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Abstract

Given a function f: {0,1,...,n} — C for some C C R, it is a well known
fact that there exists a unique interpolation polynomial h for f of degree at
most n. A natural question is the following: for a restricted C, how low can
the degree of an interpolation polynomial for a non-constant function of the
form f:{0,1,...,n} — C be? A first result for a question of that nature
appeared in [vzGR97] and handled the case C = {0,1}. In this thesis we
study two natural generalizations offered in [vzGR97]. The first concerns the
restriction C = {0, 1,..., ¢} for some ¢ € N. The second generalization deals
with the case C C Q. In both cases we give new lower bounds. We also
simplify and generalize the main result in [vzGR97].



Abbreviations and Notations

a=0b mod p.

the set of natural numbers.
the set of rational numbers.
the set of real numbers.

the representation of an integer a in base p.



Chapter 1

Introduction

1.1 Overview

Given a function f: {0,1,...,n} — C for some C C R, it is a well known
fact that there exists a unique interpolation polynomial h for f (that is
h(z) = f(z) for all x € {0,1,...,n}) of degree at most n. Indeed, this
polynomial can be derived from Lagrange’s formula

) =3 10 TL =2 -

k=0 =0
Jj#k

Due to this fact we can associate the degree of the unique interpolation
polynomial with the function. That is, we say that the degree of the function,
denoted by deg f, is the degree of the above mentioned polynomial.

The type of questions we are considering is the following: for a restricted
C, is there a low degree non-constant function of the form f: {0,1,...,n} —
C? Obviously, without restricting C the answer will be yes. A first result for
a question of that nature appeared in [vzZGR97]. The authors proved that
for any non-constant function of the form f: {0,1,...,n} — {0,1} it holds
that deg f > n — O(n%%2°). Tt is easy to see that this result, in fact, yields a
lower bound on the degree of every function of the form f: {0,1,...,n} —C
for every set C of size 2. Indeed, the degree of polynomials is invariant under
stretching and shifting (that is, deg h(x) = deg (a - h(x) +b) for a # 0,b €
R). Therefore this result tells us that in the interesting Boolean case, no
function of low degree exist.



In this work we study two natural generalizations offered in [vzGR97]

1. The case where C = {0, 1,...,c} for some ¢ € N.

2. The case where C C Q. That is, we no longer assume that the range is
in N. In this case we fix C and let n — oo. To put it in other words, we
look at families of functions (this is how we usually, implicitly, think of
functions in computer science).

On top of that, we further study the case where C = {0, 1}. We simplify the
proof of [v2ZGRI7] and generalize it.

1.1.1 Applications to Theoretical Computer Science

The motivation of the authors of [vzGR97| for studying lower bounds on the
degree of non-constant functions of the form f: {0,1,...,n} — {0,1} origi-
nated from theoretical computer science. A Boolean function on the Boolean
cube is a function of the form f: {0,1}" — {0,1}. A natural representation
of functions on the Boolean cube is as polynomials over various fields, in par-
ticular over the real numbers where this representation is also known as the
Fourier representation of the function. Understanding such representations
has been a major research goal in theoretical computer science for decades
(see e.g. [BAWO02, Ste03, Gop06]). Specifically, the question of better un-
derstanding the degree of the representing real polynomial received a lot of
attention [NS94, vzGR97]. Nisan and Szegedy proved that the degree of
the representing polynomial of any Boolean function, that depends on all n
inputs, is at least! log(n) — O(loglogn) (this bound is essentially tight as
the so called “address function” demonstrates) [NS94]. This result immedi-
ately raised the question of whether we can get stronger lower bounds on the
degree when the underlying function has additional properties.

A class of functions that was widely studied is the class of symmetric
Boolean functions. A symmetric function on the Boolean cube is a function
that only depends on the weight of its input (i.e. its number of non-zero en-
tries). Symmetric Boolean functions play an important role in many areas of
theoretical computer science. For example, they received a lot of attention in
learning theory (see e.g. [KOS04] and references within), circuit complexity

L All logarithms in this paper are base 2.



[HMP*93], cryptography [NRO4], quantum computation [Raz03], voting the-
ory and more. It is a well known fact that every such function f(zy,...,z,)
can be represented as a univariate polynomial in x = x; + ... 4+ x,, keeping
the degree intact. In other words, symmetric Boolean functions are in one

to one correspondence with functions of the form F': {0,1,...,n} — {0,1}.
Thus, for symmetric functions the question boils down to proving a lower
bound on the degree of non-constant polynomials on {0, 1,...,n} that take

two different values. Here enters [vzGRI7].
Our work sheds light into the case of symmetric functions on the Boolean
cube, having range that is not necessarily Boolean.

1.2 Previous Results

A lower bound for the degree of non-constant functions of the form
f:{0,1,...,n} — C appeared in [vzGR9I7]. The authors observed that

n+1
C]

This lower bound follows from an averaging principle: such function must
assume one of its |C| values on at least (n+1)/|C| points, while a polynomial
of degree d cannot obtain the same value on more than d points. Especially,
for C ={0,1,...,c} we have that

deg f >

n-+1
c+1°

deg f >

We also note that in this case the question is only interesting for ¢ < n, since
already for ¢ = n the function f(k) =k for k =0,1,...,n has degree 1.

1.3 Original Results in the Thesis

We prove three results in this Thesis. The first result gives a much stronger
lower bound, than what was previously known, on the degree of non-constant
functions of the form f: {0,1,...,n} — {0,1,..., ¢} for ¢ < n (as mentioned
above, the case were ¢ > n is trivial).



Theorem 1 (Main Theorem 1) Let f be a non-constant function of the
form f:{0,1,...,n} = {0,1,...,n—1}. Then

9
> _ 0525)
deg f > —22n O(n"°=)

We note that although the theorem is stated for ¢ = n — 1, it holds,
from monotonicity, for every ¢ < n. Combining Theorem 1 and the simple
observation that for ¢ = n a function of degree 1 exists, we conclude an
interesting threshold behavior at ¢ = n.

The second main theorem addresses the second generalization. The fol-
lowing theorem gives a lower bound for functions with range that is not in

N.

Theorem 2 (Main Theorem 2) Let C C Q be a finite set.
Let f,:{0,1,...,n} — C be a family of non-constant functions. Then for
every n

2
deg f,, > 3" O(n%>%) .

The third main result is a generalization of the main result of [vzGR97].
In order to describe it we explain the proof technique used in that paper. As
mentioned, the main result in [v2ZGR97] is that deg(f) > n—O0(n%5%%) for any
non-constant function of the form f: {0,1,...,n} — {0,1}. The idea behind
their proof was to first show that when n = p—1, where p is prime, the degree
of any non-constant symmetric Boolean function is exactly n. Applying
a theorem on the gap between consecutive prime numbers it immediately
follows that the degree of non-constant symmetric Boolean function, on n
variables, is n — O(n%52%). In view of this result it is natural to ask what can
be said for n of the form n = p™ — 1. We prove the following theorem, which
extends the main result of [vzGR97| (achieved by taking m = 1).

Theorem 3 (Main Theorem 3) Let n = p™ — 1 for a prime p. Let f be
a non-constant symmetric Boolean function on n variables. Then

deg f > p™ —p" P >n—nl"m .

Note that the above theorem slightly improves the result of [vzGR97]
for n’s of the form n = p? — 1 as it gives a lower bound of n — \/n on the
degree rather than n — O(n%*?°). In addition, and for completeness, we give
an alternative simple proof of the fact that non-constant symmetric Boolean
functions on n = p — 1 variables have degree n.

6



1.4 Structure of the Thesis

In chapter 2 we introduce some mathematical tools we shall use in the proofs.
To all but one result we give a full proof (the one theorem we give no proof
for is a very deep result from number theory). In chapter 3 we prove all the
new results that we obtained.



Chapter 2

Mathematical Tools

In this chapter we introduce mathematical tools we will need for proving our
results. The tools being used are mainly from the realm of Number Theory.

2.1 Integer Valued Polynomials

Definition 1 For every k € N we define the polynomial (z) as follows

(i) :m(fv—l)-..l.ﬁ;(a:—k%—l)

It is easy to see that {(i) }4_, forms a basis for polynomials with degree at
most d.

Theorem 4 Let h be a polynomial of degree d assuming integer values at
x=0,1,...,d. Then one can write

h(z) = kiock (i)

where the ¢ ’s are integers.

Proof. As mentioned, the polynomials (7), (5),..., (3) form a basis to

the space of polynomials of degree not greater than d. Therefore, there exist
Co,C1, - - -, Cq € R such that

h(z) = kzi:ck (i) .

0
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We now show all ¢;’s are in fact integers. We use an induction on d. For
d = 0 we have h(z) = ¢o. Since h(0) is an integer we have that ¢y is an
integer. Assume the correctness of the statement for all polynomials with
degree up to d — 1. Let h(x) be a polynomial of degree d that obtains integer
values at x = 0,1,...,d. Define g(z) = h(x + 1) — h(z) and notice that g

takes integer values on x = 0,1,...,d — 1. Now,
d r+1 x d x = x
=20 (") = (1) =25 0) -2 e):
k=0 k=1 k=0
From the induction hypothesis we now get that ¢y, co, ..., cq are all integers.
As ¢g = h(0) the claim follows. =
As an interesting corollary we get that a function f: {0,1,...,n} — C of

degree d, assuming integer values at x = 0, 1, ... d, assumes integer values on
all of N.

We should say a word on why integer coefficients are so important for us.
In our proofs we would like to look at the behavior of a polynomial modulo
prime numbers. We have already established that a polynomial as above
assume only integer values over N so this idea make sense. However, if the
coefficients are indeed integers, then we can simplify the analysis by looking
at every coefficient modulo the prime number. This idea will prove itself
useful in many of the proofs to come.

2.2 Lucas Theorem

In the previous section we established that we might benefit by examining
polynomials of the form (i) Especially when assigning an integer value to
x. We also hinted that in the proofs to come we would look at such assign-
ments modulo prime numbers. Therefore we are interested in understanding
how does a binomial coefficient looks like modulo a prime number. In 1878

Edouard Lucas gave an answer for this question.

Theorem 5 (Lucas’ theorem) Let a,b € N\ {0} and let p be a prime
number. Denote with

a:a0+a1p+azp2+---+akpk

b= by +bip+ bop® + - + byp”

9



their base p representations. Then
a b (a;
() =110)
i=0 N

Many proofs for Lucas’ Theorem are known. We present a proof that is
most related to the spirit of this thesis.

where (Zj) =0 if a; < b;.

Proof. i
(14+2)*=(1+z)=i- i aip’ H (1+2) aip’ (2.1)

=

It is easy to prove (by induction on ¢ > 0) that
(1+ z)" =, (1+ )

Therefore, from equation (2.1)

k v k kooa
(1+x)° H1+x it EPH1+x”L al:H (az>x”’.
1=0

i= =0 j=

The coefficient of 2? on the LHS is (Z) Since there is a unique way to
represent b in base p, it follows that the coefficient of 2’ on the RHS is

Hf 0 (b ) Hence the result follows. m

2.3 Gap Between Consecutive Primes

Prime numbers proved to be beautiful, enigmatic and useful for thousands
of years. Many surprising results on prime numbers were discovered and
countless many applications for them have been found. One central question
concerns the distribution of prime numbers. Perhaps the earliest result on
this question is due to Euclid who proved that there exist infinitely many
primes. A more daring conjecture was taken by Joseph Bertrand in 1845.
Bertrand’s postulated that for an integer n > 3, there always exists a prime
number p such that n < p < 2n. In 1850 Chebyshev proved Bertrand’s
postulate and in 1932 Erdos gave a simpler proof for it. Interestingly, Erdos

10



used binomial coefficients in his proof. A deeper result regarding the distri-
bution of prime numbers is the Prime Number Theorem. This famous and
deep theorem describes the asymptotic distribution of the prime numbers.

Theorem 6 Let w(n) be the number of positive prime numbers not larger
than n. Then n
e (—) .
W(n) Inn

The Prime Number Theorem was proved independently by Hadamard
and de la Vallee Poussin in 1986. Perhaps surprisingly, both proofs used
methods from complex analysis. That is, to better understand prime num-
bers, mathematicians had to study the complex plane.

Although Theorem 6 is of great depth, it says nothing about the maximal
gap between two consecutive prime numbers as n grows. This kind of result
is what we shall need in this work. Specifically, we will use the following
theorem of Baker, Harman and Pintz from 2001.

Theorem 7 For any n € N there exists a prime number p such that

n—0mn"®) <p<n

11



Chapter 3

Proofs of original Thesis’
results

3.1 Periodicity and Degree

A common theme that appears in our proofs for lower bounding the degree
of a function is to examine the periodicity structure of it.

3.1.1 Low Degree Implies Strong Periodical Structure

We next prove that a low degree function must have, in some sense, strong
periodical structure.

Lemma 1 Let f: {0,1,...,n} — C be a function with deg f = d. Let d <
p < n be a prime number. Then for all 0 < j < min(p — 1,n — p) it holds
that

flo+3)=p 10) -

Proof. Let h¢(z) = ZZ:O cx(7) be the interpolation polynomial of f. By
Theorem 4 all ¢;’s are integers. Substituting p + j for x we get

hf(p+j):zdjck(pzj>- (3.1)

k=0

Applying Lucas’ theorem (Theorem 5) while remembering that j, k < p we

TG00 e

12



Combining (3.1), (3.2) and the assumption that p 4+ j < n we obtain

Fo+9) = hslp+ ) = jck(pﬂ)zpick(')_h” )

|

The lower the degree of f is, the larger the number of prime numbers in
the interval [deg f,n] is. Since for each such prime number Lemma 1 reveals
one more layer of periodical structure in f, we can see why Lemma 1 is a
formalization of the idea mentioned above - the lower the degree of a function
is, the stronger its periodical structure is.

3.1.2 Strong Periodical Structure Implies High Degree

Definition 2 Given a function f: {0,1,...,n} — C and T, A € N such that
T > 1 we define

PR(f)={0<k<n-T: f(k)+A=fk+T)}.

To get intuition for the meaning of this definition consider the case A = 0.
A periodical function with period T is a function f having the following
property: for every 0 < k < n — T it holds that f(k) = f(k +T). Given
a function f (not necessarily a periodical function), we can think of every k
such that f(k) = f(k+1T) as a test whereby the function succeeded proving
it has a period T. Therefore P2(f) is the set of successful tests, and hence
the size of this set measures how close f is to a function with period 7T'. For
general A the intuition is basically the same, though we relax the traditional
periodicity definition. With this definition in mind we are ready to prove
that a function having a strong periodical structure in this sense, has a high
degree.

Lemma 2 Let f: {0,1,...,n} — C, then for all T,A € N such that T > 1
it holds that

1. If A =0 then deg f > ‘Pﬁ(f)‘ or deg f = 0.

2. If A #0 then deg f > ‘PTA(f)‘ ordeg f < 1.

13



Proof. Denote d = deg f and assume that d < |P{(f)|. Let

(@) Ehy(z +T) = A

We notice that degg = degh; = d. In addition, for all k& € P2(f) it holds
that
glk) =hs(k+T) = A= f(k+T) = A= f(k) = hy(k) .

Therefore g and hy agree on |PTA( f)‘ points. Since these two polynomials
have degree d < |Pf(f)[, it must hold that g = hy. Denote

d
hy(z) = Zakxk :
k=0

Since deg f = d we have that ay # 0. Now,

; a k (k>ijk_j Ed:xm Ed: (k)a, Th—m
= k . = k :
=0 g0 \J m
(3.3)
Thus, the coefficients of the LHS equal the coefficients of the RHS. Assume
now that A = 0. In this case our initial assumption that d < ‘Pﬁ‘ implies

d = 0. Indeed, Equation (3.3) implies that for 0 < m < d

Ay, = zd: (k)akam
" m

k=m

and so for 0 < m < d we have

d
k
> (5 ) —o.
m
k=m+1
Assume for a contradiction that d > 1. Then for m = d — 1 (which is

non-negative) we get
d
T=0.
<d _ 1) aq 0

14



Since T'> 1 and d > 1 it follows that ay = 0, which is a contradiction.
As for the second part of the theorem, assume that A # 0. In this case
we want to prove that deg f < 1. As in the case of A = 0 we have that for

1<m<d
k
"= Tk—m
a Z(m)&k

k=m
(for m = 0 this equality doesn’t hold since the shift by A affects the free
term, as can be seen in Equation (3.3)). As before, we reach a contradiction
by considering m = d — 1 (again we derive that a; = 0). We can do so as
long as 1 < d — 1, that is, as long as d > 1. Therefore our assumption leads
to a contradiction unless d < 1, and so we are done. m

3.2 Proof of Main Theorem 1

3.2.1 The function D.(n)

Definition 3 Let ¢ € N. We call a non-constant function of the form
f:{0,1,....,n} — {0,1,...,¢c} an (n,c)-function. We denote by F.(n) the
set of all (n, c)-functions.

As we prove a linear lower bound on the degree, it is natural to consider
the following definition.

Definition 4 We denote the relative degree of (n, ¢)-functions by

1
D.(n) = — min deg f .
(n) o poim eg f

It is easy to see that D.(n) is non-increasing with respect to ¢. On the
other hand, for a fixed ¢, D.(n) has quite a chaotic behavior in n and is
certainly not monotone. For example, it can be shown that D;(n) < 1 for
odd n greater than 1, while it was proved in [vzGR97| that D;(p — 1) =1
for all primes p.

Using this definition we can restate our question in terms of proving
lower bounds on D.(n) for any 1 < ¢ < n. [vaGR97] proved that D;(n) = 1—
O(n=947) = 1—0(1) and that the trivial lower bound for general c is D.(n) >

chr_r Using the same language, our main result shows that D,,_;(n) > % —

o(1).

15



3.2.2 Proof Strategy

The proof goes in two steps. In the first step we make a reduction from (n, n—
1)-functions to (m, 4)-functions for some m, namely we make a reduction to
¢ = 4. This certainly seems like an easier problem to tackle, as ¢ is now
constant. In the second step we further reduce the problem by reducing n.
That is, we show that a lower bound on D.(m) implies a lower bound for
D.(n) under some conditions on n > m and c. Although we will apply only
the case where ¢ = 4, we will give a theorem for general ¢, that sheds light
on the behavior of D.(n) and is therefore interesting in its own right.

3.2.3 Reduction to c =14

In this section we prove the following lemma, which formalizes the first step
of our proof strategy.

Lemma 3 (Reduction to ¢ =4) For any n there exists a prime p such
that n — O(n%5%) < 2p < n and

D,—1(n) > %D4(p —1)—o(1).

Proof. Let f € F,_1 (n) be a function with minimal degree n - D,,_1(n).
Let p be a prime such that

n- 10.525 n
oy <p<

as guaranteed by Theorem 7. Clearly
n—0m") <2p<n.

Let f be the restriction of f to the domain {0,1,...,2p — 1}. Note that
deg f > deg f. If deg f > p then

7%Dwﬂm=d%f2d%f2p>g—dw

and we are done. We can therefore assume that deg f <p.
Define g: {0,1,...,p — 1} — R as follows

MM:2+f@+@—f%X
P
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It is easy to see that degg < deg f. To better understand g, note that
Lemma 1 implies that for any 0 < k < p — 1 it holds that

fo+k) =, f(k) .

For large enough n, we have that for all 0 < j7 <2p—1

< f(j) <n<3p,

therefore . )

Consequently, ¢ maps {0,1,...,p — 1} to {0,1,2,3,4}. In other words, g is
a (p — 1,4)-function. If ¢ is not a constant then

wDWﬂm=ﬂkgf2¢%f2d%gz(p4JDAP4)>(g—omﬁihw—D~

Dividing both sides by n we conclude the proof.
We now deal with the case that ¢ is a constant function, say the constant
G. Thus, for all 0 < k£ < p — 1 we have that

flo+k)=f(k)+(G—2)p

and therefore, recalling Definition 2

|BE2P ()] >

By Lemma 2, either

deg f > |PL22(f)| > p> = —o(n),

NIB

which concludes the proof, or f is a linear function. Assume the latter occurs
and repeat the above proof for the function f# € F,_; (n) defined as

PR = fn— k).

If by applying the proof on ff we get that

dog /"> LDu(p— 1) ~ o(1)

17



then, since deg f = deg ff, we are done. Otherwise we again get that f~R
is a linear function. Combining the facts that f and fE are both linear
functions we see that f behaves like a linear function on the first and the
last 2p points. Since n < 2p +o(n), f must itself be a linear function, as the
two linear functions f and f~R agree on more than two points. Since f is not
constant, this means that f assumes n + 1 different values on {0,1,...,n},
contradicting the fact that f € F,_1(n). =

We would like to point out that for the case n = 2p — 1, for a prime p,
we can do slightly better. In such a case ¢ is actually a (p — 1,2) function
rather than a (p—1,4) function, as the difference f(k+p)— f(k) is contained
in {—p,0,p}. In this thesis we prove better lower bounds on Dsy(n) than on
Dy4(n), which in turn implies improved lower bound on D,,_;(n) in the case
of n =2p — 1. A corollary of Theorem 3 is the following

Corollary 1 Fore every n

Dy 1(n) > % —ol) .

Proof. As observed earlier, we have that Dy(p) > 1/5. Plugging this
into Lemma 3 we get that

~o(1) = 7 —o(1) .

D, 1(n) > %134(10) —o(1) > é

DO | —

|
Corollary 1 already gives us the desired threshold behavior at ¢ = n. The
next step will be to improve this lower bound.

3.2.4 Reducing n
In this subsection we shall prove the following lemma.

Lemma 4 (Reducing n) Let c,m,n € N\ {0} be such that n > 2™ (m +
1)c. Then, for large enough n

D.(n) >




Although we’ve mentioned that D.(n) is not monotone in n, Lemma 4
shows that some relaxed property of monotonicity does hold - given a large
m, for large enough n’s we almost have that D.(n) > D.(m). In order to
prove Lemma 4, it is more convenient to talk about the gap of functions.

Definition 5 Given f € F.(n), define

Y(f) Fn—degf .
We call v(f) the gap of f.

Definition 6 Define

def
T.(n) = .
(n) max v(f)

We call T'.(n) the gap of (n,c)-functions.

It is easy to verify the following relation between the relative degree and

the gap of functions:
I.(n) =n(1l —"D.(n)) .

Proving Lemma 4 will require some tools. The following theorem from
[vzGR97] gives an equivalent condition for a function to have a gap at least .
We give the relevant part of the theorem with some adaptation in notations.

Theorem 8 (Theorem 2.2 from [vzGR97]) Given f € F.(n) and 0 <
r<mn,y(f)>riff for alln —r < s < n it holds that

ki()(—l) ()7 =o0.

To prove Lemma 4 we will also need to know, given f € F,(n), the value
of hy(n +t) for t € N, where h; is the interpolation polynomial for f. For
this we have the following lemma.

Lemma 5 For any function f € F.(n) and for any t € N — {0}

)= S 0 () (T .

k=0

19



Proof. Lagrange interpolation formula implies that

n

h(a) =Y ) [T

j=0
J#k

J
J

Substituting n + t for x we get

tn4t—j L (=1)k n+t)!
hf(””)zz( k—jj>f(k):kz_ok<!(n)—k:)!(t—l()!(nJr)t—k)f(k)

" p (m+t) (n+t—k—-1)!
= (=173 (=) k!(r(L+tzk)!<(n—k)!(t—1))!f(k)

= o e () (T .

|
The following lemma is useful for the proof of Lemma 4.

Lemma 6 For all n,m,c € N we have that
Fe(n+m) <T.(n)+m.
Proof. Let f € F.(n +m) be a function of minimal degree. That is
degf=n+m—T.(n+m).

Assume for a contradiction that degf < n —I'.(n). Let g € F.(n) be
the restriction of f to {0,1,...,n}. By our assumption deg f < n and
so by the uniqueness of the representing polynomial, deg f = degg. As
f is non-constant we get ¢ is non-constant (otherwise, if f is constant on
{0,1,...,n} then it must have degree at least n). Hence, degg > n —1I'.(n).
This contradicts the assumption that deg g = deg f < n — I'.(n). Therefore
deg f > n—T.(n) and we are done. m

It easily follows from the relation between D (n) and I'.(n) that Lemma 4
is equivalent to the following lemma.

Lemma 7 Let ¢c,m,n € N\ {0} be such that n > 2™ (m + 1)c. Then, for

large enough n
Fe(m) +1
r < | —4— :
e(n) < ( 1 )n+0(n)
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We shall therefore focus on proving Lemma 7. The heart of the proof is
the following lemma.

Lemma 8 For all c,m,p € N — {0} such that p is a prime and 2™c < p, it
holds that

L ((m+1Dp—1) <p(Le(m)+1) .

Proof. If this inequality does not hold then there is a function f €
F.((m+1)p — 1) such that deg f < (m — v)p, where v & T, (m). Hence the
value of f on the points {0,1,...,(m —v)p — 1} completely determines h;.
For every 0 < j < p — 1 define the function f; € F. (m) as follows: for every

0<i1<m
.\ def

fi(@) = f-p+7).

The strategy of the proof is to show that under the contradiction assump-
tion, all f;’s are constants and therefore f is periodical with period p. At
that point, applying Lemma 3.2 (with A = 0) will yield a contradiction.

For every 0 < r < v and for every 0 < j < p — 1, the value of h((m —
7)p+j) is determined by the value of f on the points {0,1,..., (m—r)p—1}.1
Therefore we can apply Lemma 5 with n = (m—r)p—1and t = j + 1 to get

hy((m —7r)p+j) =

(—1)m-rp=1 (m_zr)f_l (—1)* ((m - 7/;)1? + j) ((m —7)p - k— 1) )

k=0 J

Since 0 < 7 < p — 1 we have

(m—rp+j={(m—r jp.

Observe that k < p? and so k = (k1 ko ),. Thus, in order for k to contribute
to the sum modulo p, it must hold that ky < j. Assume that ky < j, that is
j —ko—12>0. Note that

(m—rp+j—k—1=(m—r—k j—ko—1),.

! Actually, as stated above, h¢((m —r)p+ j) is determined by the first (m —v)p points
from this set, but for the sake of the analysis, it is more convenient to see the affect of all
of those points on h¢((m —r)p + 7).
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Consequently, for £ to contribute to the sum modulo p, we must have j —
ko—1 > j. Hence ky < —1, which is impossible. Thus, all k£’s that contribute
to the sum modulo p satisfy kg = 7. With this in mind we can simplify the
sum over [F),

hy((m —r)p+J) = (3.4)

k1=0

By Lucas’ Theorem
((m—r)p—i—j) _ (m—r>
kip+j P\ k
((m—r—k,’l)p—1>: (p—l)
j = .

7! (p;1> =@p-D@-2)...-(p—J) = (=1) - j!

and since j! # 0 it follows that

()=

With this we can simplify equation (3.4) a little further

and

Now

byl =rp+9) =, (-1 Y () ).

k1=0

Since h¢((m —r)p+j) = f((m —r)p+j) we have that forall 0 < j <p—1
and all 0 <r <~

§f<—w“(mé">fxm>zp0-

The LHS is strictly smaller than 2™c and since we assume that 2™c < p, it
must hold that

m—r

0t (M) s o

k1=0
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Applying Theorem 8 we get that for every 0 < 7 <p—1, v(f;) > v =TI, (m).
Hence all f;’s must be constant functions. This implies that f is a periodical
function with period p. That is }PS( f)‘ = mp. By Lemma 3.2 we get that
deg f > mp. Recalling the assumption deg f < (m — 7)p, we contradict the
assumption that v > 0. m

We are now ready to prove Lemma 7.

Proof of Lemma 7. Given n and m, we can apply Theorem 7 to assure
the existence of a prime number p such that

0.525
" _ol("_ <p<L
m+1 m+1 - m+1"

Since m = o(n), n —o(n) < (m+ 1)p — 1 < n. By Lemma 6

I‘C(n)§Fc((m—l—l)p—1)+n—((m—|—1)p—1)§I‘C((m+1)p—1)+0<(n)).
3.5

We now apply Lemma 8 (noticing that p > 2™¢, for large enough n)

. ((m+1)p—1) <p(Fc(m)+1)=<m+1)p(%) <

n () (3.6)

Inequalities (3.5) and (3.6) together imply that

I.(m)+1
m+1

L. (n) < ( >n+0(n),

as desired. m

3.2.5 Concluding the proof of Theorem 1

All there is left to do is to conclude the main theorem. We will base the
proof on Lemma 3, Lemma 4 and on a computer search.

Proof of Theorem 1. A computer search found that Dy(21) = 6/7.
The program we wrote computed the degree of all functions of the form
f:40,1,...,21} — {0,1,2,3,4}. In fact, we used some optimizations in
order to speed up the search. By Lemma 4

21 6 9
21 +

D4 (’I’L) Z

—
EN



Lemma 3 now gives

Dna(n) = 5 - Dalp) —o(1) =

DO | —

[ |

In subsection 3.2.3 we hinted that we can obtain a better lower bound on
Dy (n) than that we proved for Dy(n). Following the last step of the proof of
Theorem 1 and the fact that D5(35) = 8/9 (again, obtained using a computer
search) we get that Dy(n) > 8/9 — o(1).

3.3 Proof of Main Theorem 2

In this section we prove Theorem 2. In order to do so we shall prove the
following lemma, which gives better lower bound than Theorem 1 for ¢’s
that are not too large.

Lemma 9 If ¢ < 2n — Q (n"®) then
2
D.(n) > 3 o(1) .

Proof. By Theorem 7 there exist primes p and ¢ such that

2 2
“n—0n")<g<p<in.

3 3
It suffices to prove that deg f > ¢. Assume for contradiction that deg f < ¢.

Lemma 3.1 implies that, for 0 < j < n — ¢, it holds that

fla+7) =, f() -

Since ¢ < 2n—Q(n and so ¢ < q) equality must hold. Namely, f(¢+j) =
f(j) for 0 < j <n—q. Applying the same arguments for p instead of ¢, we
also get that f(p+j) = f(j) for 0 < j <n—p. Set T'=p —q. From the
discussion above, for all 0 < j < n — p it holds that

fG)=fp+i)=fla+p—q) +j)=flg+(T+j)=f(T+j).

0.525) (

Therefore
{0,1,...,n —p} QPQQ(f).
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Asn—p<n—qgwegetthatfor0<j<n—-—p<n-—g,
FT+5)=10)=Ffla+7).
Hence, we also have that
{¢+0,g+1,....q+n—p} C Pp(f).

As n — p < q these two intervals do not intersect and so we have that

|P2(f)| > 2(n—p) > gn

By Lemma 3.2, deg f > %n, contradicting our assumption that

2
degf<q<§n.

With Lemma 9 we are ready to prove Theorem 2.

Proof of Theorem 2. Firstly note that we can assume that C contains
only non-negative elements, possibly by shifting all elements of C by some
A. Indeed, for any non-constant polynomial

deg(h(z)) = deg (A + h(x)) .

Let us denote

aq ag
C={—,...,—
{b17 Y bk} )
where &k = |C| and all elements in C are non-negative. Define | =

lem (by,...,b,) and m = max(z: z € C). Finally, set ¢ = [ - m. Let f
be defined as follows: f(k) =1- f(k) for all 0 < k < n. Clearly, f € F,(n)
and deg f = deg f. Furthermore, since f is non-constant so is f. As [,m are
constants so is ¢ and thus, by applying Lemma 9, we get that

o2
deg f = deg f =2 gn—o(n),

as desired.
]
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In fact one can deduce lower bounds on the degree of functions whose
image may depend on n. For example, consider any family of non-constant
functions of the form

f:{0,1,...,n} — {271,272 273 271

where m < logn. In this case we can define the function fas f(k) =2mf(k).
Clearly f € F.(n) for

1 2
c=2""1< gt <3n-— Q(n%%)

and so applying Lemma 9 we again obtain that

.9
degf:degfzgn—o(l).

3.4 Proof of Main Theorem 3

In this section we prove a Theorem 3.

Proof of Theorem 3. Let f € F; (p™ — 1). Assume for contradiction
that deg f < p™ — p™~'. Then h; is determined by the value of f on the
points {0,1,...,p™ —p™~ ! —1}. Applying Lemma 5 with n = p™ —p™~! —1
andt =4+ 1, for 0 < j < p™ !, we obtain

hy(p™ —p" 4 j) =

pm_pm—l_l

m m—1 : m m—1 :
m_pml_ pr =P g\ (P ="+ k=1
D ST (A . JCE
k=0 J
Set k' = k mod p™!, that is
/C/ = k‘o + k‘1p +---+ k,m72pm—2 .

Since k < p™ we can write k = k' 4+ kyp_ip™ !t for 0 < kyppy < p—1. As
O S,] < pm—l

Pr=p" T i =(p—=1 Jma .. Jo)p

and so in order for k£ to contribute to the sum modulo p, it must be that
k' < j. Assume that k is such that k&’ < j. Looking at the other binomial
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coefficient, for such a k to contribute to the sum modulo p, it must be that
j — k' — 1 > j which is impossible. Hence the only k’s that contribute to
the sum, modulo p, are those obeying k' = j. With this observation, we can
simplify the above sum over [,

—he(p" ="+ ) =,
2

(= 1)+ (pm —p" J) (pm — (km—1 + Dp™t — 1)_
Kmoap™t +j J

fkmap™ ™ 4 7)

From Lucas’ theorem

m m—1 .
pr=p"T+ p—1 k
= =, (—1)"m1 .
(km—lpml +,]) P (km—l) 14 ( ) (3 8)

(pm _ (km—l + l)pmfl _ 1) _ (pml _ 1)
j -\ )

This binomial coefficient is actually quite simple modulo p

(pml - 1) _ ’fj (p - 1) = T v =, T -0 — -1y

and

J Ji

7 1=0 =0
and so )
p" = (ko1 +1)pm =1 ,
( (k- , ) ) =, (—1) . (3.9)
J
Substituting (3.8) and (3.9) into (3.7) simplifies the expression a little further
p—2
—hs (" =P 4 5) = f(kmap™ " +5) -
km—1=0

> flhmap™ " +7) =,0. (3.10)



Since f is a Boolean function, in order to satisfy Equation (3.10), it must be
that for every 0 < j < p™~!

fG) =@+ =f@" + ) == flp— " + )
Therefore, f is periodical with period p™~! which yields that
|PA(f)| = pm —pm
Lemma 2 now implies that

dengpm—pmflzn—nI*#.

3.5 Simplified Alternative Proof for the main
result of [vzGR97]

In this section we give a simpler alternative proof for the main result of

[vzGRIT].
Claim 1 For any prime p it holds that D;(p — 1) = 1.

Alternative proof for Di(p — 1) = 1. Let f € Fi(n) for n = p — 1.
Obviously, the following polynomial represents f over F,

h(z) = Z (1—(z—kP").

ke f(k)=1

The coefficient of 277! is the weight of f (i.e the number of 1’s f assumes),
and since f is not constant this number is not divisible by p. Therefore
degh = p—1. Consider now hy, the polynomial representing f over R. From
Lagrange interpolation formula we have

= 2 Hx_]

k: f(k)=1 j=0
f()J;’é
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Note that none of the denominators of the multiplicands in the above ex-
pression is a multiple of p and so we may view h; as a polynomial over F,.
Formally, we define

W@ = Y T[e—ik—i) "

k: f(k)=1 j=0
f(k) ]J.#k

It is clear that
deg h?) < deg(hy) <p—1 (3.11)

and so h;p ) is an interpolating polynomial of degree at most p — 1 of f over
IF,. Hence by the uniqueness of the interpolating polynomial h;p ) = h and in
particular deg hgcp) =p— 1. Looking at (3.11) we get deghy =p—1. =
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Chapter 4

Open Problems and Future
Directions

In this thesis we studied the degree of functions of the form f: {0,1,...,n} —
C for two specific types of restrictions on C. Specifically, for C = {0,1,...,c}
we proved a threshold behavior at ¢ = n. In particular, we proved that
whenever ¢ < n, a non-constant function of the form f: {0,1,...,n} —
{0,1,...,c} has a degree which is linear in n. We would like to gain better
understanding on the behavior of the degree of such functions in terms of n
and c. That is, to understand the function D.(n).

Open Problem 1: What is the asymptotical behavior of D.(n) in terms of
n and c?

For the specific case ¢ = n — 1, using our techniques (specifically Lemma 3),
one cannot prove a lower bound that is better than 1/2 — o(1) on D,,_1(n).
Moreover, if Dy(n) = 1—o0(1) then, from Lemma 3, we obtain that D,,_(n) =
1/2 — o(1). On the other hand, looking at some small values of n, using a
computer program, we found that for those values D,,_1(n) ~ 1/2.

Open Problem 2: Does D,,_1(n) ~ 1/27

For the specific case ¢ = 1, the following conjecture from [vzGRI7] is still
open

Open Problem 3: Does I';(n) = O(1)7
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A natural generalization is the following:

Open Problem 4: Consider a non-constant function of the form f: {0,1,...,n}" —
{0,1,...,c}. What can be said about the degree of functions of this form?
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