{K} is embedded in F_P.

8. Why does \tilde{K} called the field of constants of F/K?