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We study a combinatorial object, which we call a GRRS (gen-
eralized reflection root system); the classical root systems 
and GRSs introduced by V. Serganova are examples of finite 
GRRSs. A GRRS is finite if it contains a finite number of vec-
tors and is called affine if it is infinite and has a finite minimal 
quotient. We prove that an irreducible GRRS containing an 
isotropic root is either finite or affine; we describe all finite 
and affine GRRSs and classify them in most of the cases.

© 2017 Elsevier Inc. All rights reserved.

0. Introduction

We study a combinatorial object, which we call a GRRS (generalized reflection root 
system), see Definition 1.2. The classical root systems are finite GRRSs without isotropic 
roots. Our definition of GRRS is motivated by Serganova’s definition of GRS (generalized 
root system) introduced in [6], Sect. 1, and by the following examples: the set of real 
roots Δre of a symmetrizable Kac–Moody superalgebra introduced in [3], [7] and its 
subsets Δre(λ) (“integral real roots”), see [1].

Each GRRS R is, by definition, a subset of a finite-dimensional complex vector space 
V endowed with a symmetric bilinear form (−, −). The image of R in V/Ker(−, −) is 
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denoted by cl(R); it satisfies weaker properties than GRRS and is called a WGRS (weak 
generalized root system). An infinite GRRS is called affine if its image cl(R) is finite 
(in this case cl(R) is a finite WGRS, which were classified in [6]). We show that an 
irreducible GRRS containing an isotropic root is either finite or affine. Recall a theorem 
of C. Hoyt that a symmetrizable Kac–Moody superalgebra with an isotropic simple root 
and an indecomposable Cartan matrix (this corresponds to the irreducibility of GRRS) 
is finite-dimensional or affine, see [2].

Finite GRRSs correspond to the root systems of finite-dimensional Kac–Moody super-
algebras. In this paper we describe all affine GRRSs R and classify them for most cases 
of cl(R). Irreducible affine GRRSs with dimKer(−, −) = 1 correspond to symmetrizable 
affine Lie superalgebras. This case was treated in [9]; in particular, it implies that an 
“irreducible subsystem” of the set of real roots of an affine Kac–Moody superalgebra is 
a set of real roots of an affine or a finite-dimensional Kac–Moody superalgebra (this was 
used in [1]).

For each GRRS we introduce a certain subgroup of AutR, which is denoted by GW (R); 
if R does not contain isotropic roots, then GW (R) is the usual Weyl group. Let R be an 
irreducible affine GRRS (i.e., cl(R) is finite). We show that if the action of GW (cl(R))
on cl(R) is transitive and cl(R) �= A1, then R is either the affinization of cl(R) (see § 1.7
for definition) or, if cl(R) is the root system of psl(n, n), n > 2, R is a certain “bijective 
quotient” of the affinization of the root system of pgl(n, n), see § 1.5 for definition. The 
action of GW (cl(R)) on cl(R) is transitive if and only if cl(R) is the root system of a 
simply laced Lie algebra or a Lie superalgebra g �= B(m, n), which is not a Lie algebra. 
If R is such that cl(R) = B(m, n), m, n ≥ 1 or cl(R) = Bn, Cn, n ≥ 3, then R is 
classified by non-empty subsets of the affine space Fk

2 up to affine automorphisms of Fk
2 , 

where dimKer(−, −) = k. A similar classification holds for cl(R) = A1. In the cases 
cl(R) = G2, F4, the GRRSs R are parametrized by s = 0, 1, . . . , dimKer(−, −). In the 
remaining case either cl(R) is a finite WGRS, which is not a GRRS, or cl(R) = BCn. 
We partially classify the corresponding GRRSs (we describe all possible R).

Another combinatorial object, an extended affine root supersystem (EARS), was in-
troduced and described in a recent paper of M. Yousofzadeh [12]. The main differences 
between a GRRS and an EARS are the following: first, EARS has a “string proper-
ty”, namely, for each α, β in an EARS with (α, α) �= 0 the intersection of β + Zα

with the EARS is a string {β − jα| j ∈ {−p, p + 1, . . . , q}} for some p, q ∈ Z with 
p − q = 2(α, β)/(α, α). Second, a GRRS should be invariant with respect to the “re-
flections” connected to its elements. The string property implies the invariance with 
respect to the reflections connected to non-isotropic roots (α such that (α, α) �= 0). 
A finite GRRS corresponds to the root system of a finite-dimensional Kac–Moody su-
peralgebra, and the finite EARSs include two additional series. The root system of a 
symmetrizable affine Lie superalgebra is an EARS and the set of real roots is a GRRS. 
Moreover, the set of roots of a symmetrizable Kac–Moody superalgebra is an EARS 
only if this algebra is affine or finite-dimensional (by contrast, the set of real roots is 
always a GRRS). For example, the real roots of a Kac–Moody algebra with the Cartan 
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matrix 
(

2 −3
−3 2

)
form a GRRS, which can not be embedded in an EARS. However, 

according to a theorem of C. Hoyt [2], an indecomposable symmetrizable Kac–Moody 
superalgebra with an isotropic real root is affine, so there are no examples of this na-
ture if the GRRS contains an isotropic root. Even though the GRRSs are not exhausted 
by GRRSs coming from Kac–Moody algebra, from Prop. 3.2 in [12] it follows that an 
affine GRRS R can be always embedded in an EARS, i.e. there exists an EARS R′ such 
that R = {α ∈ R′| ∃β ∈ R′ (α, β) �= 0}. This allows to obtain a description of affine 
GRRSs from the description of the EARS in [12], [11] and, using Theorem 2.1, to obtain 
a description of the irreducible GRRSs containing isotropic roots.

Note that our notion of GRRS is different from the notion of reflection systems intro-
duced in [5].

In Section 1 we give all definitions, examples of GRRSs and explain the connection 
between GRRS, GRS introduced in [6] and root systems of Kac–Moody superalgebras.

In Section 2 we prove that if R is an irreducible GRRS with a non-degenerate symmet-
ric bilinear form and R contains an isotropic root, then cl(R) is finite (and is classified 
in [6]).

In Section 3 we prove some lemmas, which are used later.
In Section 4 we obtain a classification of R for the case when cl(R) is finite and is 

generated by a basis of cl(V ).
In Section 5 we obtain a classification of R for the case when cl(R) is the roots system 

of psl(n + 1, n + 1), n > 1. This is the only situation when the form (−, −) is degenerate 
and R can be finite; this holds in the case gl(n, n).

In Section 6 we obtain a classification of R for the case when cl(R) is a finite WGRS, 
which is not a GRS (cl(R) = BC(m, n), C(m, n)) and describe R for the remaining case 
cl(R) = BCn. This completes the description of GRRSs R with finite cl(R).

In Section 7 we present the correspondence between the irreducible affine GRRSs with 
dimKer(−, −) = 1 and the symmetrizable affine Lie superalgebras.

Acknowledgments. We are grateful to Anthony Joseph and Dmitry Gourevitch for fruitful 
discussions. We also thank the anonymous referee for helpful suggestions.

1. Definitions and basic examples

In this section we introduce the notion GRRS (generalized reflection root systems) 
and consider several examples.

1.1. Notation. Throughout the paper V will be a finite-dimensional complex vector space 
with a symmetric bilinear form (−, −).

For α ∈ V with (α, α) �= 0 we set

kα,β := 2(α, β)

(α, α)
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for each β ∈ V , and we define the reflection rα ∈ EndV by the usual formula

rα(v) := v − kα,vα.

Clearly, rα preserves (−, −). Note that

kα,rγβ = kα,β − kα,γkγ,β (1)

if (α, α), (γ, γ) �= 0.
We use the following notation: if X is a subset of V , then X⊥ := {v ∈ V | ∀x ∈ X

(x, v) = 0} and ZX is the additive subgroup of V generated by X (similarly, CX is a 
subspace of V generated by X).

1.2. Definition. Let V be a finite-dimensional complex vector space with a symmetric 
bilinear form (−, −). A non-empty set R ⊂ V is called a generalized reflection root system 
(GRRS) if the following axioms hold

(GR0) Ker(−, −) ∩R = ∅;
(GR1) the canonical map ZR⊗Z C → V is a bijection;
(GR2) for each α ∈ R with (α, α) �= 0 one has rαR = R; moreover, β − rαβ ∈ Zα for 

each β ∈ R;
(GR3) for each α ∈ R with (α, α) = 0 there exists an invertible map rα : R → R such 

that

rα(α) = −α, rα(−α) = α,

rα(β) = β if β �= ±α, (α, β) = 0,
rα(β) ∈ {β ± α} if (α, β) �= 0.

(2)

1.2.1. We sometimes write R ⊂ V is a GRRS, meaning that R is a GRRS in V . If R ⊂ V

is a GRRS, we call α ∈ R a root; we call a root α isotropic if (α, α) = 0.

1.2.2. Definition. We call a GRRS R ⊂ V affine if R is infinite and the image of R in 
V/Ker(−, −) is finite.

1.2.3. Remarks. Observe that R = −R if R is a GRRS. By [6], Lem. 1.11, the axiom 
(GR3) is equivalent to R = −R and the condition that for each α, β ∈ R with (α, α) =
0 �= (α, β) the set {β ± α} ∩ R contains exactly one element. In particular, if R is a 
GRRS, then rβ is an involution and it is uniquely defined for any β ∈ R.

In Theorem 2.1 we will show that if (−, −) is non-degenerate, then (GR1) is equivalent 
to the condition that R spans V .

1.2.4. Weyl group and GW (R). For any X ⊂ V denote by W (X) the group generated 
by {rα| α ∈ X, (α, α) �= 0}. Clearly, W (R) preserves the bilinear form (−, −). If R ⊂ V

is a GRRS, we call W (R) the Weyl group of R. By (GR2) R is W (R)-invariant.
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If R is a GRRS, then to each α ∈ R we assigned an involution rα ∈ Aut(R); we denote 
by GW (R) the subgroup of Aut(R) generated by these involutions.

1.2.5. In [6], Sect. 7, V. Serganova considered another object, where rα were not assumed 
to be invertible, i.e. (GR3) is substituted by

(WGR3) for each α ∈ R with (α, α) = 0 there exists a map rα : R → R satisfying (2).

If V is endowed with a non-degenerate form and R ⊂ V satisfies (GR0)–(GR2) and 
(WGR3), we call R a weak GRS (WGRS); the finite WGRS were classified in [6], Sect. 7.

1.2.6. Note that R = −R if R is a WGRS. By [6], Lem. 1.11, the axiom (WGR3) (resp., 
(GR3)) is equivalent to R = −R and for each isotropic α ∈ R the set {β ± α} ∩ R is 
non-empty (resp., contains exactly one element) if β ∈ R is such that (β, α) �= 0.

1.3. Other definitions. Classical root systems can be naturally viewed as examples of 
GRRS, see § 1.4.1 below. The following definitions are motivated by this example.

1.3.1. Subsystems. For a GRRS R ⊂ V we call R′ ⊂ R a subsystem of R if R′ is a GRRS 
in CR′.

It turns out that GW (R) does not preserve the subsystems: B2 can be naturally 
viewed as a subsystem of B(2, 1), but rα(B2) is not a subsystem if α is isotropic.

If R′ ⊂ R does not contain isotropic roots, then R′ is a subsystem if and only if R′ is 
non-empty and rαR′ = R′ for any α ∈ R′ (note that if α is isotropic, then R′ := {±α}
is not a GRRS, even though rαR′ = R′).

Note that for any non-empty S ⊂ R the intersection CS ∩R is a GRRS in CS if and 
only if (GR0) holds (for any α ∈ (CS ∩R) there exists β ∈ S such that (α, β) �= 0).

We say that a non-empty set X ⊂ R generates a subsystem R′ ⊂ R if R′ is a unique 
minimal (by inclusion) subsystem containing X (i.e., for any subsystem R′′ ⊂ R with 
X ⊂ R′′ one has R′ ⊂ R′′). In particular, R is generated by X if R is a minimal GRRS 
containing X.

1.3.2. We call a GRRS R reducible if R = R1 ∪ R2, where R1, R2 are non-empty and 
(R1, R2) = 0. Note that in this case R = R1

∐
R2 and R1, R2 are subsystems of R. We 

call a GRRS R irreducible if R is not reducible.
If the bilinear form (−, −) is non-degenerate on V , then any GRRS is of the form ∐k
i=1 Ri ⊂ ⊕k

i=1Vi, where Ri ⊂ Vi is an irreducible GRRS.

1.3.3. Isomorphisms. We say that two GRRSs R ⊂ V , R′ ⊂ V ′ are isomorphic if there 
exists a linear homothety ι : V → V ′ such that ι(R) = R′ (by a “homothety” we mean 
that ι is a is linear isomorphism and there exists x ∈ C∗ such that (ι(v), ι(w)) = x(v, w)
for all v, w ∈ V ).
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1.3.4. Reduced GRRS. From (GR2), (GR3) one has R = −R. A GRRS R is called 
reduced if α, λα ∈ R for some λ ∈ C forces λ = ±1. (It is easy to see that this always 
holds if α is isotropic; if α is non-isotropic, then (GR2) gives λ ∈ {±1, ±1

2 , ±2}.)

1.4. Examples. Let us consider several examples of GRRSs.

1.4.1. Classical root systems. Recall that a classical root system is a finite subset R in a 
Euclidean space V with the properties: 0 /∈ R, rαR = R for each α ∈ R and rαβ−β ∈ Zα

for each α, β ∈ R. We see that R is a finite GRRS in the complexification of V . Using [8], 
Ch. V, it is easy to show that all finite GRRSs without isotropic roots are of this form: 
R ⊂ V is a finite GRRS without isotropic roots if and only if R ⊂ RR is a classical root 
system.

The classical root systems were classified by W. Killing and E. Cartan: the reduced 
irreducible classical root systems are the series An, n ≥ 1, Bn, n ≥ 2, Cn, n ≥ 3, Dn, 
n ≥ 4 and the exceptional root systems E6, E7, E8, F4, G2 (the lower index always 
stands for the dimension of V ); sometimes we use the notations C1 := A1, C2 := B2
and D3 := A3. The irreducible non-reduced root systems of finite type are of the form 
BCn = Bn ∪ Cn, n ≥ 1.

The reduced irreducible classical root systems are the root systems of finite-
dimensional simple complex Lie algebras.

1.4.2. Example: GRSs introduced by V. Serganova. A GRS introduced by V. Serganova 
in [6], Sect. 1 is a finite GRRS R ⊂ V with a non-degenerate form (−, −). V. Serganova 
classified these systems. Recall the results of this classification.

A complex simple finite-dimensional Lie superalgebras g = g0 ⊕ g1 is called basic 
classical if g0 is reductive and g admits a non-degenerate invariant symmetric bilinear 
form B with B(g0, g1) = 0. This bilinear form induces a non-degenerate symmetric 
bilinear form on h∗, where h is a Cartan subalgebra of g. The set of roots of g is a GRS 
in h∗ if g �= psl(2, 2). Conversely, any GRS is the root system of a basic classical Lie 
superalgebra different from psl(2, 2) (in particular, the non-reduced classical root system 
BCn is the root system of the basic classical Lie superalgebra B(0, n) = osp(1, 2n)).

The finite WGRSs were classified in [6], Sect. 7. They consist of GRSs and two 
additional series BC(m, n), C(m, n), which can be described as follows. Let V be a 
complex vector space endowed with a symmetric bilinear form and an orthogonal basis 
{εi}mi=1 ∪ {δj}nj=1 such that ||εi||2 = −||δj ||2 = 1 for i = 1, . . . , m, j = 1, . . . , n. One has

C(m,n) = {±εi ± εj ;±2εi}1≤i<j≤m ∪ {±δi ± δj ;±2δi}1≤i<j≤n ∪ {±εi ± δj}1≤j≤n
1≤i≤m,

BC(m,n) = C(m,n) ∪ {±εi;±δj}1≤j≤n
1≤i≤m.

In particular, C(1, 1) is the root system of psl(2, 2).

1.4.3. Real roots of symmetrizable Kac–Moody algebras. Let C be a symmetric n × n

matrix with non-zero diagonal entries satisfying the condition 2cij/cii ∈ Z for each i, j. 
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Let Π := {α1, . . . , αn} be a basis of a complex vector space V and (−, −) is a symmetric 
bilinear form on V given by (αi, αj) = cij . Let W be the subgroup of GL(V ) generated 
by rαi

for i = 1, . . . , n. Then R(C) := WΠ is a reduced GRRS without isotropic roots. 
If C is such that 2cij/cii < 0 for each i �= j, then C is a symmetric Cartan matrix and 
R(C) is the set of real roots of a symmetrizable Kac–Moody algebra g(C). Using the 
classification of Cartan matrices in [4] Thm. 4.3, one readily sees that for a symmetric 
Cartan matrix C, R(C) is affine and irreducible if and only if g(C) is an affine Kac–Moody 
algebra.

Recall that a basic classical Lie superalgebra g �= psl(n, n) is a symmetrizable Kac–
Moody superalgebra and that a finite-dimensional Kac–Moody superalgebra g �= gl(n, n)
is a basic classical Lie superalgebra. The root system of a finite-dimensional Kac–Moody 
superalgebra is a GRRS. The set of real roots of a symmetrizable affine Kac–Moody 
superalgebra g is an affine GRRS (with dimKer(−, −) equals 1 if g �= gl(n, n)(1) and 
equals 2 for gl(n, n)(1)); these algebras were classified by van de Leur in [10].

Let h be a Cartan subalgebra of a symmetrizable Kac–Moody algebra g(C). Then V
is a subspace of h∗ spanned by Π. Take λ ∈ h∗ and define

Δre(λ) := {α ∈ Δre|
2(λ, α)
(α, α) ∈ Z}.

Then Δre(λ) is a subsystem of Δre.
The above construction gives a reduced GRRS. Examples of non-reduced GRRSs 

without isotropic roots can be obtained by the following procedure. Fix J ⊂ {1, . . . , n}
such that cji/cjj ∈ Z for each j ∈ J , i ∈ {1, . . . , n} and introduce

R(C)J := (∪j∈JW2αj) ∪R.

It is easy to check that R(C)J is a GRRS (which is not reduced for J �= ∅). If 2cij/cii < 0
for each i �= j, then R(C)J is the set of real roots of a symmetrizable Kac–Moody 
superalgebra g(C, J); as before R(C)J is affine and irreducible if and only if g(C, J) is 
affine. By [2, Theorem 2.27], an indecomposable symmetrizable Kac–Moody superalgebra 
with an isotropic real root is finite-dimensional or affine. In Corollary 2.1.1 we show that 
an irreducible GRRS which contains an isotropic root is either finite or affine.

1.5. Quotients. Let R ⊂ V be a GRRS and V ′ be a subspace of Ker(−, −). One readily 
sees that the image of R in V/V ′ satisfies the axioms (GR0), (GR2) and (WGR3). We 
call this image a quotient of R and a bijective quotient if the restriction of the canonical 
map V → V/V ′ to R is injective. The minimal quotient of R, denoted by cl(R), is the 
image of R in V/Ker(−, −); by Corollary 2.1.1 (i), cl(R) is a WGRS.

1.5.1. Let R ⊂ V be a GRRS, V ′ be a subspace of Ker(−, −), and ι : V → V/V ′ be 
the canonical map. Assume that the quotient ι(R) is a GRRS. We claim that for any 
subsystem R′ ⊂ ι(R), the preimage of R′ in R, i.e. ι−1(R′) ∩R, is again a GRRS (and a 
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subsystem of R). The claim follows from the formula ι(rαβ) = rι(α)ι(β) for each α, β ∈ R

(note that rι(α) is well-defined, since ι(R) is a GRRS).

1.6. Direct sums. Let R1 ⊂ V1, R2 ⊂ V2 be GRRSs. Then (R1 ∪R2) ⊂ (V1 ⊕V2) is again 
a GRRS.

Let R = ∪k
i=1Ri ⊂ V , where (Ri, Rj) = 0 for i �= j, and let Vi = CRi. Clearly, 

Ri is a GRRS in Vi. Since the natural map ⊕k
i=1Vi → V preserves the form (−, −), 

R is a bijective quotient of ∪k
i=1Ri ⊂ ⊕k

i=1Vi. We conclude that any GRRS is a bijective 
quotient of ∪k

i=1Ri ⊂ ⊕k
i=1Vi, where Ri ⊂ Vi are irreducible GRRSs. In particular, if the 

form (−, −) on V is non-degenerate, then V = ⊕k
i=1Vi.

1.7. Affinizations. Let V be as above and X ⊂ V be any subset. Take V (1) = V ⊕ Cδ

with the bilinear form (−, −)′ such that δ ∈ Ker(−, −)′ and the restriction of (−, −)′ to 
V coincides with the original form (−, −) on V . Set X(1) := X + Zδ = {α + sδ| α ∈ X,

s ∈ Z}.
One readily sees that R(1) ⊂ V (1) is a GRRS if R is a GRRS and R is a quotient of 

R(1) in V (1)/Cδ = V .
We call R(1) ⊂ V (1) the affinization of R ⊂ V and use the notation R(n) ⊂ V (n), 

where R(n+1) := (R(n))(1), V (n+1) := (V (n))(1).
If R is a finite GRRS, then R(n) is an affine GRRS for any n ≥ 1.
Note that the affinizations of non-isomorphic GRRS can be isomorphic, see Proposi-

tion 5.3 (iii).

1.8. Generators of a GRRS. Let R ⊂ V be a GRRS. Recall that a non-empty subset 
X ⊂ R generates a subsystem R′ if R′ is a unique minimal (by inclusion) subsystem 
of R containing X. If R has no isotropic roots, then any non-empty X ⊂ R generates 
a unique subsystem, namely, W (X)X. The following lemma gives a sufficient condition 
when X generates a subsystem.

1.8.1. Lemma. Let R ⊂ V be a GRRS.

(i) If R′ ⊂ R satisfies (GR2), (GR3), then R′′ := R′ \ (R′)⊥ is either empty or is a 
GRRS.

(ii) If a non-empty X ⊂ R is such that X ∩X⊥ = ∅, then X generates a subsystem R′

of R.

Proof. (i) Let R′′ be non-empty and let V ′′ be the span of R′′. Let us verify that R′′ ⊂ V ′′

is a GRRS. Clearly, (GR1) holds. If x ∈ R′′, then (x, y) �= 0 for some y ∈ R′, so y ∈ R′′; 
thus x is not in the kernel of the restriction of (−, −) to V ′′, so (GR0) holds. It remains to 
verify that for each α, β ∈ R′′ one has rαβ ∈ R′′. Indeed, since (GR2), (GR3) hold for R′, 
rαβ ∈ R′. If (α, β) = 0, then rαβ = β ∈ R′′; otherwise (rαβ, α) �= 0 (for (α, α) �= 0 one 
has (rαβ, α) = −(β, α) and for (α, α) �= 0 one has (rαβ, α) = (β, α)). Hence rαβ ∈ R′′

as required.
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(ii) By § 1.2.6, for any α ∈ R the map rα : R → R satisfying (GR2), (GR3) respectively 
is uniquely defined. Take

X0 := X, Xi+1 := {±rαβ| α, β ∈ Xi}, R′ :=
∞⋃
i=0

Xi.

Clearly, R′ satisfies (GR2), (GR3) and lies in any subsystem containing X. Let us show 
R′ is a GRS. By (i), it is enough to verify that R′∩(R′)⊥ = ∅. Suppose that v ∈ R′∩(R′)⊥; 
let i be minimal such that v ∈ Xi. Since X ∩X⊥ = ∅ we have i �= 0, so v = rαβ for some 
α, β ∈ Xi−1 with (α, β) �= 0. Since β = rαv �= v, one has (α, v) �= 0, a contradiction. One 
readily sees that (v, α) = ±(α, β), that is (v, R′) �= 0, a contradiction. �
1.8.2. Let g be a basic classical Lie superalgebra, Δ ⊂ h∗ be its roots system and Π ⊂ Δ
be a set of simple roots. If g �= psl(n, n), Π consists of linearly independent vectors. If 
g �= osp(1, 2n) (i.e., Δ �= BCn = B(0, n)), then Δ is generated by Π. We conclude that 
for g �= psl(n, n), osp(1, 2n), the root system Δ ⊂ V is generated by a basis of V .

2. The case when (−, −) is non-degenerate

In this section V �= 0 is a finite-dimensional complex vector space and R ⊂ V satisfies 
(GR0), (GR2), (WGR3). As before we say that R ⊂ V is irreducible if R �= R1

∐
R2, 

where R1, R2 are non-empty sets satisfying (GR2), (WGR3) and (R1, R2) = 0.
We will prove the following theorem.

2.1. Theorem. Assume that the form (−, −) is non-degenerate and R ⊂ V satisfies (GR0), 
(GR2), (WGR3) and

(GR1’): R spans V .

Then

(i) If R is irreducible and contains an isotropic root, then R is finite (such Rs are 
classified in [6]);

(ii) R is a WGRS.

2.1.1. Corollary.

(i) If R is a GRRS, then the image of R in V/Ker(−, −) is a WGRS.
(ii) If R is an irreducible GRRS which contains an isotropic root, then R is either finite 

or affine.

2.1.2. Remark. By § 1.4.3, any symmetric n ×n matrix C with non-zero diagonal entries 
and 2cij/cii ∈ Z for each i �= j, gives a GRRS. Clearly, (−, −) is non-degenerate if 
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and only if detC �= 0. In this way we obtain a lot of examples of infinite GRRSs with 
non-degenerate (−, −) (but they do not contain isotropic roots!).

2.2. Proof of Theorem 2.1. We will use the following lemmas.

2.2.1. Lemma. For any β ∈ R there exists α ∈ R such that rαβ is non-isotropic and 
(β, rαβ) �= 0.

Proof. If β is non-isotropic we take α := β. Let β be isotropic. Notice that (β, rαβ) = 0
implies rαβ = ±β, so it is enough to show that rαβ is non-isotropic for some α ∈ R. 
By (GR0) β /∈ Ker(−, −), so there exists γ ∈ R such that (γ, β) �= 0, which implies 
(β, rγβ) �= 0. As a consequence, one of the roots rγβ or rrγββ is non-isotropic. �
2.2.2. Lemma. Let R be irreducible and contains an isotropic root. For each α ∈ R there 
exists an isotropic root β ∈ R with (α, β) �= 0.

Proof. Let Riso ⊂ R be the set of isotropic roots. Let R2 ⊂ R be the set of non-isotropic 
roots in R ∩R⊥

iso and R1 := R \R2. One readily sees that R2 is a subsystem.
Let us verify that R1 is also a subsystem. Indeed, let α, β ∈ R1 be such that (α, β) �= 0. 

One has (rβα, β) �= 0, so rβα ∈ R1 if β is isotropic. If β is non-isotropic, then, taking 
γ ∈ Riso such that (α, γ) �= 0, we get (rβα, rβγ) = (α, γ) �= 0 and rβγ ∈ Riso, that is 
rβα ∈ R1 as required. Thus α, β ∈ R1 with (α, β) �= 0 forces rβα ∈ R1. Hence R1 is a 
subsystem.

Suppose that there exist α ∈ R1, β ∈ R2 with (α, β) �= 0. By the construction of R2, 
both α, β are non-isotropic. Since (α, β) �= 0 one has rαβ = β+xα for some x �= 0. Taking 
γ ∈ Riso such that (α, γ) �= 0, we get (rαβ, γ) �= 0 (since (β, γ) = 0), so rαβ ∈ R1. Since 
α is non-isotropic and R1 is a subsystem, one has β = rα(rαβ) ∈ R1, a contradiction.

We conclude that R = R1
∐

R2 with (R1, R2) = 0. Since R is irreducible, R2 is empty. 
This implies the assertion of the lemma for non-isotropic root α.

In the remaining case α ∈ R is isotropic. Since α /∈ Ker(−, −), there exists γ ∈ R

such that (γ, α) �= 0. If γ is isotropic, take β := γ; if γ is non-isotropic, take β := rγα. 
The assertion follows. �
2.2.3. Corollary. Let R be irreducible and contains an isotropic root. If α ∈ R is 
non-isotropic, then for each γ ∈ R one has kα,γ ∈ {0, ±1, ±2, ±3, ±4} and kα,γ ∈
{0, ±1, ±2} if γ is isotropic.

Proof. Let (α, γ) �= 0. If γ is isotropic and α + γ ∈ R, then

||α + γ||2 = (α, α)(1 + kα,γ), 2(α + γ, γ)
||α + γ||2 = kα,γ

1 + kα,γ
,

so (GR2) gives kα,γ ∈ {−1, −2}. If γ is isotropic and α + γ ∈ R, then kα,γ ∈ {1, 2}.



500 M. Gorelik, A. Shaviv / Journal of Algebra 491 (2017) 490–516
Let γ be non-isotropic. By Lemma 2.2.2, there exists an isotropic β ∈ R such that 
(β, γ) �= 0. Since β and rγβ are isotropic, one has kα,β, kγ,β , kα,rγβ ∈ {0, ±1, ±2} and 
kγ,β �= 0. Combining (1) and kα,γ ∈ Z, we obtain the required formula. �
2.2.4. Proof of finiteness. Let R ⊂ V satisfy the assumptions of Theorem 2.1. Let us 
show that R is finite.

By (GR1’) R contains a basis B of V . Since (−, −) is non-degenerate, each v ∈ V

is determined by the values (v, b), b ∈ B. Thus in order to show that R is finite, it is 
enough to verify that the set {(α, β)| α, β ∈ R} is finite. If α, β ∈ R are isotropic and 
(α, β) �= 0, then rαβ is non-isotropic and (rαβ, α) = (β, α). Thus

{(α, β)| α, β ∈ R} = {0} ∪ S, where S := {(α, β)| α, β ∈ R, (α, α) �= 0}.

Using Corollary 2.2.3 we conclude that the finiteness of S is equivalent to the finiteness of 
N := {(α, α)| α ∈ R}. Let X ⊂ R be a maximal linearly independent set of non-isotropic 
roots and let α be a non-isotropic root. Then α lies in the span of X, so (α, α) �= 0 implies 
(α, β) �= 0 for some β ∈ X. One has (α, α)/(β, β) = kβ,α/kα,β . From Corollary 2.2.3 we 
get

N ⊂ {0, a/b(β, β)| β ∈ X, a, b ∈ {±1,±2,±3,±4}},

so N is finite as required. �
2.2.5. Proof of (GR1). It remains to verify that R satisfies (GR1). Since the form (−, −)
is non-degenerate, (R, V ) is a direct sum of its irreducible components: V = ⊕k

i=1Vi, 
where (Vi, Vj) = 0 for i �= j, and R =

∐k
i=1 Ri, where Ri spans Vi, Ri is irreducible and 

satisfies (GR0), (GR2), (WGR3) for each i = 1, . . . , k. Thus without loss of generality 
we can (and will) assume that R is irreducible. Let us show that

(−,−) can be normalized in such a way that (α, β) ∈ Q for all α, β ∈ R; (3)

implies (GR1). Indeed, let B = {β1, . . . , βn} ⊂ R be a basis of V and let α1, . . . , αk ∈ R

be linearly dependent. For each i write αi =
∑n

j=1 yijβj . Since (−, −) is non-degenerate 
and (α, β) ∈ Q for each α, β ∈ R, we have yij ∈ Q for each i, j. Since α1, . . . , αk are 
linearly dependent, detY = 0. By above, the entries of Y are rational, so there exists a 
rational vector X = (xi)ki=1 such that Y X = 0. Then 

∑k
i=1 xiαi = 0, so α1, . . . , αk ∈ R

are linearly dependent over Q. Thus the natural map ZR ⊗Z C → V is injective. By 
(GR1’) it is also surjective, so (GR1) holds.

Assume that R does not contain isotropic roots. Let us show that we can normalize 
(−, −) in such a way that (3) holds. For α, β ∈ R one has (α, α)/(β, β) = kβ,α/kα,β ∈ Q

if (α, β) �= 0. From the irreducibility of R, we obtain (α, α)/(β, β) ∈ Q. Thus we can 
normalize the form (−, −) in such a way that (α, α) ∈ Q for each α ∈ R; in this case 
(α, β) ∈ Q for any α, β ∈ R, so (3) holds.
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Now assume that R contains an isotropic root. By above, R is finite; such systems 
were classified in [6]. From this classification it follows that R satisfies (3) except for 
R = D(2, 1, a) with a /∈ Q; thus (GR1) holds for such R. For R = D(2, 1, a) (and, in 
fact, for each R �= psl(n, n)) there exists Π ⊂ R such that R ⊂ ZΠ and the elements of 
Π are linearly independent. In this case, Π is a basis of V and ZR = ZΠ. Thus (GR1) 
holds. �
3. The minimal quotient cl(R)

In this section V is a complex (l + k)-dimensional vector space endowed with a de-
generate symmetric bilinear form (−, −) with a k-dimensional kernel, and R ⊂ V is a 
GRRS. The map cl is the canonical map V → V/ Ker(−, −). By Corollary 2.1.1 (i), cl(R)
is a WGRS in V/ Ker(−, −).

3.1. Gaps. Consider the case when dimKer(−, −) = 1. From (GR1) it follows that 
ZR ∩ Ker(−, −) = Zδ for some (may be zero) δ.

For each α ∈ cl(R) one has (cl−1(α) ∩ R) ⊂ {α′ + Zδ} for some α′ ∈ R. If δ �= 0, we 
call g(α) ∈ Z≥0 the gap of α if

cl−1(α) ∩R = {α′ + Zg(α)δ}

for some α′ ∈ R. If δ = 0 we set g(α) := 0 (in this case cl−1(α) ∩ R contains only one 
element).

Observe that the set of gaps is an invariant of the root system. The gaps have the 
following properties:

(i) g(α) is defined for all non-isotropic α ∈ cl(R);
(ii) g(α) are W (cl(R))-invariant (if g(α) is defined, then g(wα) is defined and g(wα) =

g(α) for each w ∈ W (cl(R)));
(iii) if α, β ∈ cl(R) are non-isotropic, then kα,βg(α) ∈ Zg(β);
(iv) if cl(R) is a GRRS, then g(α) are defined for all α ∈ cl(R) and g(α) are 

GW (cl(R))-invariant (see § 1.2.4 for notation).

The properties (i)–(iii) are standard (we give a short proof in § 3.1.1); (iv) will be 
established in Proposition 3.4.1.

3.1.1. Let us show that g(α) satisfies (i)–(iii). Fix a non-isotropic α′ ∈ R and set

M := {k ∈ Z| α′ + kδ ∈ R}.

For each x, y, z ∈ Ker(−, −) and m ∈ Z one has

(rα′+xrα′+y)m(α′ + z) = α′ + 2m(x− y) + z. (4)
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Thus for each p, q, r ∈ M one has 2Z(p − q) + r ⊂ M . Note that 0 ∈ M (since α′ ∈ R). 
Taking q = 0 and r = 0 or r = p, we get Zp ⊂ M . Hence M = Zk for some k ∈ Z. This 
gives (i). Combining rα′(β + pδ) = rα′β + pδ (for any β ∈ R) and the fact that W (R) is 
generated by the reflections rβ with non-isotropic β ∈ R, we obtain (ii).

For (iii) take α, β ∈ cl(R). Notice that g(α), g(β) are defined by (i); by (ii) g(rαβ) =
g(β). Take α′, β′ ∈ R such that cl(α′) = α and cl(β′) = β. Since rα′+kδ(β′) = rα′β′ +
aα,βkδ we have aα,βg(α) ∈ Zg(β) as required.

3.2. Construction of R′ ⊂ cl(R). For the rest of this section fix:

L := ZR ∩ Ker(−,−).

From (GR1) it follows that L =
∑s

i=1 Zδi, for some linearly independent δ1, . . . , δs ∈
Ker(−, −). In Lemma 3.4 it will be shown that s = dimKer(−, −).

Since R spans V , there exists X := {v1, . . . , vl} ⊂ R whose images form a basis 
of V/Ker(−, −). We fix X and identify V/ Ker(−, −) with the vector space V ′ ⊂ V

spanned by v1, . . . , vl; then V = V ′ ⊕ Ker(−, −) and cl : V → V ′ is the projection; in 
particular, cl(R) is a WGRS in V ′. The restriction of (−, −) to V ′ is non-degenerate, so 
by Lemma 1.8.1 (ii), the set X generates a subsystem R′ in R.

3.3. Construction of F (α). For each α ∈ V ′ we introduce

F (α) := {v ∈ Ker(−,−)| α + v ∈ R}.

Notice that F (α) is non-empty if and only if α ∈ cl(R). For each α ∈ cl(R) one has

F (α) ⊂ L + δα for some δα where δα = 0 iff α ∈ R′. (5)

3.4. Lemma. If cl(R) ⊂ ZX, then R ⊂ cl(R) +L = cl(R)(k) for k := dimKer(−, −) and 
dimKer(−, −) = rankL.

Proof. Clearly, cl(R) +L = cl(R)(s), where s = rankL. Fix α ∈ R and set μ := α−cl(α). 
Then μ ∈ Ker(−, −) and μ ∈ ZR, since cl(R) ⊂ ZR. Therefore μ ∈ L. This gives 
R ⊂ cl(R) + L. Since R spans V , s = dimKer(−, −) as required. �
3.4.1. Proposition. For each α ∈ cl(R) one has

(i) F (−α) = −F (α);
(ii) F (wα) = F (α) for all w ∈ W (R′);
(iii) F (α) = −F (α) if α is non-isotropic;
(iv) if cl(R) is a GRRS, then for each α ∈ R′ one has F (α) = −F (α) and F (wα) =

F (α) for each w ∈ GW (R′).
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Proof. The inclusion R′ ⊂ R implies (ii). The formula R = −R implies (i); (iii) follows 
from (i) and (ii).

For (iv) let R′ be a GRRS. Let us show that for each α, β ∈ R′ one has F (rβα) = F (α). 
Clearly, this holds if rβα = α; by (ii) this holds if β is non-isotropic. Since rβ is an 
involution, it is enough to verify that

F (rβα) ⊂ F (α) for isotropic β ∈ R′. (6)

Assume that rβα = α + β. Then α + β ∈ R′ ⊂ cl(R), so α − β /∈ cl(R) by § 1.2.6
(since cl(R) is a GRRS). Take v ∈ F (α). Then α + v ∈ R, so rβ(α + v) ∈ R. Since 
cl(α+ v−β) = α−β /∈ cl(R), one has rβ(α+ v) = α+ v+β, so v ∈ F (rβα) as required. 
The case rβα = α− β is similar.

Thus we established the formula F (rβα) = F (α) for α �= ±β. By Lemma 2.2.1 there 
exists γ ∈ R′ such that rγβ is non-isotropic. By (iii) F (rγβ) = −F (rγβ). By above, 
F (β) = F (rγβ) (since rγβ �= ±β). Hence F (β) = F (−β). This completes the proof 
of (6) and of (iv). �
3.4.2. Lemma. For any α, β ∈ cl(R) such that rα is well-defined and rαβ = α + β one 
has

F (α + β) = F (α) + F (β). (7)

Proof. Observe that F (α + β) = F (α) + F (β) holds if for any x ∈ F (α), y ∈ F (β) and 
z ∈ F (α + β) one has

rα+x(β + y) = α + β + x + y, rα+x(α + β + z) = β + z − x.

If α is non-isotropic, then α + x is also non-isotropic and the above formulae follow 
from the definition of rα+x. If α is isotropic and rα is well-defined, then, by § 1.2.6, 
β − α, β + 2α /∈ cl(R) (since β, α + β ∈ cl(R)), which implies the above formulae. 
Thus (7) holds. �
3.4.3. Corollary. Assume that

• cl(R) = R′;
• cl(R) is a GRRS and cl(R) �= A1;
• GW (R′) acts transitively on R′.

Then R = R′ + L, i.e. R = (R′)(s).

Proof. We claim that R′ contains two roots α, β with rαβ = α+β. Indeed, if R contains 
an isotropic root α, then it also contains β such that (α, β) �= 0, so rαβ ∈ {β ± α}, so 
one of the pairs (α, β) or (−α, β) satisfies the required condition. If all roots in R′ are 
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non-isotropic, then any non-orthogonal α′, β′ ∈ R′ generate a finite root system, that is 
one of A2, C2, BC2 and such root system contains α, β as required.

By Proposition 3.4.1 (iv) F (γ) is the same for all γ ∈ R′ and F (γ) = −F (γ). Using 
(7) for the pair α, β as above, we conclude that F (α) is a subgroup of Ker(−, −), so 
F (α) = ZF (α). This implies ZR∩Ker(−, −) = F (α), that is F (α) = L as required. �
4. Case when cl(R) is finite and is generated by a basis of cl(V )

In this section we classify the irreducible GRRSs R with a finite cl(R) generated by 
a basis of cl(V ).

Combining § 1.4.2, 1.8.2, we conclude that if (−, −) is non-degenerate, then R is a 
root system of a basic classical Lie superalgebra g �= psl(n, n), osp(1, 2n), i.e. cl(R) is 
from the following list:

classical root systems : An, Bn, Cn, Dn, E6, E7, E8, F4, G2,

A(m,n) m �= n,B(m,n),m, n ≥ 1;C(n), D(m,n), m, n ≥ 2;D(2, 1, a), F (4), G(3).

(8)

If the form (−, −) is degenerate, then cl(R) is from the list (8); the classification is 
given by the following theorem.

4.1. Theorem. Let R ⊂ V be a GRRS and

k = dimKer(−,−) > 0.

(i) If cl(R) is one of the following GRRSs

An, n ≥ 2, Dn, n ≥ 4, E6, E7, E8;
A(m,n) m �= n;C(n), D(m,n),m ≥ 2, n ≥ 1;D(2, 1, a), F (4), G(3),

then R is the affinization of cl(R): R = cl(R)(k).
(ii) The isomorphism classes of GRRSs R with cl(R) = A1 are in one-to-one correspon-

dence with the equivalence classes of the subsets S of the affine space Fk
2 containing 

an affine base of Fk
2, up to affine automorphisms of Fk

2.
(iii) If cl(R) = G2, F4, then R is of the form R(s) for s = 0, . . . , k

R(s) := {α +
k∑

i=1
Zδi| α ∈ cl(R) is short}

∪ {α +
s∑

i=1
Zδi +

k∑
i=s+1

Zrδi| α ∈ cl(R) is long},

where {δi} is a basis of Ker(−, −) and r = 2 for F4 and r = 3 for G2. The GRRSs 
R(s) are pairwise non-isomorphic.
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(iv) The GRRSs R with cl(R) = C2 are parametrized by the pairs (S1, S2), where Si are 
subsets of the affine space Fk

2 containing zero such that
(1) S1 contains an affine base of Fk

2,
(2) S1 + S2 ⊂ S1.
Moreover, R(S1, S2) ∼= R(S′

1, S
′
2) if and only if for i = 1, 2 one has S′

i = φ(Si) +ai, 
where φ ∈ GL(Fk

2) and a1, a2 ∈ Fk
2 (so v �→ φ(v) + ai is an affine automorphism 

of Fk
2).

(v) The isomorphism classes of GRRSs R with cl(R) = Bn, Cn, n ≥ 3, B(m, n), 
m, n ≥ 1 are in one-to-one correspondence with the equivalence classes of non-
empty subsets S of the affine space Fk

2 up to affine automorphisms of Fk
2.

4.1.1. Remarks. In (ii), (iv) we mean that R(S) ∼= R(S′) for S, S′ ⊂ Fk
2 if and only if

S′ = ψ(S) for some affine automorphism ψ.
Notice that all above GRRSs are infinite (so affine).
Observe that (i) corresponds to the case when WG(cl(R)) acts transitively on cl(R)

and cl(R) �= A1. For cl(R) = Bn, Cn F4, G2 and B(m, n), m, n ≥ 1, cl(R) has two 
GW (cl(R))-orbits (see § 1.2.4 for notation). We denote these orbits by O1, O2, where O1
(resp., O2) is the set of short (resp., long) roots for Cn, F4, G2 and O1 = Dm, D(m, n)
for Bm, B(m, n) respectively (and O2 is the set of short roots in both cases).

4.2. Description of R(S). In order to describe the above correspondences in (ii)–(iv) 
between GRRSs and subsets in Fk

2 we fix a free abelian group L ⊂ Ker(−, −) of rank 
k and denote by ι2 the canonical map ι2 : L → L/2L ∼= Fk

2 and by ι−1
2 the preimage of 

S ⊂ Fk
2 in L.

4.2.1. Case when S ⊂ Fk
2 contains zero. For cl(R) = A1 = {±α} (case (ii)) one has

R(S) := {±α + ι−1
2 (S)}.

For cl(R) = Cn one has

R(S1, S2) := {α + ι−1
2 (S1)| α ∈ O1} ∪ {α + ι−1

2 (S2)| α ∈ O2} for n = 2,
R(S) := {α + L| α ∈ O1} ∪ {α + ι−1

2 (S)| α ∈ O2} for n > 2.

In these cases L := ZR ∩Ker(−, −).
For cl(R) = Bn, n ≥ 3, B(m, n), m, n ≥ 1 we take

R(S) := {α + 2L| α ∈ O1} ∪ {α + ι−1
2 (S)| α ∈ O2}.

4.2.2. Now assume that S ⊂ Fk
2 is an arbitrary non-empty set. Take any s ∈ S and 

consider a set S(s) := S − s. The set S(s) contains zero (and contains an affine basis for 
Fk

2 if S contained such a basis), so R(S−s) is defined above. We set R(S, s) := R(S−s). 
The sets S(s) (for different choices of s) are conjugated by affine automorphism, so, as 
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we will show in § 4.4, the GRRSs corresponding to different choices of s are isomorphic: 
R(S, s′) ∼= R(S, s′′) for any s′, s′′ ∈ S (in other words, R(S) := R(S, s) is defined up to 
an isomorphism).

4.3. Proof of Theorem 4.1. The rest of this section is devoted to the proof of Theorem 4.1. 
We always assume that 0 ∈ S. Considering Bn (reps., B(m, n)) we always assume that 
n ≥ 3 (resp., m, n ≥ 1).

4.3.1. Recall that cl(R) is generated (as a GRRS) by a basis Π of cl(V ). We take X := Π in 
the construction of R′ (see § 3.2). We obtain R′ = cl(R), so cl(R) ⊂ R. Using Lemma 3.4
we obtain

cl(R) ⊂ R ⊂ cl(R)(k).

4.3.2. It is easy to verify that if cl(R) is as in (i), then WG(cl(R)) acts transitively on 
cl(R), so (i) follows from Corollary 3.4.3.

4.3.3. Case cl(R) = A1. Let cl(R) = A1 = {±α}; set L := ZR ∩ Ker(−, −). Then 
R ⊂ cl(R)(k) and so, by (GR1), L is a free group of rank k. If k = 1, then R = A

(1)
1

by § 3.1. Consider the case k > 1. Recall that R = {±(α+H)}, where H ⊂ L contains 0, 
so (GR1) is equivalent to the condition that H contains a basis of L. For each x, y ∈
Ker(−, −) one has rα+x(α+ y) = −α+ y− 2x, so (GR2) is equivalent to 2x − y ∈ H for 
each x, y ∈ H, that is H +2L ⊂ H. Hence H is a set of equivalence classes of L/2L = Fk

2
which contains 0 and a basis of Fk

2 .
View Fk

2 as an affine space. Recall that an affine basis of a k-dimensional affine space 
Fk is a collection of points x1, . . . , xk+1 such that any point y ∈ Fk is of the form ∑k+1

i=1 λixi for some λi ∈ F with 
∑k+1

i=1 λi = 1. We conclude that R = {±(α + H)} is a 
GRRS if and only if the set S := ι2(H) ⊂ Fk

2 has the following properties: 0 ∈ S and S
contains an affine basis of Fk

2 .

4.3.4. Construction of H1, H2. Assume that WG(cl(R)) does not act transitively on 
cl(R). Then cl(R) has two orbits O1 and O2, see above. By Proposition 3.4.1 one has

R = {α + H1| α ∈ O1} ∪ {α + H2| α ∈ O2},

where H1, H2 ⊂ Ker(−, −) and 0 ∈ H1, H2 (since cl(R) ⊂ R).
Except for the case cl(R) = C2 the orbit O1 is an irreducible GRRS with the transitive 

action of WG(O1) (one has O1 = Dn for Bn, Cn, F4, O1 = D(m, n) for B(m, n) and 
O1 = A2 for G2). Combining Lemma 1.5.1 and (i), we obtain that H1 is a free abelian 
subgroup of Ker(−, −) if cl(R) �= C2. We introduce L as follows:

L :=

⎧⎪⎨
⎪⎩

H1 for cl(R) �= C2, B(m,n), Bn;
1
2H1 for cl(R) = B(m,n), Bn;
ZR ∩Ker(−,−) for cl(R) = C .

(9)

2
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4.3.5. Cases cl(R) = F4 and cl(R) = G2. For these cases O2 ∼= O1, so O2 is also an 
irreducible GRRS with the transitive action of WG(O2), and thus H2 is a free abelian 
subgroup of Ker(−, −). One readily sees that (GR2) is equivalent to

H2 + rH1, H2 + H2 ⊂ H2, H1 + H2 ⊂ H1,

where r = 2 for F4 and r = 3 for G2. This gives rL ⊂ H2 ⊂ L, so H2/(rL) is an additive 
subgroup of Fk

r . Thus H2/(rL) ∼= Fs
r for some 0 ≤ s ≤ k and s is an invariant of R. This 

establishes (iii).

4.3.6. Case cl(R) = Cn. Take n > 2. One readily sees that (GR2) is equivalent to

H2 + 2H1, H2 + 2H2 ⊂ H2, H1 + H2 ⊂ H1.

Since H1 = L, we get H2 + 2L ⊂ H2 ⊂ L. Taking S := ι2(H2), we obtain R ∼= R(S).
Take n = 2. In this case (GR2) is equivalent to

H1 + H2, H1 + 2H1 ⊂ H1, H2 + 2H1, H2 + 2H2 ⊂ H2.

Since 0 ∈ H1, we obtain H2 ⊂ H1, so L = ZR ∩ Ker(−, −) is spanned by H1. Thus 
(GR2) is equivalent to Hi +2L ⊂ Hi for i = 1, 2 and H1 +H2 ⊂ H1. Taking Si := ι2(Hi)
for i = 1, 2, we obtain R ∼= R(S1, S2) as required.

4.3.7. Cases cl(R) = Bn and cl(R) = B(m, n). One readily sees that (GR2) is 
equivalent to

H2 + 2H2, H2 + H1 ⊂ H2, H1 + 2H2 ⊂ H1.

Since H1 = 2L, we get H2 ⊂ L and H2 + 2L ⊂ H2. Taking S := ι2(H2), we obtain 
R ∼= R(S).

4.4. Isomorphisms R(S) ∼= R(S′). It remains to verify that in (ii)–(v) one has R(S) ∼=
R(S′) if and only if S = ψ(S′) for some affine transformation ψ (for C2 we have Si =
ψ(S′

i) for i = 1, 2).

4.4.1. Let R(S) ⊂ V , R(S′) ⊂ V ′ be two isomorphic GRRSs and let φ : V
∼−→ V ′

with φ(R(S)) = R(S′) be the isomorphism. Define L, L′ and Hi, H ′
i (i = 1, 2) for R(S)

and R(S′) as above (for cl(R) = A1 we set O1 := O2 := A1 and H1 := H2 := H). 
From (9) one has φ(L) = L′ and thus φ(2L) = 2L′, so φ induces a linear isomorphism 
φ2 : Fk

2
∼−→ Fk

2 such that ι′2 ◦ φ = φ2 ◦ ι2 (where ι2 : L/2L ∼−→ Fk
2 and ι′2 : L′/2L′ ∼−→ Fk

2
are the natural isomorphisms).

By the above construction, R(S) and R(S′) contain cl(R(S)) ∼= cl(R(S′)). Take α ∈
O2 ∈ cl(R(S)) and let α′ be the corresponding element in cl(R(S′)). Then φ(α) = α′ + v



508 M. Gorelik, A. Shaviv / Journal of Algebra 491 (2017) 490–516
for some v ∈ H ′
2. Since φ is linear, φ(α+ x) = α′ + v +φ(x) for each x ∈ L. This implies 

H ′
2 = v + φ(H2), that is

S′ = ι′2(H ′
2) = ι′2(v) + ι′2(φ(H2)) = ι′2(v) + φ2(ι2(H2)) = ι′2(v) + φ2(S).

This shows that S′ is obtained from S by an affine automorphism ψ := ι′2(v) + φ2 of Fk
2

as required.
For the case cl(R) = C2 the above argument gives S′

i = ai + φ2(Si) for some ai ∈ S′
i

(i = 1, 2).

4.4.2. Let R(S), R(S′) ⊂ V be two GRRSs with cl(R(S)) = cl(R(S′)) (and the same L), 
and let S′ = ψ2(S) + a if cl(R) �= C2 (resp., Si = ψ2(S) + ai for i = 1, 2 if cl(R) �= C2), 
where a ∈ L and a ∈ Fk

2 = L/2L (resp., ai ∈ L and a ∈ Fk
2) and ψ2 is a linear 

automorphism of Fk
2 . Fix a linear isomorphism ψ : L → L such that ι2 ◦ ψ = ψ2 ◦ ι2.

Recall that V = Ker(−, −) ⊕ CΠ, where Ker(−, −) = L ⊗Z C and Π ⊂ cl(R(S)) =
cl(R(S′)) is linearly independent in V . Extend ψ to a linear automorphism of V by 
putting ψ(α) := α + a for each α ∈ Π ∩ O2 and ψ(α) := α for each α ∈ Π ∩ O1 if 
cl(R) �= A1, C2 (resp., ψ(α) := α+a for α ∈ Π if cl(R) = A1 and ψ(α) := α+ai for each 
α ∈ Π ∩Oi, where i = 1, 2 for cl(R) = C2). One readily sees that ψ preserves (−, −) and 
ψ(R(S)) = R(S′). Thus R(S) ∼= R(S′) (resp., R(S1, S2) ∼= R(S′

1, S
′
2)) as required.

5. Case when cl(R) is the root system of psl(n + 1, n + 1) for n > 1

In this section we describe R such that cl(R) is the root system of psl(n + 1, n + 1)
for n > 1.

5.1. Description of A(n, n), A(n, n)f , A(n, n)x. A finite GRRS A(n, n) ⊂ V can be 
described as follows. Let V1 be a complex vector space endowed with a symmetric bilinear 
form and an orthogonal basis ε1, . . . , ε2n+2 such that (εi, εi) = −(εn+1+i, εn+1+i) = 1
for i = 1, . . . , n + 1. One has

A(n, n) = {εi − εj}i
=j , V = {
2n+2∑
i=1

aiεi|
2n+2∑
i=1

ai = 0},

where the reflection rεi−εj is the restriction of the linear map r̃εi−εj ∈ End(V1) which 
interchanges εi ↔ εj and preserves all other elements of the basis. One readily sees that 
A(n, n) ⊂ V is a finite GRRS; it is the root system of the Lie superalgebra pgl(n +1, n +1)
(V1 corresponds to h∗, where h is a Cartan subalgebra of gl(n + 1, n + 1) and V ⊂ V1 is 
dual to the Cartan subalgebra of pgl(n + 1, n + 1)). The kernel of the bilinear form on 
V is spanned by

I :=
n+1∑

(εi − εn+1+i).

i=1
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The root system of psl(n + 1, n + 1) is the quotient of A(n, n) by CI (it is a bijective 
quotient if n > 1); we denote it by A(n, n)f : A(n, n)f := cl(A(n, n)). Recall that A(n, n)f
is a GRRS if and only if n > 1 and A(1, 1)f is a WGRS (denoted by C(1, 1) in [6], 
see § 1.4.2).

Let A(n, n)(1) ⊂ V (1) := V ⊕ Cδ be the affinization of A(n, n). We denote by clx the 
canonical map

clx : V ⊕ Cδ → Vx := (V ⊕ Cδ)/C(I + xδ)

and by A(n, n)x the corresponding quotient of A(n, n)(1):

A(n, n)x := clx(A(n, n)(1)).

Note that A(n, n)0 = (A(n, n)f )(1). The kernel of (−, −) on Vx is one-dimensional and

cl(A(n, n)x) ∼= A(n, n)f .

Note that (GR1) holds for A(n, n)x only if x ∈ Q (since clx(δ), xclx(δ) ∈ ZA(n, n)x). 
We will see that for n > 1 this condition is sufficient: A(n, n)x is a GRRS if and only if 
x ∈ Q; for n = 1 integral values of x should be excluded, see 5.2 below.

5.2. Description of A(1, 1)x, x ∈ QQQ. Let x = p/q be the reduced form (p, q ∈ Z, q > 1, 
GCD(p, q) = 1). Set δ′ := clx(δ)/q, e := clx(ε1 − ε2)/2, d := clx(ε3 − ε4)/2; note that 
δ′, e, d form an orthogonal basis of Vx satisfying (δ′, δ′) = 0 and (e, e) = −(d, d) = 1/2. 
One has

A(1, 1)x = {±2e + Zqδ′, ±2d + Zqδ′, ±e± d + (Zq ± p/2)δ′},

and cl(A(1, 1)x) = A(1, 1)f = C(1, 1) = {±2e, ±2d, ±e ± d}.
Note that ZA(1, 1)x ∩Ker(−, −) is Zδ′ (since GCD(p, q) = 1), so the non-isotropic 

roots in C(1, 1) has the gap q (and the gap of isotropic roots is not defined). Observe 
that A(1, 1)x is not a GRRS for x ∈ Z, since α := e + d + p/2δ′, β := e − d − p/2δ′ are 
isotropic non-orthogonal roots and α± β ∈ R which contradicts to (GR3), see § 1.2.6.

5.3. In this section we prove the following proposition describing the affine GRRSs R
with cl(R) = A(n, n)f , n > 1.

Proposition.

(i) A(1, 1)x is a GRRS if and only if x ∈ Q, x /∈ Z. A(n, n)x for n > 1 is a GRRS if 
and only if x ∈ Q.

(ii) Let R be a GRRS with dimKer(−, −) = 1 and cl(R) = A(n, n)f , n > 1. If R is 
finite, then R ∼= A(n, n). If R is infinite, then R ∼= A(n, n)x for some x ∈ Q.
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For n > 1, A(n, n)x is a bijective quotient of A(n, n)(1) and each α ∈ A(n, n)f has 
the gap q. Moreover A(n, n)x ∼= A(n, n)y if and only if either x + y or x − y is 
integral.

(iii) If R is a GRRS with dimKer(−, −) = k+1 > 1 and cl(R) = A(n, n)f , n > 1, then 
R is isomorphic to A(n, n)(k+1) or to its bijective quotient A(n, n)(k)

1/q for some q ∈
Z>0. These GRRS are pairwise non-isomorphic. Moreover, A(n, n)(k)

p/q
∼= A(n, n)(k)

1/q
if GCD(p, q) = 1.

5.3.1. Remark. Recall that A(n, n)0 = A(n, n)(1)f , so for each p ∈ Z one has 
A(n, n)(k+1)

f
∼= A(n, n)(k)

p for k ≥ 0.

5.4. Proof. By above, A(n, n)x satisfies (GR1) only if x ∈ Q and, in addition, x /∈ Z

for n = 1. One readily sees that the converse holds (these conditions imply (GR1)). 
Since A(n, n)(1) is a GRRS, its quotient A(n, n)x satisfies (GR0), (GR2) and (WGR3). 
Using § 1.2.6 it is easy to show that (GR3) does not hold if and only if n = 1 and x ∈ Z. 
This establishes (i).

It is easy to see that A(n, n)x is a bijective quotient of A(n, n)(1) for n > 1.

5.4.1. Let R be a GRRS with cl(R) = A(n, n)f , n > 1. Set L := Ker(−, −) ∩ ZR; by 
(GR1) one has L ∼= Zk+1, where k + 1 = dimKer(−, −).

Recall that Π̃ := {εi − εi+1}2n+1
i=1 is a set of simple roots for A(n, n) and Π := {εi −

εi+1}2n
i=1 is a set of simple roots for a GRRS A(n, n −1). Applying the procedure described 

in § 3.2 to X := Π, we get R′ = A(n, n −1). Let V ′ be the span of R′. One has V = CI⊕V ′, 
so R′ = A(n, n − 1) can be naturally viewed as a subsystem of A(n, n)f . Note that 
A(n, n)f has three GW (A(n, n − 1))-orbits: A(n, n − 1) itself, O1 := {εi − ε2n}2n−1

i=1 and 
−O1. By Proposition 3.4.1 for i �= j < 2n one has

F (εi − εj) = L′, F (±(εi − ε2n)) = ±S,

where S, L′ ⊂ L and, by Theorem 4.1 (since n > 1), L′ is a free group. By (7),

S = L′ + S, S + (−S) = L′,

so S = a + L′ for some a ∈ L. Note that L = L′ + Za.
If a /∈ QL′, then L = L′ ⊕ Za. Extending the embedding A(n − 1, n) → A(n, n) by 

a �→ I we obtain the isomorphism R ∼= A(n, n)(k). (If k = 0, then L′ = 0, so R ∼= A(n, n).)
If a ∈ L′, then S = −S = L and R = (A(n, n)f )(k+1) = (A(n, n)0)(k).
Consider the remaining case a ∈ QL′\L′. Take the minimal q ∈ Z>1 such that qa ∈ L′

and the maximal p ∈ Z>0 such that qa ∈ pL. Then GCD(p, q) = 1 and for e := q
pa we 

have:

L′ = Ze⊕ L′′, S = (p/q + Z)e⊕ L′′, L = Z
e ⊕ L′′ , where L′′ ∼= Zk. (10)

q
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Hence,

R ∼=
(
A(n, n)/(I − p

q
δ)
)(k) =

(
A(n, n)p/q

)(k)
.

5.4.2. Let us show that A(n, n)x ∼= A(n, n)y if either x + y or x − y is integral. Consider 
the linear endomorphisms ψ, φ ∈ End(V ⊕ Cδ) defined by

ψ(v) := v for v ∈ V ; ψ(δ) := −δ,

and φ(δ) = δ,

φ(εi − εi+1) = εi − εi+1 for i = 1, . . . , 2n; φ(ε2n+1 − ε2n+2) = ε2n+1 − ε2n+2 + δ.

These endomorphisms preserve (−, −) and A(n, n)(1). Since ψ(I + xδ) = I − xδ and 
φ(I+xδ) = I+(x +1)δ, ψ (resp., φ) induces an isomorphism Vx → V−x (resp., Vx → Vx+1) 
which preserves the bilinear forms and maps A(n, n)x to A(n, n)−x (resp., to A(n, n)x+1). 
Hence A(n, n)x ∼= A(n, n)−x

∼= A(n, n)x+1 as required.
Let us show that A(n, n)x ∼= A(n, n)y implies that either x +y or x −y is integral. For 

each subset J of A(n, n)x we set sum(J) :=
∑

α∈J α and we let U be the set of subsets 
J of A(n, n)x containing exactly n + 1 roots. It is not hard to see that

Ker(−,−) ∩ {sum(J)| J ∈ U} =
{

(±p + Zq)δ′ for even n,

(±p + Zq)δ′ ∪ {Zqδ′} for odd n,
(11)

where δ′ is a generator of ZR ∩Ker(−, −) ∼= Z and x = p/q with GCD(p, q) = 1. Thus 
A(n, n)x ∼= A(n, n)y implies ±p +Zq = ±p′ +Zq′, where y = p′/q′ with GCD(p′, q′) = 1. 
The claim follows; this completes the proof of (ii).

5.4.3. Now take R such that cl(R) = A(n, n)f with n > 1 and fix α ∈ R. Set L :=
Ker(−, −) ∩ZR and L′ := {v ∈ Ker(−, −)|α+v ∈ R}. One readily sees from above that 
L/L′ = Z if R = A(n, n)(k) and L/L′ = Z/qZ if R = A(n, n)(k)

p/q (with GCD(p, q) = 1). 
Therefore A(n, n)(k) � A(n, n)(k

′)
p/q and A(n, n)(k)

p/q
∼= A(n, n)(k

′)
p′/q′ with GCD(p′, q′) = 1

forces q = q′, k = k′.
It remains to check that for k ≥ 1 one has A(n, n)(k)

p/q
∼= A(n, n)(k)

1/q. Clearly, it is 
enough to verify this for k = 1. Note that A(n, n)(1)x is the quotient of A(n, n)(2) by 
C(I + xδ): A(n, n) ⊂ V and

V (2) = V ⊕ (Cδ ⊕ Cδ′), A(n, n)(2) = A(n, n) + Zδ + Zδ′,

where (V (2), δ) = (V (2), δ′) = 0. Consider the linear endomorphism φ ∈ End(V (2))
defined by φ(δ) = aδ+ qδ′, φ(δ′) = bδ+pδ′ where a, b ∈ Z are such that pa − qb = 1 and

φ(εi − εi+1) = εi − εi+1 for i = 1, . . . , 2n; φ(ε2n+1 − ε2n+2) = ε2n+1 − ε2n+2 − bδ − pδ′.
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Then φ(I) = I − bδ − pδ′, so φ(I + p
q δ) = I + 1

q δ and φ induces an isomorphism 

A(n, n)(k)
p/q

∼= A(n, n)(k)
1/q. This completes the proof of (iii).

6. The cases cl(R) = BCn, cl(R) = BC(m, n) and cl(R) = C(m, n)

6.1. Case cl(R) = BCn. Let cl(R) = BCn and k = dimKer(−, −).
Let {εi}ni=1 be an orthonormal basis of cl(V ). Recall that cl(R) = BCn have three 

W (BCn)-orbits

O1 := {±εi}ni=1, O2 := {±2εi}ni=1, O3 := {±εi ± εj}n1≤i<j≤n

for n > 1 and two W -orbits, O1 and O2, for n = 1.
We take X to be a set of simple roots of Bn = O1∪O3 (X = {ε1−ε2, . . . , εn−1−εn, εn}) 

in the construction of R′ (see § 3.2). Then R′ = Bn and W (BCn) = W (Bn). We set 
Hi := F (γi) for γi ∈ Oi (i = 1, 2, 3). Recall that −Hi = Hi for i = 1, 2, 3 and 0 ∈ H1, H3.

6.1.1. Case n = 1. One has BC1 = {±ε1, ±2ε1}, X := {ε1}. (GR2) is equivalent to

0 ∈ H1, H1 + 2H1, H1 + H2 ⊂ H1, H2 + 2H2, H2 + 4H1 ⊂ H2. (12)

Therefore L := ZR ∩Ker(−, −) is spanned by H1 and

H1 + 2L ⊂ H1, H2 + 4L ⊂ H2, H2 ⊂ H1, H2 + 2H2 ⊂ H2.

As in Theorem 4.1, we introduce the canonical map ι2 : L → L/2L ∼= Fk
2 (where 

k := dimKer(−, −)). Using Theorem 4.1 (ii) we conclude that

R = {±(ε1 + ι−1
2 (S)} ∪ {±(2ε1 + H2)},

where S ⊂ Fk
2 = L/2L contains zero and a basis of Fk

2 and H2 ⊂ ι−1
2 (S) satisfying

H2 + 4L,H2 + 2H2 ⊂ H2.

6.1.2. Case n ≥ 2. (GR2) is equivalent to (12) and the following conditions on H3:

0 ∈ H3, H1 + H3 ⊂ H1, H2 + 2H3 ⊂ H2, H3 + 2H1, H3 + H2, H3 + 2H3 ⊂ H3,

and H3 + H3 ⊂ H3 for n > 2. Set

L := ZH3;

by above, Ker(−, −) = L ⊗Z C, so L has rank k.
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For n > 2 each R is of the form R(S1, S2), where S1, S2 ⊂ Fk
2 and 0 ∈ S1 and R(S1, S2)

can be described as follows:

H1 ⊂ 1
2L is the preimage of S1 in 1

2L → Fk
2 = 1

2L/L;
H2 ⊂ L is the preimage of S2 in L → Fk

2 = L/2L; H3 = L.

For n = 2 each R is of the form R(S1, S2, H3), where S1, S2 as above (S1, S2 ⊂ Fk
2

and 0 ∈ S1), and H3 ⊂ L contains 0, a basis of L and satisfies H2 +H3 = 2H1 +H3 ⊂ H3
(where H1, H2 are as for n > 2).

6.2. Proposition. Let R ⊂ V be a GRRS with k := dimKer(−, −).

(i) The isomorphism classes of GRRSs R with cl(R) = C(m, n), mn > 1 are in 
one-to-one correspondence with the equivalence classes of the proper non-empty 
subsets S of the affine space Fk

2 up to the action of an affine automorphism of Fk
2 , 

see § 6.2.1 for the description of R(S). For m = n there is an additional isomor-
phism R(S) ∼= R(Fk

2 \ S).
(ii) The isomorphism classes of GRRSs R with cl(R) = BC(m, n) are in one-to-one 

correspondence with the equivalence classes of the pairs of a proper non-empty subset 
S and a non-empty subset S′ of the affine space Fk

2 up to the action of an affine 
automorphism of Fk

2 , see § 6.2.1 for the description of R(S, S′). For m = n there 
is an additional isomorphism R(S, S′) ∼= R(Fk

2 \ S, S′).
(iii) If R is a GRRS such that cl(R) = C(1, 1), then either R ∼= A(1, 1)(k−1) or R is 

a “rational quotient” A(1, 1)(k)
x (for k = 1 one has x ∈ Q, 0 < x < 1/2, and for 

k > 1 one has x = 1/q, where q ∈ Z>0) of A(1, 1)(k), or R ∼= C(1, 1)(S) for some 
non-empty S ⊂ Fk

2 , see § 6.2.1. The only isomorphic GRRSs are C(1, 1)(S) ∼=
C(1, 1)(S′), where S′ = ψ(S), where ψ : Fk

2 → Fk
2 is an affine automorphism and 

R(S) ∼= R(Fk
2 \ S).

6.2.1. Description of R(S). In order to describe the above correspondences in (i)–(iii) 
between GRRSs and subsets in Fk

2 we fix a free abelian group L ⊂ Ker(−, −) of rank 
k and denote by ι2 the canonical map ι2 : L → L/2L ∼= Fk

2 and by ι−1
2 the preimage of 

S ⊂ Fk
2 in L.

If S contains zero, then for cl(R) = C(m, n) we take

R(S) := {±εi±εj+L;±δs±δt+L;±εi±δj+L;±2εi+ι−1
2 (S);±2δs+(L\ι−1

2 (S))} 1≤i�=j≤m
1≤s�=t≤n

.

For BC(m, n) we construct R(S, S′) by adding to R(S) the roots

{±εi + 1
2 ι

−1
2 (S′);±δs + 1

2 ι
−1
2 (S′)}1≤i
=j≤m,1≤s 
=t≤n.

For an arbitrary subset S, we take R(S) := R(S − s) (resp., R(S, S′) := R(S − s, S′)) 
for some s ∈ S the result does not depend on the choice of s ∈ S, see § 4.2.2.
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6.2.2. Case dimKer(−, −) = 1. In this case Proposition 6.2 gives the following:

for cl(R) = C(1, 1), R is either a finite GRRS A(1, 1) or A(1, 1)x for x ∈ Q, or R(0)
(∼= A(1, 1)1/2);
for cl(R) = C(m, n), R is R(0) (∼= A(2m− 1, 2n)(2));
for cl(R) = BC(m, n), R is either R(0, 0) (∼= A(2n, 2m − 1)(2)), or R(0, 1) (∼= A(2m,

2n − 1)(2)), or R(0, F2) (∼= A(2m, 2n)(4)). Note that R(0, 0) ∼= R(1, 0), R(1, 1) ∼= R(0, 1)
and all these GRRSs are isomorphic if m = n.

6.2.3. Isomorphisms. The conditions when R(S), R(S′) (resp., R(S, S′) and R(S1, S′
1)) 

are isomorphic can be proven similarly to § 4.4. For m = n the involution εi �→ δi gives 
rise to the isomorphism R(S) ∼= R(Fk

2 \ S) (resp., R(S, S′) ∼= R(Fk
2 \ S, S′)).

Remark that for cl(R) = C(1, 1) one has A(1, 1)1/2 ∼= R(0). However, in Proposi-
tion 6.2 we consider only A(1, 1)x for 0 < x < 1/2, so this isomorphism is not mentioned.

6.3. Proof of Proposition 6.2. Let X be a set of simple roots of Cm

∐
Cn ⊂ C(m, n) ⊂

BC(m, n), e.g. X =: {ε1 − ε2, . . . , εm−1 − εm, 2εm, δ1 − δ2, . . . , 2δn}. Applying the pro-
cedure described in § 3.2, we get R′ = Cm

∐
Cn. The W (R′) orbits in cl(R) are the 

following: the set of isotropic roots, the set of long roots of Cm (resp., of Cn), the set of 
short roots of Cm (resp., of Cn), and for BC(m, n), the set of short roots of Bm (resp., 
of Bn). Recall that F (α) is the same for elements in the same orbit.

Since all isotropic roots form one W (R′)-orbit, F (−α) = F (α) for each isotropic α; 
since F (−α) = −F (α), we get F (α) = −F (α).

We claim that

∀x, y ∈ F (ε1 − δ1) exactly one holds x + y ∈ F (2ε1) or x− y ∈ F (2δ1),
F (ε1 − δ1) + F (2ε1), F (ε1 − δ1) + F (2δ1) ⊂ F (ε1 − δ1)

(13)

Indeed, for each x, y ∈ F (ε1 − δ1) one has ε1 − δ1 + x, ε1 + δ1 + y ∈ R so exactly one of 
two elements 2ε1 +x + y and 2δ1 + y−x lies in R (see § 1.2.6). This establishes the first 
formula. The other formulae follow from (7).

Set

L′ := Z(F (2ε1) ∪ F (2δ1)).

Take any a ∈ F (ε1 − δ1). By (13),

F (ε1 − δ1) = L′ ± a (14)

and, moreover, for each b ∈ L′ exactly one holds: b ∈ F (2ε1) or b + 2a ∈ F (2δ1), and, 
similarly, b + 2a ∈ F (2ε1) or b ∈ F (2δ1). Therefore

L′ = F (2ε1)
∐

(F (2δ1) − 2a) ∩ L′) = F (2δ1)
∐

(F (2ε1) − 2a) ∩ L′). (15)

Note that 0 ∈ F (2ε1), F (2δ1) gives a /∈ L′.
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6.3.1. Case cl(R) = C(1, 1). If 2a /∈ L′, then F (2ε1) = F (2δ1) = L′. If a /∈ QL′, then 
R ∼= A(1, 1)(k−1), where k = dimZR ∩ (−, −) (if k = 1, then L′ = 0 and R = A(1, 1)), 
otherwise R ∼= A(1, 1)(k−1)

x , see the proof of Proposition 5.3. Notice that for x = p/q, 
2qa ∈ L′; we exclude q = 2, since A(1, 1)1/2 ∼= R(0), see 6.3.3 below.

Consider the case 2a ∈ L′. Since (15) holds for each a ∈ F (ε1 − δ1), one has 
F (2δ1) + 2L′ = F (2δ1) and F (2ε1) + 2L′ = F (2ε1). Now taking S := ι2(F (2ε1)) and the 
automorphism δi �→ δi − a we get R ∼= R(S) as required.

6.3.2. Case cl(R) = C(m, n) with mn > 1. Since C(m, n) ∼= C(n, m) we can (and 
will) assume that m ≥ 2. Using (14) we get

F (ε1 − ε2) = F (ε1 − δ1) + F (ε1 − δ1) = L′ ± 2a.

Since 0 ∈ F (ε1 − ε2) we obtain 2a ∈ L′ and thus R ∼= R(S).

6.3.3. Case cl(R) = BC(m, n). The additional relations include

F (ε1 − δ1) + F (δ1) = F (ε1), F (ε1 − δ1) + F (ε1) = F (δ1),
F (ε1 − δ1) + 2F (δ1), F (ε1 − δ1) + 2F (ε1) ⊂ F (ε1 − δ1),
F (ε1) + F (2ε1) ⊂ F (ε1), 4F (ε1) + F (2ε1) ⊂ F (2ε1),

and similar relations between F (δ1) and F (2δ1). In particular,

F (ε1 − δ1) + F (ε1 − δ1) + F (ε1) = F (ε1)

(so L′+F (ε1) = F (ε1)), and, since F (ε1−δ1) = L′±a, 2F (ε1) ⊂ L′∪(L′−2a). Moreover, 
4F (ε1) ⊂ L′.

Take b ∈ F (ε1) and observe that b ± 2a ∈ F (ε1). Since 2F (ε1) ⊂ L′ ∪ (L′ − 2a) we get 
4a ∈ L′ (and a /∈ L′ by (15)).

If 2a ∈ L′, we obtain 2F (ε1) ⊂ L′ and taking S := ι2(F (2ε1)), S′ := ι2(2F (ε1)) and 
the automorphism δi �→ δi − a we get R ∼= R(S, S′) as required.

Let 2a /∈ L′ (and 2a ∈ 1
2L

′). Consider an automorphism ψ : V → V which maps δ1
to δ1 + a, and stabilizes ε1 and the elements of Ker(−, −). Note that L′ constructed for 
ψ(R) is L′ ∪ (L′ + 2a), which is a free group of the same rank as L′; moreover,

F (ψ(ε1 + δ1)) = L′ ∪ (L′ + 2a), F (ψ(2ε1))L′, F (ψ(2δ1)) = (L′ + 2a),

and so ψ(R) = R(Fk−1
2 , S′), see above. This completes the proof of Proposition 6.2.

7. GRRS with finite cl(R) and dimKer(−, −) = 1

From the above results, it follows that the only finite GRRS with a degenerate form 
(−, −) is A(n, n) (the root system of gl(n, n)). As a consequence, if cl(R) is finite and 
R �= A(n, n), then R is affine.
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Symmetrizable affine Kac–Moody superalgebras were classified in [4], [10]. Sum-
marizing the above results in the special case when R is an affine GRRS and 
dimKer(−, −) = 1, we see that such GRRSs correspond to the real roots of sym-
metrizable affine Kac–Moody superalgebras. More precisely, except for the case when 
cl(R) is the root system of psl(n, n), n ≥ 2, R is the set of real roots of some affine 
Kac–Moody superalgebra g, see below. If cl(R) is the root system of psl(n, n), n ≥ 2, 
R is a quotient of the set of real roots of pgl(n, n)(1). Conversely: the set of real roots 
of any affine Kac–Moody superalgebra other than gl(n, n)(1) is an affine GRRS with 
dimKer(−, −) = 1.

If cl(R) is one of An, Dn, E6, E7, E8, A(m, n), m �= n, C(n), D(m, n), D(2, 1, a), 
F (4), G(3), then g is the corresponding non-twisted affine Kac–Moody superalgebra 
(R = cl(R)(1)).

If cl(R) is one of the GRRSs Bn, Cn, F4, G2 and B(m, n) with m, n ≥ 1, then g
is either the corresponding non-twisted affine Kac–Moody superalgebra or the twisted 
affine Lie superalgebra D(2)

n+1, A
(2)
2n−1, E

(2)
6 , D(3)

4 and D(m + 1, n)(2) respectively.
If cl(R) is the non-reduced root system BCn = B(0, n) (n ≥ 1), then g can be 

B(0, n)(1), A(2)
2n , A(0, 2n − 1)(2), C(n + 1)(2) or A(0, 2n)(4) (where A(0, 1)(2) ∼= C(2)(2) as 

A(0, 1) ∼= C(2)).
If cl(R) = BC(m, n) (m, n ≥ 1), then g = A(2m, 2n − 1)(2), A(2n, 2m − 1)(2) or 

A(2m, 2n)(4).
If cl(R) = C(m, n) with mn > 1, then g = A(2m − 1, 2n − 1)(2).

References

[1] M. Gorelik, V.G. Kac, Characters of (relatively) integrable modules over affine Lie superalgebras, 
Jpn. J. Math. 10 (2015) 1–101.

[2] C. Hoyt, Regular Kac–Moody superalgebras and integrable highest weight modules, J. Algebra 
324 (12) (2010) 3308–3354.

[3] V.G. Kac, Lie superalgebras, Adv. Math. 26 (1) (1977) 8–96.
[4] V.G. Kac, Infinite-Dimensional Lie Algebras, third edition, Cambridge University Press, 1990.
[5] O. Loos, E. Neher, Reflection systems and partial root systems, Forum Math. 23 (2011) 349–411.
[6] V. Serganova, On generalizations of root systems, Comm. Algebra 24 (13) (1996) 4281–4299.
[7] V. Serganova, Kac–Moody superalgebras and integrability, in: Developments and Trends in Infinite-

Dimensional Lie Theory, in: Progr. Math., vol. 288, Birkhäuser Boston, Inc., Boston, MA, 2011, 
pp. 169–218.

[8] J.P. Serre, Lie Algebras and Lie Groups, Lectures given at Harvard University, W.A. Benjamin, 
Inc., New York–Amsterdam, 1965.

[9] A. Shaviv, On the correspondence of affine generalized root systems and symmetrizable affine Kac–
Moody superalgebras, M.Sc. thesis, arXiv:1507.07174.

[10] van de Leur, A classification of contragredient Lie superalgebras of finite growth, Comm. Algebra 
17 (1989) 1815–1841.

[11] Y. Yoshii, Locally extended affine root systems, in: Contemp. Math., vol. 506, 2010, pp. 285–302.
[12] M. Yousofzadeh, Extended affine root supersystems, J. Algebra 449 (2016) 539–564.

http://refhub.elsevier.com/S0021-8693(17)30455-6/bib474Bs1
http://refhub.elsevier.com/S0021-8693(17)30455-6/bib474Bs1
http://refhub.elsevier.com/S0021-8693(17)30455-6/bib48s1
http://refhub.elsevier.com/S0021-8693(17)30455-6/bib48s1
http://refhub.elsevier.com/S0021-8693(17)30455-6/bib4B31s1
http://refhub.elsevier.com/S0021-8693(17)30455-6/bib4B32s1
http://refhub.elsevier.com/S0021-8693(17)30455-6/bib4C4Es1
http://refhub.elsevier.com/S0021-8693(17)30455-6/bib56475253s1
http://refhub.elsevier.com/S0021-8693(17)30455-6/bib5332s1
http://refhub.elsevier.com/S0021-8693(17)30455-6/bib5332s1
http://refhub.elsevier.com/S0021-8693(17)30455-6/bib5332s1
http://refhub.elsevier.com/S0021-8693(17)30455-6/bib536572s1
http://refhub.elsevier.com/S0021-8693(17)30455-6/bib536572s1
http://refhub.elsevier.com/S0021-8693(17)30455-6/bib5368s1
http://refhub.elsevier.com/S0021-8693(17)30455-6/bib5368s1
http://refhub.elsevier.com/S0021-8693(17)30455-6/bib76644Cs1
http://refhub.elsevier.com/S0021-8693(17)30455-6/bib76644Cs1
http://refhub.elsevier.com/S0021-8693(17)30455-6/bib596F73s1
http://refhub.elsevier.com/S0021-8693(17)30455-6/bib596F75s1

	Generalized reﬂection root systems
	0 Introduction
	1 Deﬁnitions and basic examples
	2 The case when (-,-) is non-degenerate
	3 The minimal quotient cl(R)
	4 Case when cl(R) is ﬁnite and is generated by a basis of cl(V)
	5 Case when cl(R) is the root system of psl(n+1,n+1) for n>1
	6 The cases cl(R)=BCn, cl(R)=BC(m,n) and cl(R)=C(m,n)
	7 GRRS with ﬁnite cl(R) and dimKer(-,-)=1
	References


