Algebraic	Geometry	for	Theoretical	Computer	Science
Assignment 7					
Lecturer: Gil Cohen			Hand in date: December 18, 2014		

- 1. Let \mathcal{O} be a valuating ring of the rational function field K(X)/K. Assume that $x \notin \mathcal{O}$. Show that in this case, $\mathcal{O} = \mathcal{O}_{\infty}$. This completes the proof done in class, and shows that we have accounted for all places of the rational function field.
- 2. Let A, A' be two divisors of F/K such that $A \sim A'$. Show that $\mathcal{L}(A)$ and $\mathcal{L}(A')$ are isomorphic as vector spaces over K.
- 3. Let F/K be a function field. Show that $\mathcal{L}(0) = K$.
- 4. Let A be a divisor of a function field. Show that if A < 0 then $\mathcal{L}(A) = \{0\}$.
- 5. Let A be a degree zero divisor of a function field. Prove that the following assertions are equivalent.
 - (a) A is principle.
 - (b) $\ell(A) \ge 1$.
 - (c) $\ell(A) = 1$.