Q-type Lie superalgebras

Maria Gorelik and Dimitar Grantcharov

Abstract The purpose of this paper is to collect some recent results on the represen-
tation theory of Lie superalgebras of type Q. Results on the centres, simple weight
modules and crystal bases of these superalgebras are included.

1 Introduction

This paper is devoted to the Lie superalgebras of type O, also known as queer or
strange Lie superalgebras. These Lie superalgebras, introduced by V. Kac in [13],
have attracted considerable attention of both mathematicians and physicists in the
last 40 years. They are especially interesting due to their resemblance to the gen-
eral linear Lie algebras gl,, on the one hand, and because of the unique properties of
their structure and representations on the other. By the term “Q-type superalgebras”
we mean four series of Lie superalgebras: ¢(n) (n > 2) and its subquotients sq(n),
pq(n), psq(n) (the last one is a simple Lie superalgebra for n > 3, and in the notation
of [13]itis Q(n)).

The Q-type Lie superalgebras are rather special in several aspects: their Cartan
subalgebras h are not abelian and have non-trivial odd part b1; they possess a non-
degenerate invariant bilinear form which is odd; and they do not have quadratic
Casimir elements. Because h # 0, the study of highest weight modules of the Q-
type Lie superalgebras requires nonstandard technique, including Clifford algebra
methods. The latter are necessary due to the fact that the highest weight space of
an irreducible highest weight module L(A) has a Clifford module structure. This
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peculiarity leads to the existence of two different candidates for a role of Verma
module of the highest weight A € h3: a module M(A) which is induced from a sim-
ple hz-module C; and a module N(A) which is induced from a simple h-module.
The character of M(A) nicely depends on A, and following the kind suggestion of
J. Bernstein, we call M(A) a Verma module and N(A) a Weyl module. Each Verma
module M (A ) has a finite filtration with the factors isomorphic to N(4) up to a parity
change; each Weyl module N(A) has a unique simple quotient, which we denote by
L(A). The simple highest weight gl,-module of highest weight A will be denoted
by L(A).

Note that from categorical point of view it is more natural to call N(A) Verma
modules since they are proper standard modules whereas M(A) are standard mod-
ules, see [2].

The representation theory of finite dimensional L(1) is well developed. In [24]
A. Sergeev established several important results, including a character formula of
L(A) for the so called tensor modules, i.e. submodules of tensor powers (C"")*" of
the natural g(n)-module C"1". The characters of all simple finite-dimensional g(n)-
modules have been found by 1. Penkov and V. Serganova in 1996 (see [21] and [22])
via an algorithm using a supergeometric version of the Borel-Weil-Bott Theorem.
This result was reproved by J. Brundan, [1] using a different approach. Very recently,
using Brundan’s idea and weight diagrams a character formula and a dimension for-
mula for a finite dimensional L(4) were provided by Y. Su and R.B. Zhang in [28].
On the other hand the character formula problem for infinite dimensional L(A) re-
mains largely open, see the conjecture in [1].

The centres of the universal enveloping algebras of the Q-type Lie supealgebras
were described by Sergeev and the first author in [5,26]. An equivalence of cate-
gories of strongly typical q(n)-modules and categories of gl,-modules were estab-
lished recently in [3].

The simple weight modules with finite weight multiplicities of all finite dimen-
sional simple Lie superalgebras were partly classified by Dimitrov, Mathieu, and
Penkov in [4]. The most interesting missing case in the classification of [4] is the
case of the queer Lie superalgebras psq(#n). The classification in this case was com-
pleted in [6] using a new combinatorial tool - the star action. This action is a mixture
of the dot action and the regular action of W depending on the atypicality of the
weights.

The combinatorics of the queer Lie superalgebras is also very interesting. One im-
portant aspect of the Sergeev duality is the semisimplicity of the category of tensor
modules of q(n). This naturally raises the question of uniqueness and existence of a
crystal bases theory for this category. The crystal bases theory and the combinatorial
description of the crystals of the simple tensor modules were obtained in a series of
papers of the second author and J. Jung, S.-J. Kang, M. Kashiwara, M. Kim, [7-9].

The goal of the paper is to present a survey on the recent results on the represen-
tation theory of the Q-type Lie superalgebras discussed above.
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1.1 Content of the paper

The organization of the paper is as follows. In Sect. 2 we include some important
definitions and preliminary results. Section 3 is devoted to the description of the cen-
ters of the Lie superalgebras of type Q. In Sect. 4 we collect the main results related
to the classification of all simple weight q(n)-modules with finite weight multiplici-
ties. Automorphisms and affine Lie superalgebras of type Q are discussed in Sect. 5.
The last section deals with the crystal base theory of the category of tensor repre-
sentations of g(n).

2 Preliminaries

The symbol Z>q stands for the set of non-negative integers and Zq for the set of
positive integers.

Let V = V5@ V7 be a Z-graded vector space. We denote by dimV the total di-
mension of V. For a homogeneous element u € V we denote by p(u) its Z;-degree;
in all formulae where this notation is used, u is assumed to be Z;-homogeneous.
For a subspace N C V we set N; := NNV; for i =0, 1. Let IT be the functor which
switches parity, i.e. (ITV)5 = Vg, (ITV)1 = V5. We denote by V®" the direct sum of
r-copies of V.

For a Lie superalgebra g we denote by % (g) its universal enveloping algebra and
by &(g) its symmetric algebra.

Throughout the paper the base field is C and g = g5 ® g denote one (unless oth-
erwise specified, an arbitrary one) of Q-type Lie superalgebras q(n),sq(n) forn > 2,
pq(n),psq(n) forn > 3.

2.1 Q-type Lie superalgebras

Recall that q(n) consists of the matrices with the block form

A B
Xap = (B A)

where A, B are arbitrary n x n matrices; q(n)g = {Xao} = gl,, 9(n)7 = {Xo.s} and
[Xa.0,Xar 0l = Xaan.00 [Xa0,X0,8] = Xo a8, (Xo,8,X0.81) = Xo.85 4558
Define tr' : g(n) — C by tr’(Xa g) = trB. In this notation,

sq(n): = {x € q(n)| ' x =0},
pa(n) : = q(n)/(1d),
psa(n) : = sq(n)/(1d),

where Id is the identity matrix.



70 M. Gorelik and D. Grantcharov

These definitions are illustrated by the following diagram:
sq(n) ——= q(n)

(
l l
psq(n) —— pa(n)

Clearly, the category of pq(n)-modules (resp., psq(n)-modules) is the subcat-
egory of q(n)-modules (resp., of sq(n)-modules) which are killed by the identity
matrix Id.

The map (x,y) — tr'(xy) gives an odd non-degenerate invariant symmetric bilin-
ear form on q(n) and on psq(n).

For the quotient algebras pq(n),psq(n) we denote by X4 p the image of the cor-
responding element in the appropriate algebra.

For Q-type Lie superalgebras the set of even roots (Ag ) coincides with the set
of odd roots (AT+ ). This phenomenon has two obvious consequence. The first one is
that all triangular decompositions of a Q-type Lie superalgebra are conjugate with
respect to inner automorphisms (this does not hold for other simple Lie superalge-
bras). The second one is that the Weyl vector p := %(ZaeAi’ 0 — 3 peat @) is equal
to zero. We set pg := %ZaeAg a. ! :

We choose the natural triangular decomposition: q(n) = n~ @h @&n* where by
consists of the elements X, o where A is diagonal, hy consists of the elements Xp g
where B is diagonal, and n™ (resp., n™) consists of the elements Xa.p where A, B are
strictly upper-triangular (resp., lower-triangular). We consider the induced triangu-
lar decompositions of sq{(n), pq(n), psq(n).

2.2 Notation

In the standard notation the set of roots of gl, = q(n)5 can be written as

At = {& - g} 1<icj<n
and the set of simple roots as  := {&; — &,,...,&,_1 — & }. Each root space has
dimension (1]1).

For oo € A™ let sq : b% — b% be the corresponding reflection: s,,-,._ej(s;) = gj,
Sei—ej(Ek) = & for k # i, j. Denote by W the Weyl group of gy that is the group
generated by 5o : 0 € AT, Recall that W is generated by sq : ¢t € 7.

The space b% has the standard non-degenerate W-invariant bilinear form: (&;, &;) =
5,' e

Let E, be the elementary matrix: E,; = (5;-0s;) i

The elements

hi =Xg;0
form the standard basis of hg for g = q(n),sq(n). We use the notation /; also for the
image of h; in the quotient algebras pg(n),psq(n).
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The elements H; := Xo g, (i = 1,...,n) form a convenient basis of by C q(n); they
satisfy the relations [H;, H;] = 26;;h;.
For each positive root a = & — £; we define @ = g; + €5, and

hg :=hi—hj, hg:=hi+h;, Hy:=H;—Hj,
€y = XE,'j,Ov Ea :=X0,E,'jy
fa :=XEj,',0’ Fa = XO,Ej,'-

All above elements are non-zero in sq(n),pq(n), psq(n) (since we excluded the cases
pa(2),psa(2)).
The elements /g, eq, fo (0t € A™) span sl, = [gl,,gl,]; the elements E, (resp.,
Fy) form the natural basis of n;-’ (resp., of ne ) and the elements Hy span hyNsq(n).
For each o the elements /iy, eq, fo, e, Ha, Ea, Fo Span 5q(2) and one has

[ea,fa] = hgy, [EaaFa] = hg, [HayHa] =2hg
[Eq, fa] = e, Fa] = Ha.

Set
O(m):="Y Za, Q%(n):= ), Zsoa.

acAt acAt
Define a partial order on b3 by v > p iff v — p € 0*(x).

2.3 The algebra 7 (h)

Let g be a O-type Lie superalgebra. Denote by HC the Harish-Chandra projec-
tion HC : % (g) — % () along the decomposition % (g) = % (h) & (% (g)nt +
n~%(9)).

The algebra % (h) is a Clifford superalgebra over the polynomial algebra % (h):
% () is generated by the odd space h endowed by the #(ho)-valued symmetric
bilinear form b(H,H') = [H,H']. For each 1 € b3 the evaluation of % (h) at A is a
complex Clifford superalgebra. Notice that a non-degenerate complex Clifford su-
peralgebra is either the matrix algebra (if dim by is even) or the algebra Q(n) (this is
an associative algebra whose Lie algebra is q(n)), see [5] for details. In particular, it
possesses a supertrace which is even if dim by is even and odd if dim by is odd.

For A € 3 let C(4) be the corresponding one-dimensional hz-module. Set

FUA) := U () ®y Cy.

Clearly, ¥£(A) is isomorphic to a complex Clifford algebra generated by hy en-
dowed by the evaluated symmetric bilinear form by (H,H') := [H,H'|(1). Set

¢(A) :=dimKerb,.

For g = q(n), ¢(A) is the number of zeros among h;(A),...,h,(A). The complex
Clifford algebra ¥’£(A) is non-degenerate if and only if ¢(1) = 0.
Denote by E(A) a simple €4(A)-module (up to a grading shift, such a module is

dimbh+1—-c(d

)
unique). One has dim E(A) = 21=——7—),
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2.4 Highest weight modules

Setb:=h+nt,b" :=h+n". Endow €L(A) with the b-module structure via the
trivial action of n. Set

M(A) :=Tnd8 ZL(A), N(A):=Ind®E(A).

Clearly, M(A) has a finite filtration with the factors isomorphic to N(1) up to parity
change. We call M(A) a Verma module and N(A) a Weyl module.

For a diagonalizable hz-module N and a weight u € by denote by NH the cor-
responding weight space. Say that a module N has the highest weight A if N =
Yu<a NH and N* 0. If all weight spaces NM are finite-dimensional we put ch N :=
Sy dimNHeH,

If N has a highest weight we denote by N the sum of all submodules which do
not meet the highest weight space of N. Recall that L(1) = N(A1)/N(1).

The following conjecture is based on a discussion with V. Mazorchuk.

Conjecture For any Q-type Lie superalgebra, and any nonzero weight A,
chL(A)y =chL(A)t.

The above conjecture is verified for all but finitely many A.

2.5 Example: n =2

For 5¢(2) the Cartan algebra is spanned by the even elements /i := hy,h' := hg and
the odd element H := H,.

The module N(A) is simple if A (') #0and A(h) € Z. If A(K') =0, the simple
5q(2)-module coincides with the simple gl,-module Ly, (4); if A(K') # 0,A(h) €
Zo,then L(A) = Lyy2)(A)®2if A(h) = 1 and L(A) = Lgi(2)(A) B2 ®Lgy2) (A — )2
if A(h) # 1. This can be illustrated by the following diagrams: the module L(2) for
A(H') # 0,A(h) =1 is of the form

and the module L{A) for A (/') # 0,A(h) = 4 is of the form

where the dots on the same level represent the vectors of the same weight and the
difference between levels is equal to a; the vertical lines correspond to the action of
fa (so the dots in the same column represent a simple gl,-module).
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All simple module over ¢(2),5¢(2) and their quotients pq(2), psq(2) are classified
by V. Mazorchuk in [18].

3 Centres

3.1 Centre of enveloping algebra

A weight A is called atypical if there exists a € A such that iz(1) = 0. The centres
of the universal enveloping algebras of Q-type Lie algebras is given by the following
theorem.

Theorem Let g be a Q-type Lie superalgebra, g # pq(2),psq(2). The restriction
of HC to Z(g) is an algebra isomorphism % (g) ~ Z where Z is the set of W-
invariant polynomial functions on by which are constant along each straight line
parallel to a root a and lying in the hyperplane hg(1) = 0. In other words,

Z:=200)" N Za,
acA

where

Za = {f € S (ho)| ha(A) =0 = f(A) = f(A - ca) Ve € C}.

The theorem is proven in [5, 26]. One has Z°(U(q(n))) = Z°(U(sq(n))) and
Z(U(pa(n))) = Z(U(psq(n))).

3.2 Strongly typical weights

An element a of an associative superalgebra U is called anticentral if ax —
(—1)PW(P@+) xg = 0. We denote by &/ (U) the set of anticentral elements of U.

Let g be a Q-type Lie superalgebra. The anticentre of the Clifford algebra U (h)
is equal to % (o) Ty, where the parity of Ty is equal to the parity of dim by and

fm T2 +hy .. hy for g = q(n),pg(n)
h-= 7 x> hy ... hi...hy for g =sq(n),psq(n).

The Harish-Chandra projection provides a linear monomorpism HC : &/ (U(g))
5 /(U (b)) and the image is equal to & ()" T, where the parity of T is equal
to the parity of dimbhy and

HC(Ty) =Ty [] ’a

+
ozeAﬁ

We say that A € by is strongly typical if (ty [Tyep+ ha)(A) # 0. Note that 4 is
[{]
strongly typical if and only if TgM(A) # 0.
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3.3 Equivalence of categories

Let £8 (resp., €%9) be the &-category for g and go-respectively. We have the natu-
ral restriction functor Res : 68 — £'% which sends a g-module M = Mz ® M to the
go-module My, and its left adjoint functor /nd : % — &8,

The actioniof the centres of the universal enveloping algebras lead to the block
decomposition £9 = @ O, 6% = P ﬁ;" indexed by the central characters y and
% respectively. This gives the projection and inclusions functors projy, : 6% —
Oy, incly : 63 — 0% and proj : 0% — o3,incly . 03 — 09

We say that A € by is regular (resp., dominant, integral) if A(hq) # O (resp.,
Alhg) & Zeo, Alhy) € Z) foreach o € A,

If g = q(n), then a weight A = (4;,...,4,) (4 := A(/)) is a regular dominant
strongly typical weight if and only if A; — A; & Zyg for j > i, A;+A; # 0 for j > i,
and A; # O for all i.

Let y (resp., ¥) be the g (resp., go) central character which corresponds to a strong-
ly typical weight A (so L(1) € 6%,L(A) € 6’;"). We set 65 := £F if diim by is odd;
if dim by is even one has a decomposition &5 = 5}? &) H(é’f), where 1 is the parity
change functor. Note that for an integral weight A the blocks 6’;", 5}2 are indecom-
posable.

The functors F := projy olnd oincly : ﬁ’;" — 0% and G := projj oResoincly :
sz — ﬁ;“ are adjoint. The main result of [3] is that for a regular dominant strongly
typical weight A both functors F and G decompose in direct sums of & copies of
some functors Fj : 6’;" — 0F and G, : 6} — ﬁ;" respectively and the functors
F1,G) are mutually inverse equivalences of categories.

4 Bounded, cuspidal and weight modules of q(n)

4.1 Bounded weights
We call a weight A € by bounded if the set of weight multiplicities of L(4) is uni-
formly bounded, i.e. there exists a constant C such that the dimL(A)¥ < C for all v.

Conditions when A is bounded are obtained in [6]. These conditions are formulated
in terms of the x-action, see below.

4.1.1 Definition

For A € b3 and o € w we set sg - A 1= s5q(A + pp) — po and

[ sah if A(hg) #0,
sa*l—{sa-x if A(hg) = 0.

Fori=1,...,n—1wesets;j*A =54 *A.
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Note that sq *5¢ ¥ A = A and 54 *5g *A = sg * 5 * A if (@, B) = 0. Therefore the
group W generated by the symbols sy, .. .,s,—1 subject to the relations s? = 1, s;s =
sjsi for i — j > 1 acts on b via x-action. Note that W is an infinite Coxeter group.

4.1.2 Description of bounded weights

Recall that gl,-module L(A) is finite-dimensional if and only if 5;- A < A for each
i=1,...,n—1 (the partial order was introduced in §2.2).

The g(n)-module L(A) is finite-dimensional if and only if foreachi=1,...,n—1
one has (A,& — &i41) € Zspor (A,&) = (4, &41) =0, see [20], which can be rewrit-
tenass;*A <A foreachi=1,...,n—1.

For each weight p there exists a sequence (t = Ug < t) < g < ... < lU; such that
Miv1 = i, * i for some k; € {1,2,...,n— 1} and i is Wx-maximal (i.e., si*xpt £ p
for each i). We call such sequence a W x-increasing string starting at .

Bounded weights for gl, were described in [17]. For an integral weight u the
conditions on [t being bounded can be reformulated as follows: pt is bounded if and
only if

(i) there exists a unique increasing W-string tt = tig < tj < Uz < ... < U}
(i) the set {i : s;- ; = p;} is empty for j < s and has cardinality at most one for
j==5.

In [6] we proved that the same description for bounded weights is valid for g(n)
if we change the dot action by the *-action. The non-integral bounded weights can
be also described in terms of the %-action.

4.2 Example: the case n = 3
4.2.1 The case gl,

Consider first the case gl3. There are three types of W-orbits W - A for integral 4 : the
trivial orbit for A + pg = (a,a, a) (these weights are not bounded), the regular orbits
which contain six elements (each element has a trivial stabilizer) and singular or-
bits which contain three elements (the stabilizer of each element is Z3). The regular
orbits are of the form:

/A\
.\‘1-A. Sg-l

(s281)-A (S]Sg) A

\/

(s25152) - (s15251)
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The non-trivial singular orbits are of the form:

(s152) - A = 528182 - 4

(or the same with interchanged sy, 57).

The edges of the diagrams correspond to simple reflections sy, 52 and the upper
vertex in a given edge is bigger with respect to the partial order. We say that a vertex
is a fop (resp., bottom) vertex if there is no edge ascending (resp., descending) from
this vertex.

Note that L(4 ) is finite-dimensional if and only if A is represented by a top vertex
which belongs to n— 1 edges. Hence L(A) is finite-dimensional if and only if A is
the top vertex in the regular orbit (the diagram above).

The increasing strings are represented by the paths going in upward direction, for
instance 5575 - A < 5251 -A < 514 < A. The condition (i) for a given vertex means
that there exists a unique ascending path; the condition (ii) means that each vertex
in this path, except the top one, belongs to n — | edges and the top one belongs to at
least n — 2 edges.

We see that all non-bottom vertices represent bounded weights for gls.

4.2.2 The case q(3)

We now look at the W -orbits in the case q(3). There are 6 types of W -orbits, which
we describe below (up to the interchange sy and s2).

(1) The trivial orbit corresponds to the case A = (a,a,a),a # 0; these weights are
not bounded.

(2) The orbits of the form
/ A \
81 * A S * A
(s251) % (s152) %A

\/

(s285152) % A = (515281 ) *
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(3) The orbit

spx0=—-o s2%x0=—m

(5251)*0 = (5152) ¥ 0= —a) — 3

(4) The orbits of the form
A. =S5 * A

52 *A

(s152) %A = (s28152) % A

(5) The orbits of the form

\ /

s ¥ A =558 % A 5351853 x A = spsaspsax A

5 *A

\
J/

s1xA! s x4 s|$1%A

/

withA' =4 +q.
(6) The orbits of the form

S5t x A =s152% A

with A/ =42+ 0oy.

We see that L(A) is finite-dimensional if and only if A is a top vertex in one of
the orbits (2), (3) or the right top (the highest) vertex in (5); the bounded weights
correspond to the non-bottom vertices in the orbits (2)—(6).
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4.3 Cuspidal and weight modules

Definition Let M be a q(n)-module.

(1) We call M a weight module if M = @Aen(:) M* and dimM* < o for every
A€ ba-

(i1) We call M a cuspidal module if M is a weight module and every nonzero even
root vector ey € q(n)® acts injectively on M for every a € A.

Remark In many cases the condition dim M?* < oo in (i) is not included in the defi-
nition of a weight module. We include this condition for convenience.

The following theorem is proved in [4] and reduces the classification of all simple
weight modules of q(n) to all simple cuspidal modules of g(n). For the definition of
“parabolically induced” we refer the reader to [4].

Theorem Every simple weight q(n)-module is parabolically induced from a cus-
pidal module over q(n)) @ ... ® q(ny), for some positive integers ny,...,n; with
n+...+n=n

To classify all simple cuspidal modules we used the so called “twisted localiza-
tion” technique - we present every simple cuspidal as a twisted localization of a
highest weight module. Some details are listed below.

4.3.1 Twisted localization

SetU :=U(q(n)). Then Fy := {fg | n € Z>o} C U satisfies Ore’s localization con-
ditions because ad f;, acts locally finitely on U. Let 24, U be the localization of U
relative to Fy, and for a q(n)-module M, set 2o M = 2, U Qy M. For x € C and
ue Py U we set

0= 3, (}) wfe 13"

i>0

where (%) = ﬁ——ll—;,(x_—'ﬂ)- Since ad f, is locally nilpotent on @, U, the sum above
is actually finite. Note that for x € Z we have O,() = fXufy*. For a 9, U-module
M by @ M we denote the Z, U-module M twisted by the action

w- v = (0(u) v)',

where u € 9, U, v € M, and v* stands for the element v considered as an element of
®EM. In particular, v* € MAH*® whenever v e M*. Set @5 M := @%L(Da M).

The classification of the simple cuspidal q{n)-modules is obtained in the follow-
ing theorem proved in [6]. This together with the description of the bounded weights
completes the classification of all simple weight q(#)-modules. The uniqueness part
of the theorem involves the definition of a bounded weight type and it is skipped
here.
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4.3.2 Theorem

Let M be a simple cuspidal g(n)-module. Then there is a bounded weight A,
and a tuple (xj,...,x,—1) of n — 1 complex nonintegral numbers such that M ~

Do, V3 105 ...9’,;"‘1_.”"_1 L(A).

5 Automorphisms of q(n) and affine Lie superalgebra q(n)(z)

5.1 Automorphisms of Q-type Lie superalgebra

Although the Q-type superalgebras are not invariant with respect to the supertrans-

position, they are invariant with respect to the g-supertransposition oy : (’; ﬁ) —

(CA;, CAE," ), where § = {4 € C is a fixed primitive 4th root of unity.

Let g be a Q-type Lie superalgebra. The natural homomorphisms GL,(C) — Autg
given by X — Adg(X,X), where

AB XAX~! xBx~!
Adr(X,X) (BA) gy (XBX ! XAX")

induces an embedding PSL,(C) — Autg. In the light of [10, 23] one has Autg =
PSL,(C) x Z4, where Z4 is generated by —a,.

5.2 Affine Lie superalgebra q(n)(z)

Recall that semisimple Lie algebras are finite-dimensional Kac-Moody algebras and
affine Lie algebras are Kac-Moody algebras of finite growth. Each affine Lie algebra
is a (twisted or non-twisted) affinization of a finite-dimensional Kac-Moody algebra;
this means that an affine Lie algebra can be described in terms of a finite-dimensional
Kac-Moody algebra and its finite order automorphism, see [14, Chap. VI-VIII]. The
Cartan matrices of finite-dimensional and affine Lie algebras are symmetrizable [ 14,
Chap. IV].

The superalgebra generalization of Kac-Moody algebras was introduced in [13];
see [12,30] for details. Call a Kac-Moody superalgebra affine if it has a finite growth
and symmetrizable if it has a symmetrizable Cartan matrix. The affine symmetriz-
able Lie superalgebras are classified in [23,29], and, as in Lie algebra case, they
are (twisted or non-twisted) affinizations of finite-dimensional Kac-Moody super-
algebras. Non-symmetrizable affine Lie superalgebras were described in [12]. The
classification includes two degenerate superalgebras, one family of constant rank
and one series q(r1)(2). The superalgebras of the series are twisted affinizations of
sq(n) corresponding to the automorphism 0'3 ca— (—1)Plg,

A symmetrizable affine Lie superalgebra has an even non-degenerate invariant
bilinear form and a Casimir element. The Q-type Lie superalgebras and the affine
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Kac-Moody algebra q(n)(z) do not have even invariant bilinear forms, but have odd
ones.

Aninteresting feature of q(n)(?) is that any Verma module is reducible; more pre-
cisely if M(A) is a Verma module over q(n)(?) and M(1) is its maximal submodule
(i.e., L(A) = M(A)/M(X)), then M(A)*~2% £ 0, where § is the minimal imaginary
root of q(1)®. The proof is given in [11].

5.2.1 Description of q(n)(z)

We introduce q(n)!) := #(sq(n)) ® CD, where Z(sq(n)) := sq(n) ® C[t*!] is
the loop superalgebra, D acts on #(sq(n)) by [D,x ® t*] = kx ® t*. Note that
sq(n), q(n)(’) are not Kac-Moody superalgebras since their Cartan subalgebras con-
tain odd elements.

Let € be an automorphism of sq(n) given by £(x) := (—1)?®Wyx, ie. £ = 0'3. We
extend € to q(n)(!) by £(¢) = —t, (D) = D. Then g(n)? is the quotient of the sub-
algebra (q(n)())€ of elements fixed by € by the abelian ideal 2iz0CX1p0 ® 1%, where
I stands for the 7 x nn identity matrix (see Sect. 2.1 for notation). We may identify
q(n)® with the vector space

sl, ®C[r*'| @ CK ©CD,
where K := X; ¢ and
g =g, ®CDD( Y sl x 1)
k€Z\{0)
=, ®C*|®CK®CD, q(n) = s, ®1C[*2);
the commutator is given by

(xy _ yx) ® tk+'",
if km is even,

x @k, y @1 = t(xy +yx) @ ¥ 4 26_ u tr(xy)K,
if km is odd,

[x®tk,y®t"'] —
where 1 : gl, — s, is the natural map t(x) :=x —tr(x)I /n.

6 Crystal bases of q(n)

6.1 The quantum queer superalgebra

Let F = C({(q)) be the field of formal Laurent series in an indeterminate g and let
A = C[[q]] be the subring of F consisting of formal power series in q. For k € Z>,
we define

k_ —k
m=2—;w =1, [K!=[Kk-1]--[2][1).
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For an integer n > 2, let P = Z&; & --- ® Ze, and PV = Zh & --- ® Zh,,. Then hy =
C®zP.

Definition The quantum queer superalgebra U,(q(n)) is the unital superalgebra
over F generated by the symbols e;, f;, E;, F; (i=1,...,n—1), ¢" (h € PV), H;
(j = 1,...,n) with the following defining relations.

L =1, ¢'¢d" =g (ni ePY),
d'eiqg™" = q%We; (he PY),
q"fig™" =g fi (hePY),
7'Hj = Hiq",

himhigy _ o —hithi
eifj—fj€i=5ijq :_[;I_, +1
eiej—ejei=fifi—fifi=0 ifli—j|>1,
e,gej—(q-}-q' l)e;eje,--}-eje,2 =0 if|i—jl=1,
ffi—a+a Vfififi+fiff =0 ifli-jl=1,
g
rAYEE
HiH;j+HjH;=0 (i j),
Hiei — qeiHl; = Eiq ",
Hifi — qfiH; = —Fq",
eiFj — Fiei = &(Hig "*' —His1g7"),
Eif; - fiEi = 8;(Hig"*+' — Hin1q"),
eiEi—Eie; = fiF; — Fifi =0,
eieir1 — qeiv1€i = EiEiy) +qEiy Ej,
qfir1 fi — fifis1 = FiFip) +qFin F,
e?Ej—(q+q )eiEjei+Ejet =0 if i—j| =1,
FPFi—(q+q VfiFifi+ Fiff =0 ifli=jl=1.

bl

i

The generators ¢;, f; (i=1,...,n—1), q" (h € PV) are regarded as even and E;, F;
(i=1,...,n—=1),H; (j=1,...,n) as odd. From the defining relations, it is easy to
see that the even generators together with H; generate the whole algebra U, (q(n)).

The superalgebra U,(q(n)) is a bialgebra with the comultiplication
A: Uy(q(n)) — Uy(q(n)) @ U,(q(n)) defined by

A" =4"®q" forheP’,
Aei) =e; ®q_lli+lli+' +1Q®e;,
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A(f)=fi®l+q" 1 gf,
AH) =H@¢" +q " oH,.

6.2 The category 6=°

int*®
A U,(q(n))-module M is called a weight module if M has a weight space decompo-

sition M = @ MH, where
HEP

MH = {m eM;qd"'m=qg""m forallhe PV} ,

and dimMH# < o for every u. The set of weights of M is defined to be
wt(M) = {u € P;MH* #0}.

6.2.1 Definition

A weight U,(q(n))-module V is called a highest weight module with highest weight
A € Pif V* is finite-dimensional and satisfies the following conditions:

(i) V is generated by VA,
(i) ev=Ev=0forallveV* i= lyo..,n—1,

6.2.2 Strict partitions

Set
PO ={A=Mej+- + A& €P; A €Lxp forall j=1,...,n},
At ={A =Ae +- 4 A&, € P20, A > Ay and A; = Ay implies
Ai=Aipy =0foralli=1,...,n—1}.

Note that each element A € A* corresponds to a strict partition A = (A > A; >
-+ > A, > 0). Thus we will often call A € A™ a strict partition.

6.2.3 Example

Let

n n
V=@ F;0d ij
j=1 j=1

be the vector representation of U,(q(n)). The action of U,(q(n)) on V is given as
follows:

eivj=8jirvi, eivy="08jinvy fivi=68jvis1, fivi = 8T
Eivj = 6jin1v;, Eivy = Bjinvi, Fivj = bjiv, Fivy= 8jvis1,

ho, _ g,. . _ g, _ W= 8 U= = — Dy
q'VJ—qEI(')vJ,q'vj—ql(')vj, Hy; = VT Hlvj—6j-.lvj'
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Note that V is an irreducible highest weight module with highest weight € and
wt(V) = {e1,...,&}.

6.2.4 Definition
We define ﬁ’i%to to be the category of finite-dimensional weight modules M satisfying
the following conditions:

(i) wi(M)c P,
(ii) forany p € P20 and i € {1,...,n} such that u(/;) = 0, we have H;|yu = 0.

The following proposition is proved in [7].

6.2.5 Proposition

Any irreducible Uy (q(n))-module in 6%‘0 appears as a direct summand of a tensor
power of V.

6.3 Crystal bases in c=0

int

Let M be aU,(q(n))-module in 020 Fori=1,2,...,n— 1, we define the even Kashi-

int
wara operators on M in the usual way. That is, for a weight vector u € M}, consider
the i-string decomposition of u:

U= 2 fi(k)uk,

k>0

where eju;, = 0 forall k > 0, f,.(k) = f,-k /[k]!, and define the even Kashiwara operators

& fiti=1,...,n—1) by
éiu= Zf,-(k l)uk,

k>1

fiu = z f,.(kH)uk.

k>0

On the other hand, we define the odd Kashiwara operators 171, El, 1?1 by

ﬁl =(]"|_1H1,
E) = —(e\H, — gHe))g" !,
Fi=—(Hifi—qfiHh)g" .

For convenience we will use the following notation ej = E, fj = F1,é; = El ,f; =
F.

Recall that an abstract gl(n)-crystal is a set B together with the maps &;, fi: B —
BU{0}, ¢;,&i: B— ZU{—oo} (i=1,...,n—1),and wt: B — P satisfying the con-
ditions given in [16]. For an abstract gl{n)-crystal B and A € P, we set B = {be
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B| wt(b) = A }. We say that an abstract gl(n)-crystal is a gl(n)-crystal if it is realized
as a crystal basis of a finite-dimensional integrable U,(g!(n))-module. In particular,
we have €(b) = max{n € Z5¢; &'b # 0} and ¢;(b) = max{n € Zxq; fb # 0} for
any b in a gl(n)-crystal B.

6.3.1 Crystal basis

Definition Let M = P, cp>0 M¥ be a Uy(q(n))-module in the category 6’5‘0. A
crystal basis of M is a triple (L,B,lg = (Iy)peB), where

(i) Lis afree A-submodule of M such that

(1) FaL oM,

Q) L =@epz0 ¥, where L* = LNMH, o

(3) L is stable under the Kashiwara operators é&;, fiti=1,...,n=1),H, Ey,
F.

(ii) B is afinite gl(n)-crystal together with the maps E\,F;: B— BU {0} such that

(1) wt(E\b) = wt(b) + o, wt(Fib) = wi(b) — oy,
(2) forall b,b’ € B, Fib =1 if and only if b = E{}'.

(i11) Ig = (Ip)pep is a family of C-vector spaces such that

(1) I C (L/qL)* for b € B,

(2) L/qL = Bieplp,

(3) Hylp C 1y,

@) fori=1,...,n—1,T, we have
(1) if &b = 0 then &, = 0, and otherwise &; induces an isomorphism

Ib =5 lgp. . 4

(2) if fib =0 then fil, = 0, and otherwise f; induces an isomorphism

l[,lilf-,,h.

As proved in [8], for every crystal basis (L, B, Ip) of a U,(q(n))-module M we
have E12 = F]2 = 0 as endomorphisms on L/gL.
6.3.2 Example

Let

n n
j=1 j=1

be the vector representation of U,(q(n)). The action of U,(q(n)) on V is given as
follows:
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eivj = 8jir1vi. evy = Ojin1 vy, fivj = 8jvinr, fivy = 8jivm: Eivj = 8jin1vy, Evy =
-5 Ve — 8 Vs hy, o — g€y, . alye = g€ -
5j7i+1v,~,F,-vj—5j,,v—,-+],F,vj—51:,v,+],q'vj..q J(‘)vj,q'v7..q J(')v Hivj=6jvj,
H,'V7 = Sj,,'vj.

Set

n n
L=@PAv;ePAv;,
ji=1 j=1

lj = Cv;@Cvy, and let B be the crystal graph given below:

I 2 3 n-—-1
J=—=x[2] o —[n]
]

Here, the actions of f; (i = 1,...,n — 1) are expressed by i-arrows and of F by
an l-arrow. Then (L,B,/p = (4j)}=,) is a crystal basis of V.

6.3.3 Tensor product rule
The tensor product rule for the crystal bases in the category ﬁ];t
following theorem (Theorem 2.7 in {8]).

Theorem Let M; be a U,(g)-module in 6";(
1,2). Set By ® By = B) x By and

is given by the

with crystal basis (Lj,Bj,lp;) (j =

Ip,@8, = (Ihl ®Ibz)h163|=h2632'

Then
(L] ®A L27B] ®321131®32)

is a crystal basis of M) @ M2, where the action of the Kashiwara operators on
By ® Bj are given as follows.

&b ®by  if gi(b1) 2 €(b2),
(b1 ®@by) = ~ .
by ®&by  if gi(b1) < &(b2), 0
(b1 ®b2) fiby®by  if gi(by) > &i(ba),
by ® fiba if ¢i(by) < &(b2),
E]b]®b2 lf(h],Wtbz) =0,
b] ®b2 (’121WIb2> - 07
b ®El by otherwise, @
F]bl ® by lf(h],wtbz) =
b1 ®b2 (hz,wtbz) =0,
b ®1::1b2 otherwise.
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6.3.4 Abstract crystal

Definition ~ An abstract q(n)-crystal is a gl(n)-crystal together with the maps
E , Fi: B—BU {0} satisfying the following conditions:

(a) wi(B) C P20,

(b) Wt(Elb) (b) + 0, Wt(ﬂb) Wt(b) a,
(c) forallb,b' € B, ib="b"ifand only if b = Elb
(d) if3<i<n-—1, wehave

(i) the operators E 1 and F| commute with & and f,
(ii) if E\b € B, then &(Eb) = &;(b) and @;(Eb) = (p,( ).

Recall that W is the Weyl group of gl,,. The Weyl group action on an abstract
q(n)-crystal B is the action of W on gl,-crystal B, which is given in [15].

Let By and B; be abstract q(n)-crystals. The tensor product By @ B of By and B,
is defined to be the gl(n)-crystal B ® B together with the maps E, F| defined by
(2). Then it is an abstract q{n)-crystal. Note that ® satisfies the associative axiom on
the set of abstract q(n)-crystals.

6.3.5 Example

(a) If (L,B,lp) is a crystal basis of a U,(q(n))-module M in the category &=, then

B is an abstract q(n)-crystal. "

(b) The crystal graph B is an abstract q{n)-crystal.

(c) By the tensor product rule, B®" is an abstract q(n)-crystal. When n = 3, the
q(n)-crystal structure of B®B is given below:

e —— e[ ——[3]e[]
[ f |
IT lllT 1l|T
A\ Y \d
Oelz]  [2le2]—>[]ef2]
| |
MeEl=1x —=[2]e(3]  [3)=(3]
Let B be an abstract q{n)-crystal. Fori=1,...,n— 1, we set
Wi=2582°--8i§1:5i—1.

Then wj is the shortest element in W such that wi(a;) = . We define the odd Kashi-
wara operators Ei, F; (i=2,...,n—1) by

Ei=5 _1EiSy, Fi=S 1FS,,.
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6.3.6 Definition

Let B be an abstract q(n)-crystal.

(a) Anelement b € B is called a gl(n)-highest weight vector if éb=0for | <i<
n.

(b) Anelement b € B is called a highest weight vector if éib = E,-b =0forl1 <i<
n.

(c) Anelement b € B is called a lowest weight vector if wob is a q(n)-highest weight
vector, where wy is the element of W of longest length.

The description of the set of the highest (and hence of the lowest) weight vectors
inB®N for N > 0is given by the following proposition (see Theorem 4.6 (c) in [8]).

6.3.7 Proposition

Anelement bg in B8V is a highest weight vectorifand only if by = 1® fj - - -fj_lb for
some j, and some highest weight vector b in BEV=1) such that wt(by) = wt(b) + ¢;
is a strict partition.

The following uniqueness and existence theorem is one of the main results in [8].

6.3.8 Theorem

(a) Let A € A be a strict partition and let M be a highest weight U, (q(n))-module
with highest weight A in the category ﬁ’iﬁo. If (L,B,Ig) is a crystal basis of M,
then L* is invariant under E = q”"‘]H,- foralli=1,...,n. Conversely, if M* is
generated by a free A-submodule Lg invariant under K; (i = 1,...,n), then there
exists a unique crystal basis (L, B, /) of M such that

(i L*=13,

(i) B*={b,},
(iii) L /qL) =1,,
(iv) Bis connected.

Moreover, B, as an abstract q(n)-crystal depends only on A. Hence we may write
B=B(A).

(b) The g(n)-crystal B(4) has a unique highest weight vector b, and unique lowest
weight vector [;.

A combinatorial description of the crystal bases in terms of semistandard decom-
position tableaux has been obtained in [9].
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