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Abstract. We classify all simple bounded highest weight modules of a basic classical Lie
superalgebra g. In particular, our result leads to the classification of the simple weight
modules with finite weight multiplicities over all classical Lie superalgebras. We also
obtain some character formulas of strongly typical bounded highest weight modules of g.

Introduction

The representation theory of Lie superalgebras has been extensively studied
in the last several decades. Remarkable progress has been made on the study of
the (super)category O, see for example [S1] and the references therein. On the
other hand, the theory of general weight modules of Lie superalgebras is still at its
beginning stage. An important advancement in this direction was made in 2000 in
[DMP] where the classification of the simple weight modules with finite weight
multiplicities over classical Lie superalgebras was reduced to the classification
of the so-called simple cuspidal modules. This result is the superanalog of the
Fernando-Futorny parabolic induction theorem for Lie algebras. The classification
of the simple cuspidal modules over reductive finite-dimensional simple Lie algebras
was completed by Mathieu, [M], following works of Benkart, Britten, Fernando,
Futorny, Lemire, Joseph, and others, [BBL], [BL], [F], [Fu], [Jo]. One important
result in [M] is that every simple cuspidal module is a twisted localization of a
simple bounded highest weight module, where, a bounded module by definition
is a module whose set of weight multiplicities is bounded. The maximum weight
multiplicity of a bounded module is called the degree of the module.

The presentation of the simple cuspidal modules via twisted localization of
highest weight modules was extended to the case of classical Lie superalgebras in
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[Gr]. In this way, the classification of simple weight modules with finite weight
multiplicities of a classical Lie superlagebra k is reduced to the classification of the
simple bounded highest weight modules of k. The latter modules are easily classified
for Lie superalgebras of type I. For Lie superalgebras of type II a classification is
obtained for Lie supealgebras of Q-type in [GG], for the exceptional Lie superalgeb-
ra D(2, 1, a) in [H], and for osp(1|2n) in [FGG]. The main goal of this paper is to
complete the classification in all remaining cases, namely for osp(m|2n), m =
3, 4, 5, 6. In particular, by classifying the simple bounded highest weight modules
for these four series of orthosymplectic superalgebras, we complete the classification
of all simple weight modules with finite weight multiplicities over all classical Lie
superalgebras.

Apart from the classification of simple weight modules, the category of bounded
modules is interesting on its own. We believe that the results in the present paper
mark the first step towards the systematic study of this category. Note that in
the case of Lie algebras, bounded modules have nice geometric realizations and
an equivalence of categories of bounded modules and weight modules of algebras
of twisted differential operators was established in [GrS1], [GrS2]. We expect that
similar geometric properties of the category of bounded modules of classical Lie
superalgebras hold as well. We also expect that, as in the Lie algebra case, the
injective objects in the category of bounded modules will be obtained via twisted
localization functors.

We remark that in [Co], there is a classification and explicit examples of all
simple highest weight modules of degree 1. One should note that in this classifica-
tion there is a minor gap in the proof for lower-rank cases.

Most of the new results in this paper concern the highest weight bounded
modules of the orthosymplectic Lie superalgebras osp(m|2n). One should note
though that the above mentioned classification is new also for the exceptional Lie
superalgebras F (4) an G(3). In addition to the completion of this classification, we
prove that the category of O-bounded osp(1|2n)-modules is semisimple for n > 1.
Last, but not least, we establish explicit character formula for strongly typical
bounded modules over all basic classical Lie superalgebras.

A crucial part in the paper plays the notion of the nonisotropic algebra gni
associated to a Kac–Moody superalgebra g. Most of the criteria for boundedness
are expressed in terms of the components of gni. Also, for our classification we use
distinguished sets of simple roots - simple roots that contain at most one isotropic
root. One of the tools used in the paper are Enright functors — localization type
of functors introduced originally by Enright in [En] for classical Lie algebras and
later generalized by [IK] for Kac–Moody superalgebras.

Our main result is Theorem 3.3 which describes simple highest weight bounded
modules over basic classical Lie superalgebras in terms of the highest weights
with respect to the distinguished Borel subalgebras. For all g except for g =
osp(m|2n),m ≥ 5, n ≥ 2, we give a simple criterion, Corollary 3.5.1. On the other
hand, Theorem 3.6.1 reduces the remaining case osp(m|2n),m ≥ 5, n ≥ 2 to the
case osp(m|4). In Section 4 we provide character formula and an upper bound of the
degree of a strongly typical simple highest weight bounded module for osp(m|2n).
In Section 5 we obtain an upper bound of the degree of the simple O-bounded
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modules for the cases osp(m|2n) with m = 3, 4 or n = 1.

Acknowledgment. We are grateful to A. Joseph, I. Penkov, and V. Serganova for
the helpful discussions and the referees for the useful remarks and suggestions. We
also acknowledge the hospitality and excellent working conditions at the Weizmann
Institute of Science and the University of Texas at Arlington where parts of this
work were completed.

1. Preliminaries

Let g = g0 ⊕ g1 be one of the Lie superalgebras

sl(m|n),m 6= n, gl(n|n), osp(m|2n), D(2, 1, a), F (4), G(3).

For the sake of brevity A(m|n) stands for the corresponding Kac–Moody super-
algebra: A(m|n) = sl(m|n) for m 6= n and A(n|n) = gl(n|n). We fix a triangular
decomposition g0 = n−0 ⊕h⊕n+

0 and consider all compatible triangular decomposi-
tions of g, i.e., g = n−⊕h⊕n+ with n+

0 = n+∩g0. Recall that any two compatible
triangular decompositions are connected by a chain of odd reflections, see [S2]. We
denote by ∆ the root system of g and by ∆0 (respectively, by ∆1) the set of even
(respectively, odd) roots. We denote by Π0 the set of simple roots for g0 (Π0 is
fixed, since n+

0 is fixed) and by Σ a base of ∆+.
Note that g is an indecomposable Kac–Moody superalgebra. Recall that an in-

decomposable finite-dimensional Kac–Moody superalgebra is isomorphic either to
gl(n|n) or to a basic classical Lie superalgebra which is not isomorphic to psl(n|n).
Recall that g admits a non-degenerate invariant bilinear form. In all examples we
will use the standard notation for root systems, see [K1].

1.1. Notation

We set
∆ni := {α ∈ ∆ | ‖α‖2 6= 0}

to be the set of nonisotropic roots. For α ∈ ∆ni we introduce α∨ := 2α/(α, α) and
the reflection rα ∈ GL(h∗) given by rα(µ) := µ − (µ, α∨)α. We denote by W the
Weyl group of ∆ (the group generated by the reflections rα with α ∈ ∆ni).

For a base Σ we denote by ρΣ its Weyl vector, namely the difference of the half
sums of the even positive roots and the odd positive roots. For λ ∈ h∗ we denote
by L(Σ, λ) the corresponding simple highest weight module. Note that L(Σ, λ) is
a simple highest weight module for any base Σ′ (compatible with Π0). In the case
when Σ is fixed, we write ρ for ρΣ and L(λ) for L(Σ, λ). By M(λ) = M(Σ, λ) we
denote the corresponding Verma module.

For a fixed base Σ we consider the standard partial order on h∗: µ ≥ µ′ if
µ− µ′ ∈ Z≥0Σ.

For a g-module N we set

Nν := {v ∈ N | hv = ν(h)v, ∀h ∈ h}, supp(N) := {ν ∈ h∗ | Nν 6= 0}

and say that v has weight ν if v ∈ Nν . If all weight spaces Nν are finite-dimensional,
we set

chN :=
∑
ν∈h∗

dimNνe
ν .

895



MARIA GORELIK, DIMITAR GRANTCHAROV

A g-module N is called a weight module if N =
⊕

ν∈h∗ Nν , and N is bounded if
it is a weight module and there is s > 0 such that dimNν < s for all ν ∈ h∗.

1.1.1. Kac–Moody subalgebras. Fix a nonempty subset Σ′ ⊂ Σ and denote by t the
subalgebra of g generated by g±α, α ∈ Σ′. We call t a Kac–Moody subalgebra of
g. Note that t is a direct sum of a Kac–Moody superalgebra and several copies of
sl(s|s); t ∩ h is a Cartan subalgebra of t and Σt := Σ′ is a base; we denote by ∆t

the corresponding root system and by W (t) the corresponding Weyl group. One
has ∆t = ∆ ∩ (ZΣ′), see [K2, Ex. 1.2].

If Σ′ is a connected component of Σ we call t a component of g.

1.2. Categories O,Oinf

We denote by Oinf(g) the full category of g-modules with the following properties:

(C1) h acts diagonally (or, equivalently, semisimply);
(C2) n+

0 acts locally nilpotently.

We denote by O(g) the BGG-category which is the full subcategory of Oinf(g)
consisting of finitely generated modules. Note that O(g),Oinf(g) do not depend on
the choice of Σ. Indeed, if Σ,Σ′ are compatible with the triangular decomposition
of g0, then Oinf(g) is the same category for Σ and for Σ′.

1.2.1. Pairs of Kac–Moody superalgebras. Let g′ = n′− ⊕ h′ ⊕ n′+ be a Kac–
Moody superalgebra and g′ ⊂ g; we say that g′, g have compatible triangular
decompositions if h′ ⊂ h, n′± ⊂ n± and h acts diagonally on each root space of g′. Let
us assume now that g′ ⊂ g is a pair of Kac–Moody superalgebras with compatible
triangular decompositions. For N ∈ Oinf(g) one has Resgg′ N ∈ Oinf(g′). On the
other hand, O(g) does not have this property in general. However, the property
holds in the special case g′ = g0.

For each λ ∈ h∗ we denote by λg′ the restriction of λ to g′ ∩ h; we denote by
Mg′(λg′), Lg′(λg′) the corresponding g′-modules. We use the similar notation for
the case when g′ is a Kac–Moody subalgebra of g.

The following lemma will be useful later.

1.2.2. Lemma.
(i) Let t be a Kac–Moody subalgebra of g. The t-submodule of L(λ) generated

by a highest weight vector of L(λ) is isomorphic to Lt(λt).
(ii) Let g′ ⊂ g be a pair of Kac–Moody superalgebras with compatible triangular

decompositions. A cyclic g′-submodule of a bounded g-module is g′-bounded.

Proof. For (i) let v be a highest weight vector of L(λ) and L′ be the t-submodule
generated by v. Clearly, L′ is a quotient of Mt(λt). Let uv ∈ L′ be a t-primitive (t-
singular) vector, i.e., u ∈ U(n−∩t) is such that (t∩n+)(uv) = 0. Take α ∈ ∆+\∆t.
For each β ∈ ∆t∩∆+ one has β−α 6∈ ∆+ which gives [g−β , gα] ⊂ n+. This implies
gα(uv) = 0 and thus uv is a g-primitive vector. Therefore uv is proportional to v,
so L′ is simple. This gives (i).

For (ii) let N be a bounded g-module and let N ′ be the g′-submodule generated
by a vector v′ ∈ N ; we may (and will) assume that v′ is a weight vector. Recall
that h′ = g′ ∩ h is a Cartan subalgebra of g′. Set

∆′ := {α ∈ ∆ | gα ⊂ g′}.
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Fix ν′ ∈ (h′)∗ such that N ′ν′ 6= 0. One has

dimN ′ν′ =
∑
ν∈X

dim(Nν ∩N ′),

where
X := {ν ∈ suppN | ν|h∩t = ν′, Nν ∩N ′ 6= 0}.

For ν1, ν2 ∈ X one has (ν1−ν2) ∈ Z∆′, since N ′ is a cyclic g′-module generated by
a weight vector, and (ν1 − ν2)|h′ = 0. Thus ν1 = ν2, so X = {ν1} and dimN ′ν′ ≤
dimNν1 . �

1.3. Root subsystems ∆(N),∆(λ)

A subset ∆′ ⊂ ∆0 is called a root subsystem if rαβ ∈ ∆′ for any α, β ∈ ∆′.
For a root subsystem ∆′ we denote by W (∆′) the subgroup of W generated by
rα, α ∈ ∆′. We set (∆′)+ := ∆′ ∩∆+ and introduce

Π((∆′)+) := {β ∈ (∆′)+ | rβ((∆′)+ \ {β}) = (∆′)+ \ {β}}.

The group W (∆′) is the Coxeter group for Π((∆′)+) (see, for example, [KT1],
2.2.8–2.2.9).

For N ∈ Oinf(g) we set

∆(N) := {α ∈ ∆0 | ∃λ ∈ supp(N) such that (λ, α∨) ∈ Z}.

If N is indecomposable, then ∆(N) = {α ∈ ∆0 | (λ, α∨) ∈ Z ∀λ ∈ supp(N) },
since for γ ∈ ∆ and α ∈ ∆0 one has (γ, α∨) ∈ Z. For λ ∈ h∗ we introduce

∆(λ) := ∆(L(λ)) = {α ∈ ∆0 | (λ, α∨) ∈ Z}.

By [K2, Lem. 3.4], for a simple module L each root space gα acts either injec-
tively or locally nilpotently on L. If for each α ∈ Π0 the root space g−α acts locally
nilpotently on L(λ), then L(λ) is finite-dimensional. If α ∈ Π0 is such that α ∈ Σ
or α/2 ∈ Σ, then the root space g−α acts locally nilpotently on L(λ) if and only if
α ∈ ∆(λ) and (λ, α∨) ≥ 0.

Let N be an indecomposable module. One readily sees that ∆(N) is a root
subsystem of ∆0. We set W (N) := W (∆(N)), W (λ) := W (∆(λ)), and Π(λ) :=
Π(∆(λ)+).

1.3.1. Maximal element in orbit. It is well known that the orbit W (µ)µ contains a
unique maximal element and that µ is the maximal element in its orbit W (µ)µ if
and only if (µ, α∨) ≥ 0 for each α ∈ ∆(µ)+. Moreover, if µ is a maximal element in
W (µ)µ, then StabWµ is generated by the reflections rα with α ∈ Π(µ) such that
(µ, α∨) = 0.

1.4. Enright functors

The Enright functors were introduced in [En]. For Kac–Moody superalgebras the
Enright functors were defined in [IK]. We will use these functors in the following
context: let p be a Lie superalgebra containing an sl2-triple (e, f, h) andMa be the
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full subcategory of g-modules N with the following properties: h acts diagonally
with eigenvalues in a+Z and e acts locally nilpotently. The Enright functor C is a
covariant functor C :Ma →M−a. We will use the Enright functor for g and sl2-
triple corresponding to α ∈ ∆0: f ∈ g−α, h ∈ h, e ∈ gα; in this case we denote this
functor by Cα. We retain the notation of §1.1.1. Note that for an indecomposable
N ∈ Oinf(g), the condition α ∈ ∆(N) is equivalent to N ∈M0.

We will use the the following properties of the Enright functors. For the proofs
we refer the reader to [GS].

1.4.1. Proposition.
(i) If a 6∈ Z then C :Ma

∼−→M−a is an equivalence of categories.
(ii) If p ⊂ g is a subalgebra containing the sl2-triple (e, f, h), then the Enright

functors commute with the restriction functor Resgp. Namely, Cp◦Resgp = Resgp ◦ Cg,
where Cg, Cp are Enright functors for g, p, respectively.

(iii) Let α ∈ Π0 be such that α ∈ Σ or α/2 ∈ Σ and let λ ∈ h∗ be such that
α 6∈ ∆(λ). Then Cα(L(λ)) = L(rα(λ+ρ)−ρ) and Cα(Lg0

(λ)) = L(rα(λ+ρ0)−ρ0).
(iv) If N ∈ Oinf(g) has a subquotient L(λ) and α 6∈ ∆(N), then Cα(L(λ)) is a

subquotient of Cα(N).

2. Bounded modules in the case when ∆ = ∆ni

In this section g is an indecomposable finite-dimensional Kac–Moody super-
algebra without isotropic roots, i.e., g is isomorphic to a simple Lie algebra or to
osp(1|2n). In this case all finite-dimensional modules are completely reducible and
L(λ) is finite dimensional if and only if for each simple root α one has (λ, α∨) ∈
Z≥0.

A finite-dimensional simple Lie algebra t admits infinite-dimensional bounded
modules L(λ) only for g = sln, sp2n. This result is proven in by [BBL] generalizing
the analogous result in [F] for cuspidal modules.

2.1. Bounded modules for sp2n, osp(1|2n)

For g = sp2, osp(1|2) all modules in O are bounded, since dimL(λ)µ ≤ 1 for each
λ, µ ∈ h∗.

Consider the case g = sp2n, osp(1|2n) with n > 1. The root system ∆ is of type
Cn or BCn and it contains a unique copy of the root system of type Dn. A module
L(λ) is an infinite-dimensional bounded module if and only if

∆(λ) = Dn, (λ+ ρ, α∨) > 0 for each α ∈ ∆(λ)+.

For sp2n this is proven in [M]. For osp(1|2n) this is proven in [FGG] and we give
another proof in §2.2 below. Writing the set of simple roots for sp2n in the form
{δ1 − δ2, . . . , δn−1 − δn, 2δn} we obtain that the root subsystem Dn has a set of
simple roots {δ1−δ2, . . . , δn−1−δn, δn−1+δn}. Let λ ∈ h∗, and let λ+ρ =

∑n
i=1 yiδi.

Then L(λ) is an infinite-dimensional bounded module if and only if

y1 − y2, y2 − y3, . . . , yn−1 − yn, yn−1 + yn ∈ Z>0 (1)

and, in addition, yn ∈ Z+1/2 for sp2n, while yn ∈ Z for osp(1|2n). Note that L(λ)
is finite dimensional if and only if (1) holds and, in addition, yn ∈ Z>0 for sp2n,
yn ∈ Z>0 + 1/2 for osp(1|2n).
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2.2.

Here we give another proof of the above-mentioned result for osp(1|2n).

Theorem. Let g = osp(1|2n), n > 1. A module L(λ) is an infinite-dimensional
bounded module if and only if ∆(λ) = Dn and

(λ+ ρ, α∨) > 0 for each α ∈ ∆(λ)+. (2)

Proof. One has g0 = sp2n and g admits a unique base Σ compatible with Π0 (since
∆ does not have isotropic roots). One has

Σ = Π′ ∪ {δn}, Π0 = Π′ ∪ {2δn}, Π(Dn) = Π′ ∪ {δn−1 + δn},

where Π′ := {δ1 − δ2, . . . , δn−1 − δn}. Let v be a highest weight vector of L(λ).
Assume that L(λ) is bounded. A g0-module generated by v is a quotient of

Msp2n
(λ), so Lsp2n

(λ) is a subquotient of Resgg0
L(λ). Therefore Lsp2n

(λ) is boun-
ded.

If Lsp2n
(λ) is finite-dimensional, then for each α ∈ Π0 the root space g−α acts

nilpotently on v and so L(λ) is finite-dimensional, see §1.3.
If Lsp2n

(λ) is an infinite-dimensional bounded module, then, by §2.1, ∆(λ) = Dn
and thus g−δnv 6= 0. Since n+

0 (g−δnv) = 0, the module Resgg0
L(λ) has a primitive

vector of weight λ − δn and thus has a subquotient isomorphic to Lsp2n
(λ − δn).

Hence Lsp2n
(λ− δn) is bounded. Since ∆(λ− δn) = ∆(λ) = Dn, the boundedness

of Lsp2n
(λ− δn) gives

(λ+ ρ, α∨) = (λ− δn + ρ0, α
∨) > 0 for each α ∈ Π(Dn),

see §2.1. This establishes the “only if” part.
Now assume that ∆(λ) = Dn and that (2) holds. Let us show that L(λ) is

bounded, i.e., that M := Resgg0
L(λ) is bounded. Since M ∈ O(g0), it has a finite

length.
Therefore it is enough to show that any simple subquotient of M is a bounded

module. Let Lg0
(µ) be a subquotient of M . One has ∆(µ) = ∆(λ) = Dn. By §2.1

it suffices to show that (µ+ρ0, α) > 0 for α ∈ Π(Dn). Take α ∈ Π′. By (2) the root
space g−α acts nilpotently on v and thus locally nilpotently on L(λ) and on Lg0

(µ).
Therefore (µ+ ρ0, α) > 0. It remains to verify that (µ+ ρ0, δn−1 + δn) > 0. Note
that ∆(λ) = ∆(µ) does not contain 2δn. Using Proposition 1.4.1 for α = 2δn we
obtain that C2δn(Lg0

(µ)) = Lg0
(rδn(µ+ ρ0)− ρ0) is a subquotient of C2δn(L(λ)) =

L(rδn(λ+ ρ)− ρ). Since δn−1 − δn ∈ Σ and

(rδn(λ+ ρ), δn−1 − δn) = (λ+ ρ, δn−1 + δn) ∈ Z>0

the root space gδn−δn−1 acts locally nilpotently on L(rδn(λ+ ρ)− ρ) and thus on
Lg0(rδn(µ+ ρ0)− ρ0). Hence

0 < (rδn(µ+ ρ0), δn−1 − δn) = (µ+ ρ0, δn−1 + δn)

as required. This completes the proof. �

We remark that the reasoning used to prove the boundedness of Lg0(µ) at the
end of the last proof is similar to the one used for the classification of the simple
highest weight bounded modules of sp2n, see [M, Lem. 9.2].
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2.3. Category B(g)

We retain the notation of §1.2 and denote by B(g) the Serre subcategory of
Oinf(g) generated by simple bounded modules, i.e., the full subcategory of Oinf(g)
consisting of modules N such that each simple subquotient of N is bounded.1

We note that B(g) is an example of a category of “snowflake modules” in the
terminology of [GS].

If E is a cyclic submodule of N ∈ B(g), then E ∈ O, so E has a finite
length and thus E is bounded. As a result, B(g) is the full subcategory of Oinf(g)
consisting of modules N such that each cyclic submodule of N is bounded. Using
Lemma 1.2.2(ii), we obtain the following.

2.3.1. Corollary. Let g′ ⊂ g be a pair of Kac–Moody superalgebras with compatible
triangular decompositions. If N ∈ B(g), then Resgg′ N ∈ B(g′).

The following result is a particular case of a more general result about the
so-called “snowflake modules” in [GS].

2.3.2. Proposition. Let g = osp(1|2n) or g = sp2n, n > 1.
(i) The category B(g) is semisimple.
(ii) If g ⊂ g′′ are Kac–Moody superalgebras with compatible triangular decompo-

sitions, then for each N ∈ B(g) the module Resg
′′

g N is completely reducible.

Proof. Note that part (ii) follows from part (i) and Corollary 2.3.1. One easily
shows (see, for example, [GK, Lem. 1.3.1]) that to prove (i) it is enough to verify
that each module in B = B(g) has a simple submodule and that

Ext1
B(L(µ), L(µ′)) = 0

if L(µ), L(µ′) are bounded. Take any N ∈ B and let M be a cyclic submodule of
N . Then M lies in the category O and thus admits a simple submodule. Hence N
admits a simple submodule.

Let L(µ), L(µ′) are bounded and Ext1
B(L(µ), L(µ′)) 6= 0. By Theorem 4.2 in

[DGK] (the statement and the proof are the same for osp(1|2n)), this implies

µ′ + ρ ∈W (µ)(µ+ ρ).

Since h acts diagonally on the modules in B, one has µ′ 6= µ.
Let L(µ), L(µ′) be bounded modules. Using the assumption on g and §1.3.1,

§2.1, Theorem 2.2, we conclude that µ + ρ (respectively, µ′ + ρ) is the unique
maximal element in W (µ)(µ + ρ) (respectively, in W (µ′)(µ′ + ρ)). Since µ 6= µ′,
one has µ′ + ρ 6∈W (µ)(µ+ ρ), which leads to a contradiction. This completes the
proof of (i). �

We remark that in the cases g = sln and g = osp(1|2) the category B(g) is not
semisimple. Indeed, take for example an extension of the trivial module L(0) by
L(rα.0), α ∈ Π0 if g = sln, and the Verma module M(0) with highest weight λ = 0
if g = osp(1|2).

1Note that Ext1
B(g)(M,N) = Ext1

g,h(M,N) for modules M,N in B(g), where Ext1
g,h

is the Ext1-functor on the category of weight modules.
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3. Bounded modules

In this section g is an indecomposable finite-dimensional Kac–Moody super-
algebra.

3.1. The nonisotropic algebra gni

Let Σ̃ be the set of all bases (compatible with Π0) of g. Recall that all bases in Σ̃
are connected by chains of odd reflections; in particular, ∆ni∩∆+ does not depend
on the choice of Σ′ ∈ Σ̃. Set

Πni :=
⋃

Σ′∈Σ̃

(Σ′ ∩∆ni).

If g does not have non-isotropic odd roots, then Πni = Π0; if g has odd non-
isotropic roots, then g = osp(2m+ 1|2n) or G(3) and Π0 contains a unique root α
with α/2 ∈ ∆; in this case, Πni = Π0 \ {α} ∪ {α/2}.

Consider a Kac–Moody superalgebra gni with the set of simple roots Πni, parity
function p : Πni → Z2 given by the restriction of p : ∆→ Z2 to Πni, and the Cartan
matrix aij := (α∨i , αj) for αi, αj ∈ Πni.

If g does not have non-isotropic odd roots, then gni ∼= [g0, g0] and we identify
these algebras. For g = osp(1|2n) one has Πni = Σ and gni ∼= g; we identify these
algebras. For g = G(3), osp(2s + 1|2n) with s > 0, one has g0 = t × sp2n and
gni = t × osp(1|2n), where t = G2, 02s+1 respectively; in these cases, gni is not a
subalgebra of g.

Using the above identifications, we have (gni)0 = [g0, g0] and we fix h ∩ [g0, g0]
to be the Cartan subalgebra of gni. We identify the root system of gni with ∆ni.

Observe also that, with the terminology of §1.1.1, the connected components of
g0 are the even parts of the connected components of gni.

3.1.1. Distinguished bases. A base Σ′ ∈ Σ̃ is called distinguished, if Σ′ contains at
most one isotropic root. It is easy to check that each connected component Π′ of
Πni lies in a certain distinguished base Σ′ ∈ Σ̃. For instance, for osp(7|4) one has
Πni = Π′

∐
Π′′, where

Π′ = {ε1 − ε2, ε2 − ε3, ε3}, Σ′ = {δ1 − δ2, δ2 − ε1, ε1 − ε2, ε2 − ε3, ε3},
Π′′ = {δ1 − δ2, δ2}, Σ′′ = {ε1 − ε2, ε2 − ε3, ε3 − δ1, δ1 − δ2, δ2}.

3.1.2. Base Σt. Let t be a component of gni and Π(t) be the corresponding
connected component of Πni. For g = A(m|n) we choose one distinguished set
of simple roots Σ and set Σt := Σ for all components t of gni. If g 6= A(m|n) we
denote by Σt a distinguished base containing Π(t).

Then Π(t) ⊂ Σt and t is a subalgebra of g. For instance, g = osp(2s + 1|2n)
does not contain gni = o2s+1 × osp(1|2n), but contains subalgebras isomorphic to
o2s+1 and osp(1|2n).

3.1.3. Example. Take g = osp(5|4). We have gni = o5 × osp(1|4). Then

Σo5
= {δ1 − δ2, δ2 − ε1, ε1 − ε2, ε2}, Σosp(1|4) = {ε1 − ε2, ε2 − δ1, δ1 − δ2, δ2}.

Recall the notation λt from §1.1.1. For λ = x1ε1 + x2ε2 + y1δ1 + y2δ2 we have
λo5

= x1ε1 + x2ε2 and λosp(1|4) = y1δ1 + y2δ2.
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3.2.

Proposition. Let t be a component of gni such that t0 6= An. Let Σ contain Π(t).
If Lt(λt) is bounded, then Resgt L(λ) ∈ B(t).

Proof. Set M := Resgt L(λ). Note that M ∈ Oinf(t).
Let v be a highest weight vector of L(λ). By Lemma 1.2.2(i), the t-submodule

of L(λ) generated by v is isomorphic to Lt(λt).
If Lt(λt) is finite-dimensional, then for each α ∈ Π(t) the root spaces g−α = t−α

acts nilpotently on v and thus acts locally nilpotently on M . Then M is a direct
sum of finite-dimensional simple t-modules, and thus M ∈ B(t).

Now assume that Lt(λt) is infinite-dimensional. Since this module is bounded
and t0 6= An, the algebra t is sp2n or osp(1|2n) with n > 1. Moreover, ∆(Lt(λt)) =
Dn and (λt + ρ(t), α∨) > 0 for each α ∈ Π(Dn), where

Π0 = Π′ ∪ {2δn}, Π(Dn) = Π′ ∪ {δn−1 + δn}, Π′ := {δ1 − δ2, . . . , δn−1 − δn}.

Since t is a component of gni and Π(t) ⊂ Σ one has

ρt = ρ(t), (λ+ ρ, α) = ((λ+ ρ)t, α) = (λt + ρt, α) for α ∈ ∆(t).

Therefore
(λ+ ρ, α∨) > 0 for each α ∈ Π(Dn). (3)

Let Lt(µ) (µ ∈ (h ∩ t)∗) be a simple subquotient of M . Let us show that Lt(µ)
is bounded. One has

µ ∈ supp(M) = {νt | ν ∈ supp(L(λ))},

so for α ∈ ∆(t) one has

(µ, α∨) ⊂ (λ, α∨) + Z = (λt, α
∨) + Z.

Therefore ∆(Lt(λt)) = ∆(Lt(µ)) = Dn. By §2.1 it sufficies to show that (µ +
ρ(t), α) > 0 for α ∈ Π(Dn). Take α ∈ Π′. By (3) the root space g−α acts nilpotently
on v and thus locally nilpotently on L(λ) and on Lt(µ). Therefore (µ+ ρ(t), α) >
0. By above, ∆(Lt(µ)),∆(L(λ)) do not contain 2δn. Using Proposition 1.4.1 for
α = 2δn we obtain that C2δn(Lt(µ)) = Lt(rδn(µ+ ρ(t))− ρ(t)) is a subquotient of
C2δn(L(λ)) = L(rδn(λ+ ρ)− ρ). Since δn−1 − δn ∈ Π(t) ⊂ Σ and

(rδn(λ+ ρ), δn−1 − δn) = (λ+ ρ, δn−1 + δn) ∈ Z>0

the root space gδn−δn−1 acts locally nilpotently on L(rδn(λ+ ρ)− ρ) and thus on
Lt(rδn(µ+ ρ(t)− ρ(t)). Therefore

0 < (rδn(µ+ ρ(t)), δn−1 − δn) = (µ+ ρ(t), δn−1 + δn)

as required. Hence Lt(µ) is bounded. We conclude that M ∈ B(t) as required. �
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3.3.

Retain the notation of §1.1.1. For a simple g-module L in O and a component
t of gni, by λt ∈ h∗ we denote the highest weight of L with respect to Σt, i.e.,
L = L(Σt, λ

t).
Theorem. Let g be a finite-dimensional Kac–Moody superalgebra and let L ∈ O
be a simple g-module. The module L is bounded if and only if the module Lt((λ

t)t)
is bounded for each component t of gni.

3.3.1. Example. We apply the theorem to the case we are mostly interested in:
g = osp(m|2n). Take λ ∈ h∗ and write λ + ρ =

∑s
i=1 xiεi +

∑n
i=1 yiδi, where

s = bm/2c. Assume that xi + yj 6= 0 for all i, j. Then for any base Σ′ we have
L(Σ, λ) = L(Σ′, λ′), where λ + ρ = λ′ + ρ′, ρ′ = ρΣ′ . The Theorem above states
that L(λ) is bounded if and only if Lt((λ

t)t) is bounded for each component t of
gni. We have Π(t) ⊂ Σt, so

ρΣt
= ρt.

Hence, for λ as above, L(λ) is bounded if and only if Lt((λ+ ρ)t − ρt) is bounded
for each t. One has gni = om × t′, where t′ = sp2n if m is even and t′ = osp(1|2n)
if m is odd.

One has Lt′((λ + ρ)t′ − ρt′) = Lt′(
∑n
i=1 yiδi − ρt′). For n = 1 this module is

bounded. For n > 1 the conditions on yi are given in §2.1.
Consider the module Lom(

∑s
i=1 xiεi − ρom). For m = 1, 2, 3, 4 this module is

always bounded. For m > 6 this module is bounded only if it is finite-dimensional,
i.e., if x1 − x2, . . . , xs−1 − xs, 2xs ∈ Z>0. For m = 6 we have o6

∼= sl4 and the
boundedness is reduced to the boundedness of a module over sl4. For m = 5 one
has o5

∼= sp4 and this module is bounded if and only if either x1 − x2, 2x2 ∈ Z>0

or 2x1, 2x2 ∈ Z>0, x1 − x2 6∈ Z.

3.4. Proof of Theorem 3.3

We start from the following useful lemma.

3.4.1. Lemma.
(i) A simple g-module L is bounded if and only if it has a bounded g0-submodule.
(ii) If Lg0(λ− 2ρ1) is bounded, then L(λ) is bounded.

Proof. Let N be a g0-module. One has Indg
g0
N = N⊗Λg1 as g0-modules. Since the

tensor product of a finite-dimensional module and a bounded module is a bounded
module, Indg

g0
N is bounded if N is bounded.

To prove (i), let N be a bounded g0-submodule of a simple g-module L. Since

Homg0(N,L) = Homg(Indg
g0
N,L),

the module L is bounded. For (ii), note that the maximal weight of Indg
g0
Lg0

(ν)
is equal to ν +

∑
α∈∆+

1
α = ν + 2ρ1. In particular, L(ν + 2ρ1) is a subquotient of

Indg
g0
Lg0

(ν). �

3.4.2. Continuation of proof of Theorem 3.3. Assume that L is bounded. Let t
be a component of gni. Let v be a primitive vector of L with respect to the base
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Σt. Then v has weight λt and, by Lemma 1.2.2, U(t)v ∼= Lt((λ
t)t) is a bounded

t-module. This establishes the “only if” part.

For the “if” part, we assume that Lt((λ
t)t) is bounded for each component

of gni. By Lemma 3.4.1 the boundedness of L follows from the existence of a
bounded g0-submodule. Let us show that L contains a bounded g0-submodule. If
g = osp(1|2n), the assertion is tautological. For g = D(2, 1, a) any g0-submodule
of L(λ) is bounded.

Consider the remaining case when g 6= osp(1|2n), D(2, 1, a). Let t be the follow-
ing component of gni: for g = osp(m|2n) let t = om, for g = gl(m|n) with m ≤ n
let t = sln, and for g = G(3) (respectively, F (4)) let t = G2 (respectively, t = o7).
Set Σ := Σt and λ := λt. Let vλ be the highest weight vector of L. Let us show
that U(g0)vλ is a bounded g0-module. One has gni = t × t′ and [g0, g0] = t × t′0,
where t′0 = A1 for F (4), G(3) and t′0 = sp2n (respectively, t′0 = t′ = slm) for
g = osp(m|2n) (respectively, for gl(m|n)). Set

E := U(t)vλ, E
′ := U(t′0)vλ.

By Lemma 1.2.2(i) one has E = Lt((λ
t)t), so E is a simple bounded t-module.

If g = gl(m|n), then Σ contains Π(t′), so E′ = Lt′((λ
t′)t′) is a simple bounded

t′-module. If t′0
∼= A1, then any module in O(t′) is bounded, so E′ is a bounded

t′-module. In the remaining case one has t′0 = sp2n, n > 1. Since Lt′((λ
t′)t′) is

bounded, Proposition 3.2 implies that Restt′L(λ) ∈ B(t′) and thus, by Proposition
2.3.2, any cyclic t′0-submodule of L(λ) is bounded. We conclude that E′ is a
bounded t′0-module.

View E ⊗ E′ as a t× t′0-module by

gg′(e⊗ e′) := ge⊗ g′e′ for g ∈ t, g′ ∈ t′, e ∈ E, e′ ∈ E′.

By above, E,E′ are bounded. Each weight space of E ⊗ E′ is of the form
(E ⊗ E′)ν = Eν1 ⊗ Eν2 , so E ⊗ E′ is a bounded t× t′0-module.

Set N := U(g0)vλ. Since g0 = [g0, g0]×Z(g0) one has

N = U([g0, g0])vλ = U(t× t′0)vλ.

The natural map φ : E ⊗E′ → U(t× t′0)vλ = N defined by uvλ ⊗ u′vλ 7→ uu′vλ is
a surjective homomorphism of t× t′0-modules. Hence N is a bounded t× t′0-module
and thus N is a bounded g0-submodule of L. Now Lemma 3.4.1 completes the
proof. �

3.5.

Checking the boundedness of Lt((λ
t)t) for all t could be computationally heavy.

These computations could be shortened with the aid of Corollary 3.5.1 and Theo-
rem 3.6.1 below.

It turns out that for g 6= osp(m|2n), it is enough to consider only one distingui-
shed set of simple roots.
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3.5.1. Corollary.
(i) If all components of gni have rank one, then L(λ) is bounded for any λ.

Assume that t is a component of gni of rank greater than one. Set Σ := Σt.
(ii) If g 6= osp(m|2n), then L(λ) is bounded if and only if Lg0

(λ) is bounded.
(iii) If g = osp(m|2n) with m = 2, 3, 4 or n = 1, then L(λ) is bounded if and

only if Lt(λ) is bounded.

Proof. If t′ is a component of gni of rank one, then any module in O(t′) is bounded
and (i) follows from Theorem 3.3.

If t is a unique component of gni which has rank greater than one, then Theo-
rem 3.3 implies that L(λ) is bounded if and only if Lt(λ) is bounded. Note that
gni contains more than one component of rank greater than one in the following
cases: g = osp(m|2n) with m > 4, n > 1 and A(m|n) with m,n > 1; this gives (iii).
For g = A(m|n) one has Σ0 ⊂ Σt, so (ii) follows from Theorem 3.3. �

3.6. Reduction to n = 2

Let g = osp(m|2n). Take

Σ := Σom .

For n > 2 we consider the subalgebra

osp(m|4) ⊂ osp(m|2n)

with the set of simple roots lying in Σ. For instance, for osp(2s+ 1|2n) we have

Σ = {δ1 − δ2, . . . , δn−1 − δn, δn − ε1, . . . , εs−1 − εs, εs}

and we take osp(2s+1|4) to be the subalgebra with the set of simple roots {δn−1−
δn, δn − ε1, . . . , εs−1 − εs, εs}.

3.6.1. Theorem. For n > 2 the module Losp(m|2n)(λ) is bounded if and only if the
modules Lsp2n

(λsp2n
) and Losp(m|4)(λosp(m|4)) are bounded.

Proof. Denote by vλ the highest weight vector of L(λ) := Losp(m|2n)(λ) and set

E := U(om)vλ, E′ := U(sp2n)vλ, E′′ := U(osp(m|4))vλ, N := U(g0)vλ.

By Lemma 1.2.2, E′′ ∼= Losp(m|4)(λosp(m|4)). Since E′ has the highest weight
λsp2n

, the module Lsp2n
(λsp2n

) is a quotient of E′.
If L(λ) is bounded, then all modules E,E′, E′′, N are bounded by Lemma

1.2.2(ii). This implies the “only if” part.
Now assume that Lsp2n

(λsp2n
) and Losp(m|4)(λosp(m|4)) are bounded. By Lemma

3.4.1(i) in order to show that Losp(m|2n)(λ) is bounded it is enough to verify N is
a bounded g0-module. Arguing as in the proof of Theorem 3.3, we see that N is
a quotient of E ⊗ E′, where E ⊗ E′ is viewed as g0-module (g0 = om × sp2n) and
that the boundedness of N follows from the boundedness of E and of E′. Since
om ⊂ osp(m|4), E is a cyclic om-submodule of E′′ ∼= Losp(m|4)(λosp(m|4)), so E is
bounded by Lemma 1.2.2(ii). It remains to verify the boundedness of E′.
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Note that E′ is a sp2n-module generated by its highest weight vector vλ which
is of the weight

λ′ := λsp2n
.

Write Π′ := {δ1 − δ2, . . . , δn−1 − δn}, Π(sp2n) = Π′ ∪ {2δn}. Consider the
copy of sln in g with the set of simple roots Π′ and the copy of sp4 in g with
the set of simple roots {δn−1 − δn, 2δn}. By Lemma 1.2.2, the sln-submodule
generated by vλ is isomorphic to Lsln(λsln). Note that sln ⊂ sp2n and λ′sln = λsln .
By Lemma 1.2.2, the sln-submodule generated by the highest weight vector in
Lsp2n

(λsp2n
) is isomorphic to Lsln(λsln). Since Lsp2n

(λsp2n
) is bounded, Lsln(λsln)

is finite-dimensional, see §2.1.
Since E′′ is bounded and sp4 ⊂ osp(m|4), the sp4-submodule generated by vλ

is bounded. We conclude that E′ is an sp2n-module with the following properties:
E′ is generated by the highest weight vector vλ′ ;
U(sln)vλ′ is a simple finite-dimensional sln-module;
U(sp4)vλ′ is a simple bounded sp4-module.
By the description of the simple bounded highest weight modules of sp2n (see

§2.1), E′ is bounded. This completes the proof. �

4. Strongly typical modules for osp(m|2n)

In this section g = osp(m|2n).
A weight λ is called strongly typical if (λ + ρ, β) 6= 0 for each β ∈ ∆1; the

module L(λ) is called strongly typical if λ is strongly typical.

4.1. Notation

We set

s :=
⌊m

2

⌋
; p(m) := 0 if m is even, p(m) := 1 if m is odd.

One has gni = om × sp2n for even m and gni = om × osp1|2n for odd m.
We write for convenience gni = om × ospp(m)|2n, where osp1|2n = osp(1|2n) and
osp0|2n = sp2n.

4.1.1. Conventions. We will use the standard notations of [K1] for ∆, in particular,
∆(om) lies in the span of {εi}si=1 and ∆(sp2n) lies in the span of {δi}ni=1. We set

hε := h ∩ om, hδ := h ∩ sp2n.

We identify (h ∩ om)∗ with h∗ε := span{εi}si=1 and (h ∩ sp2n)∗ = (h ∩ osp(1|2n))∗

with h∗δ := span{δi}ni=1. One has

h = hε ⊕ hδ, h∗ = h∗ε ⊕ h∗δ .

For λ =
∑
aiεi +

∑
bjδj we set λε :=

∑
aiεi, λδ :=

∑
bjδj .

In this section we use the base Σ = Σom , i.e.,

Σ = {δ1 − δ2, δ2 − δ3, . . . , δn − ε1,
ε1 − ε2, . . . , εs−1 − εs, εs} for osp(2s+ 1|2n),

Σ = {δ1 − δ2, δ2 − δ3, . . . , δn − ε1,
ε1 − ε2, . . . , εs−1 − εs, εs−1 + εs} for osp(2s|2n).
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Set

ξ :=

n∑
i=1

δi.

Then ρ1 = ρ0 − ρ = (m/2)ξ and ρgni − ρ = sξ. We set

R0 :=
∏
α∈∆+

0

(1− e−α), R1 :=
∏
α∈∆+

1

(1 + e−α), R := R0/R1

and define Rom , Rsp2n
, Rgni similarly. It is clear that R0 = RomRsp2n

.

4.1.2. Stabilizer. For µ ∈ h∗ we set

∆0(µ) := {α ∈ ∆0(sp2n) | (µ, α) = 0}.

It is well known that StabW (sp2n) µ is generated by rα with α ∈ ∆0(µ) (this follows
from §1.3.1).

We consider the root system Bn of on with the set of simple roots Π(Bn) =
{δ1 − δ2, . . . , δn} and denote by ∆+(Bn) the corresponding set of positive roots.
We set

C+ := {µ ∈ h∗ | (µ, α∨) 6∈ Z<0 for α ∈ ∆+(Bn)}.

Note that for any λ ∈ h∗ there exists w ∈W (λ)∩W (sp2n) such that w(λ+ρ) ∈ C+.

4.2.

Theorem. Let ν ∈ h∗ be a strongly typical weight such that ν + ρ ∈ C+ and
(ν+ρ, α) 6= 0 for α = δi+ δj with 1 ≤ i, j ≤ n. Then for each z ∈W (ν)∩W (sp2n)
one has

Reρ chL(z.ν) = Rgnie
ρgni chLgni(z(ν + ρ)− ρgni).

4.2.1. Remark. Since gni = om × ospp(m)|2n

chLgni(λ+ ρ− ρgni) = chLospp(m)|2n((λ+ ρ− ρgni)δ) · chLom((λ+ ρ− ρgni)ε),

so

eρgni−ρ · chLgni(λ+ ρ− ρgni) = esξ · chLospp(m)|2n(λδ − sξ) · chLom(λε). (4)

4.2.2. Corollary. Let λ ∈ h∗ be such that (λ + ρ, α) 6= 0 for each α ∈ ∆1 and
either ∆0(λ+ ρ) = ∅ or (λ+ ρ, 2δi) ∈ Z \ {0} for i = 1, . . . , n. Then

chL(λ) = esξ
s∏
i=1

n∏
j=1

(1 + e−εi−δj )(1 + eεi−δj ) · chLospp(m)|2n(λδ − sξ) · chLom(λε).

4.2.3. Corollary. Let λ be a strongly typical weight. Then L(λ) is bounded if
and only if L1 := Lospp(m)|2n(λδ − sξ) and L2 := Lom(λε) are bounded modules

(over ospp(m)|2n and om respectively). Moreover, the degree of L(λ) is at most

22sn degL1 · degL2.
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4.3. Proofs of Corollaries

4.3.1. Proof of Corollary 4.2.2. For Corollary 4.2.2 note that take w ∈W (λ) such
that w(λ+ ρ) ∈ C+. It is enough to verify that ν := w.λ satisfies the assumptions
of Theorem 4.2. One has ν+ρ = w(λ+ρ). Since λ is strongly typicial, ν is strongly
typical.

If ∆0(λ+ ρ) = ∅, then ∆0(ν + ρ) = ∅, so ν satisfies the assumptions of Theo-
rem 4.2. Assume that for each i = 1, . . . , n we have (λ + ρ, 2δi) ∈ Z \ {0}. Since
wδi = ±δj we have

(ν + ρ, δ∨i ) = (w(λ+ ρ), δ∨i ) ∈ Z \ {0}.

Since ν + ρ ∈ C+, this gives (ν + ρ, δ∨i ) ∈ Z>0, so ν satisfies the assumptions
of Theorem 4.2. �

4.3.2. Proof of Corollary 4.2.3. Let L(λ) be bounded. Then L2 = Lom(λε) is
bounded. Take Σ′ which contains the set of simple roots for ospp(m)|2n and denote
by ρ′ the corresponding Weyl vector. Then ρ′δ = (ρgni)δ. Since L(λ) = L(Σ′, λ′) is
bounded, Lospp(m)|2n(λ′δ) is bounded. Since λ is strongly typical, one has λ′ + ρ′ =
λ+ ρ, so

λ′δ = (λ+ ρ− ρgni)δ.

Thus L1 = Lospp(m)|2n(λδ + ρ− ρgni) is bounded.
Now let λ be a strongly typical weight such that L1, L2 are bounded modules.

Since L1 is bounded, the description of the simple bounded highest weight modules
in §2.1 gives (λ+ρ, δi) ∈ (1/2)Z for i = 1, . . . , n. From Corollary 4.2.2 we conclude
that L(λ) is bounded and has degree at most 22sn degL1 · degL2. �

4.4. Central characters

The rest of the section is devoted to the proof of Theorem 4.2.
For a weight λ ∈ h∗ we define the g- and g0-central characters by

χλ : Z(g)→ C such that z|L(λ) = χλ(z)Id,

χ0
λ : Z(g0)→ C such that z|Lg0

(λ) = χ0
λ(z)Id.

We next recall the notion “perfect mate” which was introduced in Section 8 of
[G1]. A maximal ideal χ0 in Z(g0) is called a perfect mate for a maximal ideal χ
in Z(g) if the following conditions are satisfied.

(i) For any Verma g-module annihilated by χ, its g0-submodule annihilated by
a power of χ0 is a Verma g0-module.

(ii) Any g-module annihilated by χ has a non-zero vector annihilated by χ0.
If χ0 is a perfect mate for χ, then [G2, Thm. 1.3.1] establishes an equivalence

of the corresponding categories of g- and g0-modules.

4.4.1. Lemma. Let ν ∈ h∗ satisfies the assumptions of Theorem 4.2. Then:
(i) for each j ∈ Z>0 one has ν + ρ + (j/2)ξ ∈ C+ and ∆0(ν + ρ + (j/2)ξ) =

∆0(ν + ρ);
(ii) χ0

ν is a perfect mate for χν .
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Proof. Recall that ν + ρ ∈ C+ and ∆0(ν + ρ) ⊂ {δi − δj}ni,j=1.

One has (ξ, α∨) = 2 for α = δi, δi + δj and (ξ, (δi − δj)∨) = 0 for 1 ≤ i < j ≤ n.
For j ∈ Z>0 this gives that ν + ρ + (j/2)ξ ∈ C+ and ∆0(ν + ρ + (j/2)ξ) ⊂
{δi − δj}ni,j=1, which implies (i). For (ii) we use [G1, Lem. 8.3.4], which asserts

that χ0
ν is a perfect mate for χν if the following conditions hold:

(1) StabW (ν + ρ0) ⊂ StabW (ν + ρ);

(2) if Γ ⊂ ∆+
1 and w ∈W are such that

w(ν + ρ0) = ν + ρ0 −
∑
β∈Γ

β, (5)

then Γ = ∅.

One has W = W (om)×W (sp2n), so for each µ ∈ h∗

StabW (µ) = StabW (om) µ× StabW (sp2n) µ = StabW (om) µε × StabW (sp2n) µδ.

One has (ν + ρ)ε = (ν + ρ0)ε, so

StabW (om)(ν + ρ)ε = StabW (om)(ν + ρ0)ε.

By §4.1.2, the group StabW (sp2n) µδ is generated by rα, α ∈ ∆0(µδ), so (i) gives

StabW (sp2n)(ν + ρ0) = StabW (sp2n)(ν + ρ)

and condition (1) follows. Now let us verify condition (2). Take w ∈W and Γ ⊂ ∆+
1

such that (5) holds. Write w = w1w2 with w1 ∈W (om), w2 ∈W (sp2n), and set

γ :=
∑
β∈Γ

β, µ := (ν + ρ0)δ.

Then µ − w2µ = γδ and γδ = 0 implies Γ = ∅. Thus it is enough to verify that
γδ = 0.

Write µ =:
∑n
i=1 biδi and w2µ =:

∑n
i=1 b

′
iδi. The assumptions on ν give

bi − bj 6∈ Z<0, bi + bj −m 6∈ Z≤0 for 1 ≤ i < j ≤ n. (6)

Note that γδ =
∑n
i=1 siδi, where si ∈ {0, 1, . . . ,m} for each i, so

bi − b′i ∈ {0, 1, . . . ,m} for i = 1, . . . , n.

SinceW (sp2n) acts on {δi}ni=1 by signed permutations, one has {|bi|}ni=1 = {|b′i|}ni=1

as multisets. If for some i, j one has b′j = −bi, then bj+bi = bj−b′j ∈ {0, 1, . . . ,m},
a contradiction to (6). Therefore {bi}ni=1 = {b′i}ni=1 as multisets. Since bi ≥ b′i for
each i, one has bi = b′i, that is γδ = 0 as required. �
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4.5. Proof of Theorem 4.2

Recall that y.µ := y(µ+ρ)−ρ for w ∈W,µ ∈ h∗; we consider other shifted actions
of the Weyl group W on h∗ given by

y◦µ := y(µ+ ρ0)− ρ0, y•µ := y(µ+ ρgni)− ρgni

and note that y.µ = y◦µ = y•µ if y ∈Wom .
By Lemma 4.4.1, the central character of g0-module Mg0

(ν) is a perfect mate for
the central character of g-module M(ν). This gives rise to equivalence of categories,
see [G2, Thm. 1.3.1]. The image of L(z.ν) under this equivalence is Lg0

(z◦ν),
see [FGG, §8.2.1]. Therefore

R0e
ρ0 chLg0(z◦ν) =

∑
y∈W

azye
y(ν+ρ0), Reρ chL(z.ν) =

∑
y∈W

azye
y(ν+ρ) (7)

for certain integers azy, which are given in terms of Kazhdan–Lusztig polynomials
for the Coxeter group W (ν+ρ0) (note that azy are not uniquely defined if ∆0(ν) 6=
∅).

Set
µ := ν + ρ− ρgni = ν − sξ.

Our goal is to show that

Rgnie
ρgni chLgni(z•µ) =

∑
y∈W

azye
y(µ+ρgni ). (8)

For each y ∈ W one has (y◦µ)δ = y◦(µδ), and the analogous formula holds for
y•. Since z ∈ W (sp2n), one has (z◦ν)ε = νε = µε = (z•µ)ε. Hence we have the
following identities:

chLg0(z◦ν) = chLom(νε) · chLsp2n
(z◦νδ),

chLgni(z•µ) = chLom(νε) · chLospp(m)|2n(z•µδ),

Rome
ρom · chLom(νε) =

∑
x∈Wom

bxe
x(ν+ρ0)ε

=
∑

x∈Wom

bxe
x(ν+ρ)ε ,

Rsp2n
eρsp2n · chLsp2n

(z◦νδ) =
∑

u∈Wsp2n

czue
u(νδ+ρsp2n )

=
∑

u∈Wsp2n

czue
u(ν+ρ0)δ ,

Rospp(m)|2ne
ρospp(m)|2n · Lospp(m)|2n(z•µδ) =

∑
u∈Wsp2n

dzue
u(µδ+ρospp(m)|2n )

,

(9)

where bx, c
z
u, d

z
u are certain integers. Therefore for each x ∈ Wom , u ∈ Wsp2n

we
have

azxu = bxc
z
u.
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Also, one has that µδ + ρospp(m)|2n = (µ + ρgni)δ = (ν + ρ)δ, so the last formula

of (9) can be rewritten as

Rospp(m)|2ne
ρospp(m)|2n · Lospp(m)|2n(z•µδ) =

∑
u∈Wsp2n

dzue
u(ν+ρ)δ .

Therefore for each x ∈Wom , u ∈Wsp2n
we have

Rgnie
ρgni chLgni(z•µ) =

∑
x∈Wom ,u∈Wsp2n

bxd
z
ue
xu(ν+ρ).

Now (8) reduces to the fact that we can choose czu, d
z
u in such a way that czu = dzu

for each u ∈ Wsp2n
(note that czu, d

z
u are not uniquely defined if ∆0(ν + ρ) or

∆0(ν + ρ0) is not empty).
Consider the case when m is odd. Combining (7) for m = 1 and the weight

µδ + ρosp1|2n = (ν + ρ)δ with the last formula of (9) we get

Rsp2n
eρsp2n · chLsp2n

(z◦µδ) =
∑

u∈Wsp2n

dzue
u(µδ+ρsp2n

) . (10)

Note that for even m the formula (10) coincides with the last formula of (9).
Hence (10) holds for all m. Compare (10) and the forth formula of (9). In light
of [KT2, Prop. 3.9], the required formulae czy = dzy follow from the following
conditions:

(a) νδ − µδ lies in the weight lattice of sp2n;
(b) (νδ + ρsp2n

)(α∨), (µδ + ρsp2n
)(α∨) 6∈ Z<0 for each α ∈ ∆(sp2n);

(c) ∆0(νδ + ρsp2n
) = ∆0(µδ + ρsp2n

).

Condition (a) follows from νδ − µδ = sξ. For (b), (c) notice that

νδ + ρsp2n
= (ν + ρ)δ +

m

2
ξ; µδ + ρsp2n

= (ν + ρ)δ +
p(m)

2
ξ.

Using Lemma 4.4.1(i) we obtain (c) and νδ + ρsp2n
, µδ + ρsp2n

∈ C+; one readily
sees that these inclusions imply (b). This completes the proof. �

5. The cases osp(m|2n) for m = 3, 4 or n = 1

Corollary 4.2.3 gives an upper bound for the degree of a simple strongly typical
highest weight bounded module. In this section we deduce an upper bound on the
degree of a simple highest weight bounded module for the cases m = 3, 4 or n = 1.

We retain the notation of §4.1. Recall that ospp(m)|2n stands for sp2n if m is
even and for osp(1|2n) if m is odd.

5.1.

Theorem. Let g = osp(m|2) with the base Σom . The module L(λ) is bounded if
and only if the om-module Lom(λom) is bounded. The degree of L(λ) is at most
22m degLom(λom).
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Proof. Assume that Lom(λom) is bounded. Set

Λ := {ν ∈ h∗ | νom = λom}.

If ν ∈ Λ is strongly typical, then, by Corollary 4.2.3, for each µ one has

dimL(ν)ν−µ ≤ 22m deg Lom(λom) (11)

since any simple highest weight ospp(m)|2-module has degree 1 (note that ospp(m)|2
is isomorphic to sl2 for even m, and to osp1|2 for odd m).

Recall that dimL(ν)ν−µ is equal to the rank of the Shapovalov matrix Sµ(ν),
see [Sh]. The Shapovalov matrix is a k × k matrix (where k = dimU(n)µ) with
entries in S(h), and such that for each ν ∈ h∗ the matrix Sµ(ν) is a k × k scalar
matrix. Let Λst be the set of strongly typical weights in Λ. Then Λst is Zariski dense
in Λ. By (11), for ν ∈ Λst the rank of Sµ(ν) is at most d := 22m deg Lom(λom).
Hence the rank of Sµ(ν) is at most d for each ν ∈ Λ. Thus (11) holds for each
ν ∈ Λ. This completes the proof. �

5.2.

Theorem. Let g = osp(m|2n) for m = 3 or m = 4 with the base

Σospp(m)|2n = {ε1 − ε2, ε2 − δ1, δ1 − δ2, . . . , aδn},

where a = 1 for m = 3, a = 2 for m = 4. The module L(λ) is bounded if and
only if the ospp(m)|2n-module Lospp(m)|2n(λsp2n

) is bounded. The degree of L(λ) is

at most 22n degLospp(m)|2n(λsp2n
).

Proof. Assume that Lospp(m)|2n(λδ) is bounded. Set

Λ := {ν ∈ h∗ | νsp2n
= λsp2n

}

and let Λst be the set of strongly typical weights in Λ.
Set Σ := Σospp(m)|2n and Σ′ := Σom ; denote by ρ (respectively, ρ′) the Weyl

vector for Σ (respectively, Σ′). Observe that any simple highest weight om-module
has degree 1 (since o3

∼= sl2 and o4
∼= sl2 × sl2). If ν ∈ Λst, then L(ν) = L(Σ′, ν′)

with ν′ + ρ′ = ν + ρ and Corollary 4.2.3 gives

dimL(ν)ν−µ = dimL(Σ′, ν′)ν−µ ≤ 22n deg Lospp(m)|2n

(
ν′sp2n

−
⌊m

2

⌋ n∑
i=1

δi

)
for each µ. One has

ν′sp2n
−
⌊m

2

⌋ n∑
i=1

δi = νsp2n
+ ρsp2n

− ρ′sp2n
−
⌊m

2

⌋ n∑
i=1

δi = νsp2n
.

Therefore for ν ∈ Λst one has

dimL(ν)ν−µ ≤ 22n deg Lospp(m)|2n(νsp2n
). (12)

Since Λst is Zariski dense in Λ, we can use again the last argument in the proof
of Theorem 5.1. Thus (12) holds for each ν ∈ Λ. �

912



SIMPLE BOUNDED HIGHEST WEIGHT MODULES

References

[BBL] G. Benkart, D. Britten, F. Lemire, Modules with bounded weight multiplicities for
simple Lie algebras, Math. Z. 225 (1997), 333–353.

[BL] D. Britten, F. Lemire, A classification of simple Lie modules having a 1-dimen-
sional weight space, Trans. Amer. Math. Soc. 299 (1987), 683–697.

[Co] K. Coulembier, On a class of tensor product representations for orthosymplectic
superalgebras, J. Pure Appl. Algebra 217 (2013), 819–837.

[DGK] V. V. Deodhar, O. Gabber, V. Kac, Structure of some categories of representa-
tions of infinite-dimensional Lie algebras, Adv. Math. 45 (1982), 92–116.

[DMP] I. Dimitrov, O. Mathieu, I. Penkov, On the structure of weight modules, Trans.
Amer. Math. Soc. 352 (2000), 2857–2869.

[En] T. J. Enright, On the fundamental series of a real semisimple Lie algebra: their
irreducibility, resolutions and multiplicity formulae, Ann Math. 110 (1979), 1–82.

[FGG] T. Ferguson, M. Gorelik, D. Grantcharov, Bounded highest weight modules of
osp(1, 2n), Proc. Symp. Pure Math., AMS, Vol. 92 (2016), 135–143.

[F] S. Fernando, Lie algebra modules with finite dimensional weight spaces I, Trans.
Amer. Math. Soc. 322 (1990), 757–781.

[Fu] V. Futorny, The Weight Representations of Semisimple Finite-dimensional Lie
Algebras, PhD Thesis, Kiev University, 1987.

[G1] M. Gorelik, Annihilation theorem and separation theorem for basic classical Lie
superalgebras, J. Amer. Math. Soc. 15, (2002), 113–165.

[G2] M. Gorelik, Strongly typical representations of the basic classical Lie superalgebras,
J. Amer. Math. Soc. 15, (2002), 167–184.

[GG] M. Gorelik, D. Grantcharov, Bounded highest weight modules of q(n), Int. Math.
Res. Not. 2014(22) (2014), 6111–6154.

[GK] M. Gorelik, V. Kac, Characters of (relatively) integrable modules over affine Lie
superlagebras, Japan. J. Math. 10 (2015), 135–235.

[GS] M. Gorelik, V. Serganova Snowflake modules and Enright functor for Kac–Moody
superalgebras, arXiv:1906.07074 (2019).

[Gr] D. Grantcharov, Explicit realizations of simple weight modules of classical Lie
superalgebras, Cont. Math. 499 (2009), 141–148.

[GrS1] D. Grantcharov, V. Serganova, Category of sp(2n)-modules with bounded weight
multiplicities, Mosc. Math. J. 6 (2006), 119–134.

[GrS2] D. Grantcharov, V. Serganova, On weight modules of algebras of twisted differen-
tial operators on the projective space, Transform. Groups 21 (2016), 87–114.

[H] C. Hoyt, Weight modules for D(2, 1, α), in: Advances in Lie Superalgebras, Sprin-
ger INdAM Ser., Vol. 7, Springer, Cham, 2014, pp. 91–100.

[IK] K. Iohara, Y. Koga, Enright functors for Kac–Moody superalgebras, Abh. Math.
Semin. Univ. Hambg. 82 (2012), no. 2, 205–226.

[Jo] A. Joseph, Some ring theoretical techniques and open problems in enveloping
algebras, in: Noncommutative Rings, MSRI Publications, Vol. 24, Springer, New
York, NY, 1992, pp. 27–67.

[K1] V. G. Kac, Lie superalgebras, Adv. Math. 26 (1977), 8–96.

913



MARIA GORELIK, DIMITAR GRANTCHAROV

[K2] V. G. Kac, Infinite-dimensional Lie Algebras, 3rd edition, Cambridge University
Press, Cambridge, 1990.

[KT1] M. Kashiwara, T. Tanisaki, Kazhdan–Lusztig conjecture for symmetrizable Kac–
Moody algebras III. Positive rational case, Asian J. Math. 2 (1998), no. 4, 779–832.

[KT2] M. Kashiwara, T. Tanisaki, Characters of the irreducible modules with non-critical
highest weights over affine Lie algebras, in: Representations and Quantizations
(Shanghai, 1998), China High. Educ. Press, Beijing, 2000, pp. 275–296.

[M] O. Mathieu Classification of irreducible weight modules, Ann. Inst. Fourier 50
(2000), 537–592.

[S1] V. Serganova, Finite-dimensional representations of algebraic supergroups, in:
Proceedings of International Congress of Mathematicians — Seoul 2014, Vol. 1,
Kyung Moon Sa, Seoul, 2014, pp. 603–632.

[S2] V. Serganova, Kac–Moody superalgebras and integrability, in Developments and
Trends in Infinite-dimensional Lie Theory, Progress in Math., Vol. 288, Birk-
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