Eigenslices for Parabolic Actions

To Michel on his 62nd Birthday

Anthony Joseph

The Weizmann Institute of Science June 2005

Notation.

g semisimple, π simple roots, $p=p_{\pi'}:\pi'\subset\pi$ parabolic

<u>Underlying theme</u>. The (semi) invariant algebra Sy(p) should exhibit the same good properties as the invariant algebra Y(g).

Conjecture 1. Sy(p) is polynomial

Theorem (FJ2). Conjecture 1 is true in most cases. For example, all parabolics in type A or C.

Question. What are the degrees of the invariants?

The degrees are known for p = g (Chevalley-Kostant).

The degrees are known for p = b (Prep. thm. 1977.)

The recipe in the two cases is very different.

In our work (FJ1) the generators are parametrized by a set Π of orbits in π under a finite group action depending on π'

To each $\Gamma \in \Pi$ we assign a "false degree" d_{Γ}^{f} .

In principle, the generators have degrees $\varepsilon_{\Gamma}^{\pi'} d_{\Gamma}^{f} : \varepsilon_{\Gamma}^{\pi'} \in \{\frac{1}{2}, 1\}.$

Theorem (FJ2). When $\varepsilon_{\Gamma}^{\pi'} = 1, \forall \Gamma \in \Pi$, then Sy(p) is polynomial and the generators have degrees $d_{\Gamma}^{f} : \Gamma \in \Pi$.

When p = b, the generators have degree $\varepsilon_{\Gamma}^{\emptyset} d_{\Gamma}^{f}$: $\Gamma \in \Pi$.

The above "principle" fails when p = g, yet the degrees of the generators have the same sum as $\sum_{\Gamma \in \Pi} d_{\Gamma}^{f}$.

Since p is algebraic, it admits a unique subalgebra p_{Π} containing p' such that $Sy(p) = Y(p_{\Pi})$.

For any finite dimensional Lie algebra a, let index a be the codimension of a coadjoint orbit of maximal dimension.

Set
$$c(a) = \frac{1}{2}(\dim a + \operatorname{index} a)$$
.

Theorem (FJ3)

$$c(p) = c(p_{\Pi}) = \sum_{\Gamma \in \Pi} d_{\Gamma}^{f}$$

If a is algebraic and Sy(a) = Y(a), then $GK \dim Sy(a) = index a$ (Chevalley-Dixmier).

Let $A \subset S(a)$ be Poisson commutative, then $GK \dim A \leq c(a)$.

The above bound can always be reached (S.T. Sadetov).

For g semisimple, the above bound can be reached by "shift of argument". The resulting algebra is polynomial and maximal Poisson commutative. Identify p_{Π} with $(p_{\Pi}^{-})^*$ through the Killing form. Let h_{Π} be the Cartan subalgebra of p_{Π} . In FJ3, h_{Π} is computed explicitly. Call $y \in p_{\Pi}$ regular if codim $[p_{\Pi}^{-}, y] = \text{index } p_{\Pi}$

Set $\mathcal{N} = \mathcal{V}(S(p_{\pi}^{-})Y(p_{\pi}^{-})_{+})$ - the nil fibre.

Remark. \mathcal{N}_{reg} can be empty

Conjecture 2. Suppose $\mathcal{N}_{reg} \neq \emptyset$. Then there exists $h \in h_{\Pi}, y \in (p_{\Pi})_{reg}$ such that [h, y] = -y.

Choose an h stable complement V to $[p_{\Pi}^{-}, y]$ in p_{π} . The eigenvalues of h on V shall be called the parabolic exponents $e_{\Gamma}^{\pi'} : \Gamma \in \Pi$.

Conjecture 3. $Y(p_{\Pi}^{-})$ is polynomial with generators having degrees $e_{\Gamma}^{\pi'} + 1 : \Gamma \in \Pi$.

Corollary (to conjectures 2,3). Restriction of functions gives an isomorphism of algebras

$$Y(p_{\Pi}^{-}) \xrightarrow{\sim} R[y+V]$$

Remark $P_{\Pi}^{-}(y+V) \subset (p_{\Pi})_{reg}$, but the inclusion may be strict.

Conjecture 4. dim $(p_{\Pi})_{\geq 0} = c(p_{\Pi})$

Remark.

Conjecture 4 is equivalent to [x, y] = 0: $x \in (p_{\Pi}^{-})_{>0} \Rightarrow x = 0$.

Remark. $S_0 := (p_{\Pi})_0 \cap (p_{\Pi})_{reg}$ is usually empty.

Conjecture 5. Suppose $S_0 \neq \emptyset$. Then there exists $z \in S$ for which the z shift $T_z(p_{\Pi}^-)$ of $Y(p_{\Pi}^-)$ satisfies $T_z(p_{\Pi}^-) \xrightarrow{\sim} R[y + (p_{\Pi})_{\geq 0}]$

by restriction of functions.

Corollary $T_z(p_{\Pi}^-)$ is maximal Poisson commutative and, of course, polynomial on $c(p_{\Pi}^-)$ generators.

<u>Results</u>

Conjectures 1,2,3,4 are true if rank $g \leq 2$.

Set $j = -w_0|_{\pi}$, w_0 being the longest element in W

Conjectures 2,3,4 are true in type A given $j(\pi') = \pi'$. In particular if $\pi' = \emptyset$. They are also true in type A up to rank ≤ 5 .

Conjecture 5 is true in type A if $\pi' = \emptyset$.

The case of G_2 . Set $\pi = \{\alpha, \beta\}, \pi' = \{\alpha\}, \alpha$ short. One can easily construct two algebraically independent elements of $Y(p_{\Pi}^-)$, namely the lowest root vector xand a second invariant x' of degree ≤ 4 by modifying the Casimir of the Levi factor for p_{Π}^- . Let Y be the subalgebra they generate.

Set $h = \alpha^{\vee}$, $y = x_{\alpha+\beta}$. Then [h, y] = -y and $[p_{\Pi}^{-}, y]$ is complemented in p_{Π} by $V := kx_{3\alpha+2\beta} \oplus kx_{3\alpha+\beta}$. Thus the parabolic exponents are 0, 3.

Conclusion. The restriction map gives an isomorphism $Y \xrightarrow{\longrightarrow} R[y+V]$. Moreover degx' = 4. As a consequence $Y = Y(p_{\Pi}^{-})$.

By contrast, the false degrees are 2, 3.

Some examples in type A. We can assume h to be π' dominant.

In all cases we found we could choose y in the form $y = \sum_{\alpha \in S} x_{\alpha}$ where $S \subset \Delta^+ \cup \Delta_{\pi'}$ such that $S|_{h_{\Pi}}$ is the basis for h_{Π}^* .

Call S the support of y