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1. Outline and Historical Background

The base field will be assumed to be the complex numbers C.

1.1 Let V be a finite dimensional vector space and G a group of linear automorphisms
of V , Then G acts by transposition on the dual V ∗ of V and hence on the space of regular
functions R[V ∗] on V ∗, which may be identified with the symmetric algebra S(V ) of V , that
is to say, the polynomial algebra generated by a basis of V . A basic problem of algebraic
invariant theory is to determine S(V )G - the algebra of G-invariant functions on V ∗.

1.2 One says that G is reductive on V if V is a direct sum of simple G modules. In this
case S(V ) is also a direct sum of simple G modules. For example, GL(V ), the group of
all linear automorphisms of V , is reductive since V is already a simple GL(V ) module. In
addition because the ground field is assumed of characteristic zero, GL(V ) is also reductive
on all the tensor products V ⊗n

: n ∈ N. One may further remark that up to twisting by one
dimensional modules every simple finite dimensional GL(V ) module is obtained as a direct
summand of ⊕n∈NV ⊗n

, a result going back to Schur. (For a brief discussion of the proof
see [32, 1.4.13].) The subgroup SL(V ) := {a ∈ GL(V )|det a = 1} is simple. We write
GL(n), SL(n), when dim V = n. When n = 2, one obtains all simple finite dimensional
SL(2) modules by decomposing just the symmetric powers of V . For each integer m ≥ 0.
there is just one simple SL(2) module Vm of dimension m + 1, up to isomorphism.

1.3 The study of S(Vm)SL(2) was pursued vigorously during the nineteenth century, full
pages being devoted to the description of invariants. It is said, but perhaps only in retro-
spect, that the principal aim was to show that this algebra had finitely many generators.
Then, in 1890, Hilbert showed that S(V )G was finitely generated for any reductive group
G. This work was sarcastically described as being more like theology than mathematics.
In any case, it had the unfortunate effect of closing the door on invariant theory.
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1.4 It is said that Algebra and Geometry progressed slowly and with failing momentum
until they encountered one another. Invariant theory affords an excellent example of this
fruitful marriage. As it turned out, invariant theory had to wait 75 years until notably
Mumford pointed out that S(V )G being finitely generated allowed one to define the notion
of the “categorical quotient” V//G, namely Spec S(V )G. In this, Max S(V )G is deemed to
be the set of points of V//G. Each element χ ∈ Max S(V )G assigns a scalar χ(fi) to the
ith generator of S(V )G, in a manner compatible with the relations they satisfy. Then we
have the following geometric question. What is the nature of the subset Vχ of V on which
fi takes the value χ(fi)? It is immediate that Vχ is a union of G orbits and consequently
we obtain a surjection ϕ of the geometric quotient V/G onto V//G. The fibres of this map
are exactly the G orbits which cannot be separated by invariant functions.

1.5 The study of V//G was the start of geometric invariant theory. However, it should
immediately be said that this is not the aim of the present course. Rather, we want to
investigate some cases in which G is not reductive. In general, S(V )G is no longer finitely
generated, though it is no easy matter to find examples. There are, besides, many other
technical difficulties and consequently, we must choose G and V carefully. For example
we may take G to be a parabolic or biparabolic subgroup P of a simple algebraic group,
mainly SL(n), acting on the dual of its Lie algebra p. A second possibility is to take
the centralizer of an element in a simple Lie algebra. In many such cases the algebra of
polynomial invariants on the dual is a polynomial algebra [21], [35], [60], [38].

1.6 It may be useful to make some general and rather banal remarks concerning the nature
of the categorical quotient V//G. From the definition of the Zariski topology, the inverse
images of the points in V//G are closed subsets (varieties) of V . Thus if |ϕ−1(χ)| = 1, the
corresponding orbit is closed. Such orbits which are distinguished from other orbits by the
invariant functions, are considered to be particularly good. At the other extreme, consider
the augmentation ideal S(V )G

+ generated by the homogeneous invariant polynomials of
the positive degree. This is obviously a maximal ideal χ0 of S(V )G. The “worst” orbits
are those in ϕ−1(χ0). One calls the corresponding preimage in V the nilfibre N . It is
presumed to be the worst behaved fibre. It is a cone and has zero as its unique closed
orbit. It is presumed that the most difficult questions circulate around N . One can ask
if N is equidimensional, equivalently if all its components have the same codimension,
and if this common value is equal to GK dim S(g)G. One can ask if the components are
always complete intersections and even if N is irreducible. One can ask if N consists of
finitely many orbits, or at least admits an orbit of minimal codimension. Such orbits are
called regular. An important question is whether V admits a slice, that is to say, an affine
subvariety which meets every regular orbit at exactly one point. Partial answers to these
questions and their interrelationships for G reductive, are discussed in [36] -[39], [8], [60].

1.7 The case when G is a connected algebraic subgroup of GL(V ) acting on (Lie G)∗,
is of particular importance. In this case an orbit (called a coadjoint orbit) admits (after
Kirillov-Kostant-Souriau) the structure of a symplectic variety coming from the Lie bracket
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on g := Lie G. A symplectic variety is the natural habitat of classical (Hamiltonian)
mechanics. The passage to Quantum Mechanics leads to the problem of quantizing a
symplectic variety. This is interpreted (by mathematicians) as assigning an irreducible
(unitary) representation to a coadjoint orbit.

A basic problem in Classical Mechanics is to solve Hamilton’s equations of motion.
This becomes particularly easy when we have sufficiently many variables which commute
with the Hamiltonian - a circumstance which is known as a completely integrable system.
Such systems are (in principle) naturally obtained from S(g)G by “shift of argument”.
This procedure is particularly successful for G simple. However, one may show that it
can work for certain parabolic subgroups P of a simple algebraic group. This leads to
maximal Poisson commutative subalgebras of S(g) which are polynomial, providing thereby
a completely integrable system. Of course, mathematicians cannot be expected to say that
this corresponds to a physical system. This would involve identifying one of the generators
as an acceptable Hamiltonian. Historically, the Toda lattice Hamiltonian was, in suitable
co-ordinates, exactly one such generator in the case of G = SL(3) acting on the dual of its
Lie algebra.

1.8 These notes are organized as follows. First we describe the more classical theory
when g is a semisimple Lie algebra. The Chevalley theorem describing invariants is proved
in Section 2.2. The Jacobson-Morosov theorem which leads to a description of all nilpotent
orbits is proved in Section 2.3. Slice theory is outlined in Section 2.4 and shift of argument in
Section 2.5. (For further details on slices we refer the reader to [39, Section 7].) Section 2.6
is devoted to Bolsinov’s remarkable theorem concerning the construction of large Poisson
commutative subalgebras. In Section 2.7 the Duflo-Vergne argument is used to show that
the index of a stabilizer exceeds that of the algebra itself. In Section 2.8, this is recovered
using Vinberg’s inequality a proof of which is given following Panyushev [58]. The Rais
theorem is proved in Section 2.9 and its application to computing the codimension of the
variety of singular elements in the dual of a Lie algebra. Section 2.10 describes distinguished
nilpotent orbits and the classification of all nilpotent orbits which results.

1.9 In the rewriting of these notes several new developments were taken into account.
In particular the Ooms-van den Bergh sum rule [57], the description of maximal Poisson
commutative subalgebras due to Panyushev and Yakimova [61] and the extension of Bolsi-
nov’s theorem to the ”singular” case [42, Section 7]. For proofs the reader is referred to
the articles cited.

Acknowledgements. I should like to thank Gal Benyamini and Shifra Reif for some of
the many corrections made to the original manuscript. I should also like to thank Vladimir
Hinich for discussions concerning 2.2.2.6.

2. The Classical Theory - Coadjoint action for G semisimple.



4 ANTHONY JOSEPH

2.1. Structure theory for Semisimple Lie algebras.

2.1.1 Let g be a finite dimensional Lie algebra. The Killing form (x, y) 7→ tr(ad x)(ad y)
on g is bilinear, symmetric and invariant for the adjoint action, so in particular ((ad x)y, z)+
(y, (ad x)z) = 0, ∀ x, y, z ∈ g. (This becomes (gy, gz) = (y, z), for all g in the adjoint
group G of g). A basic fact is that the Killing form is non-degenerate if and only if g is
semisimple. This means that the adjoint and coadjoint actions coincide for g semisimple
and we may identify g∗ with g.

From now on g denotes a semisimple Lie algebra. We recall some basic facts about the
structure of g. More details can be found in [15, 1.5-1.10]

2.1.2 A Cartan subalgebra h of g is a maximal commutative subalgebra whose adjoint
action on g is reductive. A basic fact is that the set of Cartan subalgebras is non-empty
and forms a single orbit under the action of G. For each α ∈ h∗, the root subspace gα is
defined by

gα = {x ∈ g|(ad h)x = α(h)x, ∀ h ∈ h}.
We call ∆ = {α ∈ h∗ r {0}|gα 6= 0}, the set of non-zero roots. It is immediate that the
Killing form pairs gα with g−α and so restricts to a non-degenerate form on h. Thus, the
identification of g with g∗ also identifies h with h∗, and then the Killing form defines a
scalar product ( , ) on h∗. Define sα ∈ Aut h∗ through

sαλ = λ− 2((α, λ)/(α, α))α

for all λ ∈ h∗. Let W (the Weyl group of ∆) be the subgroup of Aut h∗ generated by the
sα : α ∈ ∆. A basic fact is that ∆ is W stable. Because ∆ is a finite set, this condition is
particularly restrictive and indeed, it is possible to classify all possible root systems which
can be obtained from a semisimple Lie algebra. A root system decomposes into mutually
orthogonal subsystems corresponding to the decomposition of g into a product of simple
Lie algebras. For a simple Lie algebra, the root system is one of four infinite families
A,B, C, D indexed by dim h or 5 exceptional cases E6, E7, E8, F4, G2. The Lie algebra of
sl(n) : n ≥ 2 is of type An−1.

2.1.3 Retain the above hypotheses and notation. A basic fact is that dim gα = 1, ∀ α ∈
∆. We can identify g0 with h. If α, β ∈ ∆, then obviously [gα, gβ] ⊂ gα+β, and less
obviously, one has equality exactly when α + β is a root. Finally, the [gα, g−α] span h.
These facts almost allow one to canonically determine the Lie algebra relations from the
additive structure of ∆. Indeed call a root system ∆ a finite subset of Euclidean n-space
such that 2(α, β)/(α, α) ∈ Z,∀α, β ∈ ∆ , such that α ∈ ∆, nα ∈ ∆ implies n = ±1 and
such that ∆ is stable under the resulting Weyl group defined as in 2.1.2. Then there is
exactly one semisimple Lie algebra up to isomorphism with ∆ as its set of non-zero roots.
Up to signs its Lie algebra relations may be written down rather explicitly (see [24, Chap
III, Thm. 5.5] for example). Allocating the signs and so proving existence and uniqueness
needs a major effort. Perhaps a better approach to existence and uniqueness is through
generators and relations. This extends to the general context of symmetrizable Kac-Moody
Lie algebras [43].
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We remark that a further possible development in the above is that the integrality
condition on 2(α, β)/(α, α) may be dropped and the finite groups so obtained be classified.
These additional groups are the dihedral groups D2n (not of course corresponding to the
rank two semisimple Lie algebras) and two further groups customarily designated as H3,H4.
All may be realized as subgroups of a larger rank Weyl group. See [26], [53] and [39, 2.10]
for example. One may remark that this description of D10,H3, H4 involves the Golden
Section.

Naturally, the Weyl group plays a fundamental role in the structure theory of a semisim-
ple Lie algebra, as well as in its representation theory.

2.1.4 A simple root system π for ∆ is defined to be a basis for h∗ such that ∆ = ∆+t∆−
where ∆− = −∆+ and

∆+ = Nπ ∩∆.

The existence of a simple root system is a remarkable fact. Moreover, the set of all simple
root systems forms a single W orbit. Notice that if gα = Cxα, then

[xα, x−β] = 0, ∀ α, β ∈ π distinct. (∗)

2.1.5 Let π1 be a subset of π. Define

∆±
1 = ±Nπ1 and n±π1

= ⊕α∈∆±1
gα.

The latter is obviously a subalgebra of g. From the remarks in 2.1.3, it is generated by the
xα : α ∈ ±π1.
Then from 2.1.4(∗), one checks that

qπ1,π2 := n+
π2
⊕ h⊕ n−π1

is a subalgebra of g. It is called the standard biparabolic subalgebra determined by the
pair π1, π2 ⊂ π. Such subalgebras and the abstraction of their properties were a main
motivation for these lectures. Notice, we may identify q∗π1,π2

with qπ2,π1 through the Killing
form. Moreover, the coadjoint action of q := qπ1,π2 on q∗ just becomes commutation in g,
modulo the orthogonal q⊥ of q taken with respect to the Killing form.

2.2. Chevalley’s Theorem.

2.2.1 Since S(g) identifies with R[g∗] and S(h) with R[h∗], we obtain a canonical surjec-
tion of S(g) onto S(h) by restriction of functions. Let ψ denote the restriction of the above
homomorphism to Y (g) := S(g)G.

Theorem (Chevalley [13])
ψ : S(g)G →̃ S(h)W .
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Proof Set G = 〈exp ad xα : α ∈ ∆, xα ∈ gα〉. Since ad xα is nilpotent exp ad xα ∈ Aut g
(over any base field of characteristic zero)). [More remarkably, if the xα are restricted to
belong to a Chevalley basis and gZ is the Z module defined by that basis, then G ⊂ Aut gZ.
The resulting image in Aut(gZ⊗ZZ/ < pn >) is a finite group called a Chevalley group-see
[9, Chap. 4] for example.] If xα, x−α together with α∨ := [xα, x−α] form a standard basis
for sl(2), then under the image of < exp ad xα, exp ad x−α > in C2, we obtain

exp ad xα exp ad x−α exp ad− xα =
(

1 1
0 1

) (
1 0
1 1

)(
1 −1
0 1

)
=

(
0 1
−1 0

)

With s̃α := exp ad xα exp ad x−α exp ad− xα, let N denote the subgroup of G generated
by the s̃α : α ∈ ∆. Using the fact that s̃α interchanges the eigenvectors of α∨ in C2 one
easily checks that s̃αα∨ = −α∨. Trivially, s̃αh = h, if h ∈ h satisfies α(h) = 0. Hence
s̃αh = sαh, for all h ∈ h and so s̃α sends gβ to gsαβ, for all β ∈ ∆. Consequently the action
of N commutes with restriction of functions S(g) → S(h) and so the image of Y (g) in S(h)
is contained in S(h)W .

Injectivity of ψ|Y (g).
Fix h ∈ h and consider Gh. One checks that the tangent space TGh,h to Gh at h coincides

with ⊕α∈∆|h(α) 6=0 gα. Set hreg = {h ∈ h|h(α) 6= 0, ∀ α ∈ ∆} which is Zariski open dense
in h. From the above, it follows that dimGh = dim⊕α∈∆ gα + dim h = dim g. Since g is
irreducible (as a variety), we obtain Gh = g. Now, if f ∈ Y (g) vanishes on h, it vanishes
on Gh, hence on g. Thus f = 0, as required.

Surjectivity of ψ|Y (g).
Take a ∈ S(h). Since g is reductive, we can write

(ad U(g))a = I ⊕ (ad U(g)+)a, with I ⊂ Y (g), dim I 6 1. (∗)
By (∗), we may define a map θ0 : S(h) → Y (g), by a − θ0(a) ∈ (ad U(g)+)a. This

is plainly linear and furthermore, using N defined above, one checks that θ0(wa) =
θ0(a), ∀ w ∈ W . Thus θ0 factors to a linear map θ of S(h)W into Y (g). Similarly, we may
define a linear map θ̃ of U(h)W = S(h)W onto Z(g) = Cent (U(g)). Since symmetrization
s commutes with adjoint action and with W , the diagram

S(h)W θ−→ Y (g)
s ↓ ↓ s

U(h)W θ̃−→ Z(g)

is commutative. Recalling that the above restrictions of s (the vertical arrows,) are linear
bijections, one obtains

θ injective ⇔ θ̃ injective.
The proof of surjectivity is then completed after the folowing step.

Injectivity of θ̃.
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Let ε : U(g) → C be the augmentation . One has ker ε = U(g)+. For any finite
dimensional U(g) module V , one has

tr((ad a)b, V ) = ε(a) tr(b, V ), ∀ a, b ∈ U(g).

Hence
tr(θ̃(a), V ) = tr(a, V ) =

∑

ν∈h∗
a(ν) dimVν ,

where Vν is the weight subspace of V of weight ν.
Let P (resp. P+) denote the set of weights (resp. dominant weights). Given µ ∈ P+,

there exists a unique up to isomorphism simple U(g) module V (µ) of highest weight µ, and
which is furthermore finite dimensional. Define µ 6 ν if ν−µ ∈ Nπ and, given µ ∈ P+, let

S(µ) :=
∑

w∈W/StabW µ

ewµ

be the orbit sum it defines. The Weyl character formula asserts that, with respect to 6,
there exists a triangular matrix mµ,ν , with ones on the diagonal, such that

ch V (µ) =
∑

ν6µ

mµ,νS(ν).

Thus, if tr(θ̃(a), V (µ)) = 0, ∀ µ ∈ P+, we obtain
∑

w∈W

a(wν) = 0, ∀ ν ∈ P+.

Since a is W invariant, we deduce that a(ν) = 0, ∀ ν ∈ P+ and since P+ is Zariski dense
in h∗, we obtain a = 0. Consequently θ̃ is injective.

Completing the proof of surjectivity.
From the above, we conclude that ψθ is an injective linear map of S(h)W to itself.

Since it preserves degree and the space of invariant polynomials of degree 6 n is finite
dimensional, one concludes that ψθ is bijective. Hence ψ is surjective. ¤

The advantage of the above proof is that it generalizes to a multivariable Chevalley type
theorem. In particular, consider the corresponding map of (S(g) ⊗ S(g))G onto (S(h) ⊗
S(h))W , where the groups G,W act diagonally. This map is no longer injective; but it is
surjective, which is proved by showing that a similarly defined map to θ is injective [33]. For
that we require more than the Weyl formula. Precisely, we require some detailed description
of the tensor product of two simple g modules, namely the truth of the refined PRV
conjecture established by Kumar [49]. It even gives a deeper meaning to this conjecture.

The above description of invariants has been extended to the case of S(p)k, where g = k⊕p
is a Cartan decomposition of a semisimple Lie algebra g, by Tevelev [67].

2.2.2 A further theorem of Chevalley asserts that S(h)W is a polynomial algebra. A key
point in the proof is that if p ∈ S(h∗) satisfies sαp = −p, then α divides p, as one easily
checks. In particular, for all p ∈ S(h∗) and all α ∈ ∆, the difference sαp− p is divisible by
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α. This fact enables one to apply a reasoning using induction on degree. The details are
given below.

2.2.2.1 Let V be a C-vector space and G a finite subgroup of GL(V ). Then G acts on V
and by automorphisms on S(V ). The subalgebra S(V )G of invariant polynomials is easy
to construct. For any p ∈ S(V ) note that

e(p) :=
1
|G|

∑

g∈G

gp ∈ S(V )G.

The advantage of the factor |G| in the denominator (which can cause trouble in positive
characteristic) is that it makes e : S(V ) → S(V )G so defined, an idempotent. In particular,
e is surjective.

2.2.2.2 Now let W denote the Weyl group which we recall is a subgroup of GL(V ) with
V = h. Identify h with h∗ through the killing form. The following two results are valid for
any finite group generated by reflections (or even pseudo-reflections). Let S(h)W

+ denote
the ideal of S(h)W generated by the homogeneous polynomials in S(h)W of positive degree
and set I = S(h)S(h)W

+ .

Lemma Suppose p1, p2, . . . , pn ∈ S(h)W satisfy p1 6∈
∑n

i=2 S(h)W pi and
∑n

i=1 qipi = 0
for some qi ∈ S(h) homogeneous. Then q1 ∈ I.

Proof Induction on deg q1. If deg q1 = 0 then since
n∑

i=1

e(qi)pi = 0

we must have q1 = e(q1) = 0 by the hypothesis on p1. On the other hand, we can write
sα(qi)− qi = αq′i, with q′i homogeneous of degree < deg qi and moreover,

n∑

i=1

q′ipi = 0.

Thus, by the induction hypothesis q′1 ∈ I and so sαq1 − q1 ∈ I. Since this holds for α ∈ π,
we deduce that q1 = e(q1) + I ⊂ I, since deg q1 > 0. ¤

2.2.2.3 Since S(h) is a polynomial algebra, the Hilbert basis theorem implies that any
increasing sequence I1 ⊂ I2 ⊂ . . ., of ideals of S(h) is stationary. Choose inductively
pi : i = 1, 2, . . ., homogeneous and W invariant of positive degree, with pi 6∈

∑i−1
j=1 S(h)pj

if the latter is strictly contained in I and so does not contain S(h)W
+ . By the first remark,

this gives m ∈ N+ and p1, p2, . . . , pm ∈ S(h)W
+ homogeneous such that

I =
m∑

j=1

S(h)pi.
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Furthermore, we can assume

pi 6∈ Ii :=
m∑

j(6=i)=1

S(h)pj , for all j = 1, 2, . . . , m.

Lemma The set {pi}m
i=1 generates S(h)W as an algebra.

Proof Let Sn(h) denote the subspace of S(h) of homogeneous polynomials of degree n.
Since the action of W preserves degree, we have

S(h)W =
⊕

n∈N
Sn(h)W .

Let Sn denote the subspace of Sn(h)W generated by the {pi}m
i=1. The assertion Sn =

Sn(h)W is trivial for n = 0. Assume it for some n > 0. Given q ∈ Sn+1(h)W ⊂ S(h)W
+ ⊂ I,

we can write

q =
m∑

i=1

qipi, with deg qi = n + 1− deg pi 6 n.

Then

q = e(q) =
m∑

i=1

e(qi)pi ⊂
n∑

i=1

Snpi,

hence the assertion. ¤

Remark This follows closely Hilbert’s proof that S(V )SL(2) is finitely generated, except
that he used a different projection (called at the time, an Ω-process). A modern treatment
replaces this with complete reducibility and is valid for any reductive subgroup of GL(V ).

2.2.2.4 Chevalley took the above construction one step further for reflection groups.

Lemma The {pi}m
i=1 are algebraically independent.

Proof Set deg pi = mi. Define a grading on C[X1, X2, . . . , Xm] by setting deg Xi = mi

and let ϕ : C[X1, X2, . . . , Xm] → S(h)W be the graded algebra map defined by ϕ(Xi) = pi.
If the conclusion of the lemma is false, there exists r ∈ C[X1, X2, . . . , Xm] homogeneous
such that ϕ(r) = 0, and of minimal degree with this property. Set ri = ϕ( ∂r

∂Xi
) : i =

1, 2, . . . , m. These cannot all be zero. Let Ri : i = 1, 2, . . . , m, denote the ideal of S(h)W

generated by the rj : j 6= i. Relabel the ri so that ri 6∈ Ri, for i = 1, 2, . . . , s and
rj ∈

∑s
i=1 S(h)W ri, for all j > s. We may write

rs+j =
s∑

i=1

uj,iri : j = 1, 2, . . . , m− s.

with uj,i ∈ S(h)W homogeneous of degree deg rs+j − deg ri.
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Let {xi}n
i=1 be a basis for h. Then

O =
∂r

∂xk
=

m∑

i=1

∂r

∂pi

∂pi

∂xk
=

s∑

i=1

ri


 ∂pi

∂xk
+

m−s∑

j=1

uj,i
∂ps+j

∂xk


 .

By construction and 2.2.2.2 we obtain

∂pi

∂xk
+

m−s∑

j=1

uj,i
∂ps+j

∂xk
∈ I, i = 1, 2, . . . , s, ∀ k.

which moreover, is homogeneous of degree deg pi − 1.
Multiplying by xk and summing gives

mipi +
m−s∑

j=1

uj,i ms+j ps+j =
m∑

j=1

qi,jpj , i = 1, 2, . . . , s,

for some qi,j ∈ S(h) homogeneous of degree deg pi− deg pj > 1. This forces qi,i = 0 : i 6 s,
and then the contradiction pi ∈ Ii. ¤

2.2.2.5 Summarizing the above we have proved the following

Theorem S(h)W is a polynomial algebra

2.2.2.6 The observation in 2.2.2 gives (see [34, 8.3] for example) a further result of Cheval-
ley, namely that S(h) is free over S(h)W (of rank |W |). Shephard and Todd [65] noted that
the latter result gives a further proof of 2.2.2.5. Write S = S(h), R = S(h)W .

Lemma
S ⊗R TorR

n (C,C) = TorS
n(S/I, S/I).

Proof Let→ pn → · · · → p0 → C be a free resolution of C as an R module. By definition,
TorR

n (C,C) is the nth homology group [18, Chap. 6] of the complex → pn ⊗R C → · · · →
p0⊗RC. Since S is free over R and hence S⊗R− is exact, it follows that→ S⊗Rpn → · · · →
S ⊗R k is a free resolution of S ⊗R k ∼= S/SAnnRC = S/I. By definition TorS

n(S/I, S/I)
is the nth homology group of the complex → (S ⊗R pn)⊗S S/I → · · · → S ⊗R p0 ⊗S S/I.
Yet (S ⊗R pn) ⊗S (S ⊗R k) = S ⊗R (pn ⊗R k), so the assertion follows by again using
exactness. ¤

Yet S is polynomial and so for any finitely generated S module, one has TorS
n(M,M) =

0, for n sufficiently large [18, Chap. 15]. Consequently, by the exactness of S ⊗R −,
TorR

n (C,C) = 0 for n sufficiently large. Since R is a finitely generated graded algebra, this
forces R to be polynomial [18, Chap. 19].

2.2.2.7 Bernstein and Lunts [2] pointed out that S(h) being free over S(h)W implied the
Kostant theorem that S(g) is free over S(g)G, that is, we can write

S(g) = H ⊗ S(g)G. (∗)
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Here reductivity allows one to take H to be ad g stable and spanned by homogeneous
polynomials. Further ramifications of this approach are pointed out in [34, 8.2]. We
describe one below.

2.2.3 Combined with the Weyl character formula, one may deduce from (∗) the (known)
degrees of the generators of S(g)G. Our treatment follows [34, 8.6,8.7]. It is inspired by a
paper of Hesselink [25] which gave a less good result since he needed to know a formula of
Kostant, that is 2.2.4 (∗) below.

First, for any graded vector space

V = ⊕n∈NVn,

with Vn finite dimensional, we set

chqV =
∑

n∈N
qn dimVn.

Similarly, if V is an h module admitting a decomposition into finite dimensional weight
spaces Vµ : µ ∈ h∗, then we write

ch V =
∑

µ∈h∗
(dimVµ)eµ

where the eµ are viewed as elements of the group ring of h∗. The latter is denoted by
Z[eh∗ ].

Now, since S(g) is both an ad h module and a graded vector space through degree of
homogeneous polynomials, it admits a q-character with values in Z[eh∗ ] which, by the
general structure theory described in 2.1.2 and 2.1.3, takes the form

chqS(g) = (1− q)− dim h
∏

α∈∆

(1− qeα)−1. (∗)

On the other hand, 2.2.2(∗) gives

chqS(g) = chqH chqS(g)G. (∗∗)
Now decompose each graded subspace Hn into a direct sum of finite dimensional highest

weight modules V (µ) and let [Hn : V (µ)] denote the multiplicity of V (µ) in Hn. Then,
clearly,

chqH =
∑

n∈N

∑

µ∈h∗
qn[Hn : V (µ)]ch V (µ).

The ch V (µ) are given by the Weyl character formula. On the other hand, only trivial
modules occur in S(g)G, whereas only H0 contains the trivial module. Thus, substituting
(∗) into (∗∗), we may compute both the multiplicities [Hn : V (µ)] and chqS(g)G. After a
little combinatorics [34, 8.6], one obtains the

Theorem (Kostant)

chqS(g)G =

[( ∑

w∈W

q`(w)

)
(1− q)`

]−1

,
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where `(w) denotes the reduced length of w ∈ W .

2.2.4 Now let {di}`
i=1 : ` = dim h denote the degrees of the homogeneous generators of

S(g)G. By definition of chq, we must have

chqS(g)G =
∏̀

i=1

(1− qdi)−1

Substitution into Kostant’s theorem determines the {di} in terms of the length function
`(·) on W . That is

∏̀

i=1

(
1− qdi

1− q

)
=

∑

w∈W

q`(w). (∗)

This is not the most convenient expression for the di. However, we note that W admits
a unique longest element wπ and its length is |∆+|. Now, for any finite dimensional Lie
algebra a, let index a denote the codimension of a regular orbit in a∗ and set

c(a) =
1
2
(dim a + index a)

which is an integer because any coadjoint orbit is even dimensional. For g semisimple one
has

index g = rank g = dim h

and so
c(g) = |∆+|+ dim h.

From the above we conclude that

∑̀

i=1

di = ` + `(wπ) = c(g)

For most biparabolics q, the semi-invariant algebra Sy(p) is polynomial [22], [35] and the
degrees satisfy a similar sum formula. With some mild conditions on the Lie algebra a this
sum rule holds whenever the semi-invariant algebra Sy(a) is polynomial [57, Thm. 1.1,
Prop. 1.4].

2.3. The Nilpotent Cone and the Jacobson-Morosov Theorem.

2.3.1 In the identification of g with g∗, the nilfibre N identifies with the subset of ad-
nilpotent elements of g and is generally known as the nilpotent cone. To emphasize that
it refers to g and not to say a biparabolic subalgebra, we shall sometimes designate it as
Nπ.

2.3.2 A central result in the study of N is the Jacobson-Morosov theorem, which allows
one to conclude that N /G is finite, that N is irreducible and a complete intersection.
Before turning to the general theory, let us first examine the case of sl(n).
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2.3.3 One easily checks that x ∈ sl(n) is an ad-nilpotent if and only if it is nilpotent as
an element of End V : V = Cn. Choose m ∈ N+ such that xm−1 6= 0, but xm = 0. Choose
v ∈ V such that xm−1v 6= 0. Then v, xv, . . . , xm−1v is the basis of a subspace Vm of V of
dimension m. With respect to this basis, the matrix representation of x in End Vm is a
Jordan block, consisting of ones in the (i, i+1)th entries and zeros elsewhere. A non-trivial
(though not too difficult) fact is that Vm admits a C[x] stable complement in V and so we
may repeat the process. This eventually allows one to find a basis {vi} for V such that
the matrix representation of x is a direct sum of Jordan blocks of decreasing size. Since
SL(n) permutes the bases of V , it follows that every element of N may be brought into
this form by conjugation.

The sizes of the Jordan blocks of x form a decreasing sequence of integers m1,m2, . . . , mk

whose sum is n, and hence, a partition of n. Since any direct sum of Jordan blocks is
nilpotent, every partition so obtains. The above construction gives a surjection of N onto
the set P (n) of partitions of n. Moreover, we can read off the dual partition directly from
an element x ∈ N from the sequence of integers dim ker xi : i = 1, 2, . . .. Consequently,
we obtain a bijection of N /G onto P (n). Finally, we may give a recipe (though a rather
redundant one - a better recipe has been given by Weyman [68]) for computing the ideal
of definition of the closure of Gx. Namely, we note that dim ker xi 6 s if and only if all
(n − s) × (n − s) minors of xi vanish. These identities are called power rank identities.
Since |P (n)| 6 2n, we conclude that |N /G| 6 2n and is in particular, finite.

2.3.4 Jordan block decomposition may be expressed by saying that up to conjugation,
any ad-nilpotent element x ∈ sl(n) may be written in the form

x =
∑

α∈π′
xα

for some subset π′ ⊂ π. In this the components of π′ describe the partition of n.

2.3.5 Now let x be a single Jordan block. It is easy to check that the centralizer of x
in End V is just C[x] which has dimension n. Every element of C[x] can be presented
as an upper triangular Toeplitz matrix. Those lying in g = sl(n) must be strictly upper
triangular. Thus gx has dimension n− 1 and is commutative.

2.3.6 Jordan block decomposition implies that every x ∈ N can be conjugated into n+.
On the other hand, every element of N and hence of Gn+ is ad-nilpotent. Consequently,
N = Gn+. Since n+ is a vector space and G is connected, we conclude that N is
irreducible. Since N /G is finite, N must admit a unique dense orbit of dimension dim
Gn+. Yet StabGn+ contains the group B of upper triangular matrices and G/B has
dimension |∆−|. Consequently, dimGn+ 6 dimG/B + dim n+ = |∆|. On the other hand,
we saw in 2.3.5 that the single Jordan block generates an orbit of codimension dimh and
hence of dimension |∆|. Thus dimN = |∆| and since Y (g) has dim h generators, N is a
complete intersection.
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2.3.7 All these pleasant conclusions may be deduced in the general case from the Jacobson-
Morosov theorem. This asserts the following. Recall that we are identifying N with a
subset of g.

Theorem For each x ∈ N there exists h, y ∈ g such that (x, h, y) form a standard basis
of an sl(2) subalgebra.

We call (x, h, y) an s-triple containing x.

2.3.8 In the case of sl(n), we may easily deduce the Jacobson-Morosov theorem from
Jordan block decomposition. Indeed, it will be enough to do this for a single block. Then
x takes the form

x =
∑
α∈π

xα

Now choose the unique h ∈ h such that h(α) = 2, ∀ α ∈ π. Then [h, x] = 2x, whilst
[h, y] = −2y, for any y ∈ ⊕α∈πg−α. Finally, by the remark in 2.1.3 and 2.1.4(∗), we may
choose y so that [x, y] = h.

2.3.9 The general case is somewhat more difficult. Here we shall indicate the main point
in the proof due to Kostant, which is particularly astute. Observe that if an s-triple
containing x exists, then x ∈ (ad x)2g. Let us show this directly. It depends on a result in
linear algebra which asserts that if a, b are endomorphisms of a finite dimensional vector
space over a field of characteristic zero such that a is nilpotent and [a, [a, b]] = 0, then
ab is nilpotent. (When these conditions are not met the pair a = d/dx, b = x provides a
counterexample.)

Take a = (ad x)2 which is nilpotent, since x ∈ N . Through the invariance of the
Killing form K(ay, z) = K(y, az), ∀ y, z ∈ g. Thus Ima = (ker a)⊥. Take b = ad y with
y ∈ ker a. Then ay = 0 translates to [x, [x, y]] = 0 giving [ad x, [ad x, ad y]] = 0 and so
[ad x, [ad x, ad y]] = 0. Consequently, (ad x)(ad y) is nilpotent. Hence K(x, y) = 0, that
is x ∈ (ker a)⊥ = Ima = Im(ad x)2, as required.

Now choose y′ ∈ g such that [x, [x, y′]] = −2x, and set h = [x, y′]. Then [h, x] = 2x. It
is a relatively easy matter to adjust y′ by an element of
ker ad x to obtain an element y ∈ y′ + ker ad x satisfying [h, y] = −2y. This completes
Kostant’s proof of the Jacobson-Morosov theorem.

A second proof of the Jacobson-Morosov theorem can be found in [9, 5.3]. It applies
in positive characteristic p for p not too small. The basic idea is to construct a finite
dimensional g module V so that the image of x in EndV is nilpotent. For example the
adjoint representation will do. One constructs an sl(2) subalgebra containing x in EndV
as in 2.3.8. Identify g with its image in EndV . One must modify the sl(2) subalgebra so it
lies in g. For this one needs that the trace form on EndV be non-degenerate, so requiring
the characteristic to be not too small. Using orthogonal decomposition with respect to the
trace form one effects this modification in a manner analogous to the last part of the proof
of 2.3.9.
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2.3.10 The power of the Jacobson-Morosov theorem derives from the representation the-
ory of sl(2). First of all, sl(2) is reductive and so we may write g itself as a direct sum of
simple modules for the s-triple (x, h, y). Each simple sl(2) module is a direct sum of its h
eigenspaces and consequently, ad h is a semisimple endomorphism of g. This further implies
that gh contains a Cartan subalgebra for g containing h itself. Then we may further use
the Weyl group to conjugate h to a dominant element, satisfying h(α) ∈ N, for all α ∈ π.
Then a key (though simple) observation of Dynkin is

Lemma If h ∈ h is a dominant element of an s-triple (x, h, y) then h(α) ∈ {0, 1, 2} for
all α ∈ π.

Proof Since (ad h)y = −2y, it follows that y is a sum of root vectors x−β with h(β) = 2.
In particular β ∈ ∆+. We can assume h(α) > 0. Then [y, gα] 6= 0 by sl(2) theory. Thus
there exists at least one root β occurring in y such that −β+α is a root. Since α is simple, it
must be a negative root, or zero. Since h is dominant, we obtain 0 ≥ h(−β+α) = h(α)−2,
as required. ¤

2.3.11 We may conclude from 2.3.10 that |N /G| 6 3` and so is finite. A further analysis
shows that the values of the dominant element h on π, characterizes the nilpotent orbit
Gx. Moreover, all the possible values have been listed. We show how to compute this
data, called the Dynkin data, in Section 2.10. Note that h(α) = 2, for all α ∈ π, when
x =

∑
α∈π xα.

The conjugation of h into a dominant element of h forces x into n+ and so we obtain
N = Gn+ as before. Hence N is irreducible of dimension 6 |∆|. On the other hand,
codim Gx = dim gx > dim gh by sl(2) theory with equality if and only if each simple
submodule of g under the s-triple, is odd dimensional. This holds exactly when ad h has just
even integer eigenvalues. In particular, when x =

∑
α∈π xα, one has h(α) ∈ 2Z, ∀ α ∈ ∆.

Then dim gx = dim gh = dim h and so, as before, we conclude that Gx has dimension |∆|
and is the unique dense orbit in N , which is hence a complete intersection.

2.4. Slices.

2.4.1 Let G be an algebraic group acting by morphisms on a variety V . The G orbits of
maximal dimension in V form an open subset Vreg of V . A slice is a closed subvariety W
of Vreg meeting every G orbit at exactly one point. (For a more complete definition and
discussion see [39, Section 7].) In principle the most obvious example of a slice arises when
G is the group of rotations of a sphere S2 around an axis, say the North-South axis. Then
Vreg is the punctured sphere in which the North and South poles have been removed and
the regular orbits are the longitudinal lines. As any sea captain can affirm, a latitude cuts
every longitude at exactly one point. However this is not quite an example of a slice since
a latitude is not an algebraic subvariety. Rather one should choose a great circle through
the poles. However this has the disadvantage of meeting every regular orbit twice.
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2.4.2 A bona fide example of a slice is provided by the set of companion matrices. This
is a slice for SL(n) acting by conjugation on its Lie algebra sl(n). In detail set Ω =
{x ∈ End Cn admitting a cyclic vector}. Obviously Ω is a union of G orbits. Take
a ∈ Ω and let v ∈ Cn be a cyclic vector for the action of C[a]. One easily checks that
v1 = v, vi = ai−1v : i = 1, 2, . . . , n, is a basis for Cn. Then xnv = avn =

∑n
i=1 civi, for

some ci ∈ C. Moreover, cn = 0 if tr a = 0. We conclude that in this basis a ∈ x+V , where
x is a Jordan block and V is the vector space lying in the bottom row of sl(n). Since the
adjoint action of SL(n) just corresponds to permuting bases, it follows that x + V meets
every orbit in Ω at exactly one point. However, it is not quite obvious (though true - see
2.4.5) that Ω∩ sl(n) is the set of regular coadjoint in sl(n). One calls x+V the companion
slice, since the elements of x + V are known as companion matrices.

In the above example, V is by no means unique. We could replace it by the set of strictly
lower triangular Toeplitz matrices, which is just gy where y is the element of the s triple
(x, h, y) containing x. This presentation generalizes for any semisimple Lie algebra and is
due to Kostant. We outline the theory below.

2.4.3 An s-triple (x, h, y) in a semisimple Lie algebra g is said to be principal if x ∈ greg.
A principal s-triple is unique [44, Sect. 5], up to conjugation by G.

From the representation theory of sl(2), one finds that
Im ad y+ ker ad x = g, for any s-triple (x, h, y). Set V = ker ad x = gx. It follows from
the above sum rule that restriction of functions gives an injection ψ of Y (g) into R[y + V ].
Since GK dimY (g) = dim h 6 dim gx, one can only expect ψ to be surjective when y is
regular. Indeed

Theorem (Kostant) If (x, h, y) is a principal sl(2) triple, then ψ is an isomorphism of
Y (g) onto R[y + V ].

Remark This resembles the Chevalley theorem though in fact is better. In effect the
elements of Y (g) are linearized by this process. Indeed, we may find a set of generators
{pi}`

i=1 of Y (g) such that {ψ(pi)}`
i=1 is a basis for V ∗. The resulting subspace is called

the Dynkin subspace. It is useful in the construction of (∧∗g)G via transgression - see [47,
below eq. 239].

2.4.4 The proof of 2.4.3 is based on a comparison of the set of degrees {di}`
i=1 of the

generators of Y (g) with the set of eigenvalues {ei}`
i=1 of h on gx. It is convenient to rescale

the elements of the principal s-triple (x, h, y) so that [h, x] = x, [h, y] = −y and [x, y] = h.
Then h(α) = 1, ∀ α ∈ π. By sl(2) theory one has ei > 0, for all i = 1, 2, . . . , ` and

∑̀

i=1

ei = |∆+|,

which, as before we saw, equals
∑̀

i=1

(di − 1).
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Now suppose pi is a homogenous generator of degree di. Let {xi}`
i=1 be a basis for V = gx

and complete {xi}`
i=1 ∪ {y} to a basis for g by ad h eigenvectors. Let {ξi}dim g

i=1 be a dual
basis for g∗ with {ξi}`

i=1 corresponding to {xi}`
i=1 and η := ξ`+1 to y. If (ad h)xi = eixi,

then (ad h)ξi = −eiξi. Moreover, (ad h)η = η.
Now consider the map Y (g) Ψ→ S[V ⊕ Cy] defined by restriction. It is injective by the

injectivity of ψ. Consider a monomial (Πξ
si,j

j )ηri occurring in Ψ(pi). Then deg pi = di

implies
(
∑

j

si,j) + ri = di

On the other hand, (ad h)pi = 0 and Ψ commutes with the action of ad h hence
∑

j

si,jej − ri = 0,

which, combined with the previous relation implies that∑

j

si,j(ej + 1) = di.

Since every term on the left hand side is > 0, an easy induction argument shows that
{si,j} forms the entries of a triangular matrix with ones on the diagonal, up to ordering.
This applies to each monomial occurring in Ψ(pi). If we choose the di (resp. ei) to be
increasing, one easily deduces that

di = ei + 1, i = 1, 2, . . . , `.

Moreover, one may find a new choice of generators qi of the form qi = pi mod C[pi, p2, . . . , pi−1]
such that ψ(qi) = ξi and hence form a basis for V ∗. Surjectivity follows. ¤

2.4.5 It is immediate from the above result that every G orbit in G(y + V ) meets y + V
at exactly one point. That y + V ⊂ greg can be deduced from y ∈ greg and that the ad h
eigenvalues in V are > 0 whilst (ad h) = −y, by a deformation argument. That G(y + V )
exhausts greg is more delicate, but relies on the fact that N is irreducible (see [36, 8.7]
for example). The same argument can be used to show that the companion slice exactly
generates greg via the action of G.

2.5. Shift of Argument.

2.5.1 Shift of argument is a natural prolongation of Cayley-Hamilton theory for the
construction of A := (S((End V )∗))GL(V ). In this case we note that the determinant
function det : a 7→ det a is a polynomial function on End V of degree equal to dimV
and invariant under conjugation by GL(V ). Thus det ∈ A. Similarly a 7→ det(a − λId)
is invariant for all λ ∈ C. Develop det(a − λ1) in powers of λ and let pi(a) denote the
coefficient of λn−1, that is

det(a− λId) =
n∑

i=0

λn−ipi(a).
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Then a 7→ pi(a) is an invariant polynomial homogenous of degree i. The Cayley-Hamilton
theorem asserts that

A = C[p1, p2, . . . , pn].
Obviously pn(a) = det a. We can also usefully describe the pi in another fashion. Observe

that the action of an element a ∈ EndV extends to a diagonal action of a on ∧iV . Then

a 7→ tr(a,∧iV )

is a polynomial function of degree i. It coincides with pi. Observe further that the matrix
elements of a as an endomorphism of ∧iV , are the i × i minors of a. Thus pi is an
appropriate sum of certain i × i minors of a. This presentation allows to more fully
appreciate the companion slice. Indeed, let Ṽ denote the bottom row of End V , that
is the linear span of the {xn,i}n

i=1, where xi,j are the usual matrix units. Let p be the
maximal (parabolic) subalgebra of g = gl(V ) consisting of all matrices whose bottom rows
have zero entries. Obviously p⊕ Ṽ = End V , so S(p)⊗S(Ṽ ) = S(End V ). Dualizing gives
S(p∗)⊗ S(Ṽ ∗) = S((End V )∗)

Now the presentation of the pi ∈ (S((End V )∗))GL(V ) as minors, implies that they lie in
the subspace

S(p∗)⊕ S(p∗)⊗ Ṽ ∗.
Moreover, they generate this subspace over S(p∗). This is a refinement of the linearization
process described by the companion slice y + Ṽ , which shows that when we evaluate the
matrix coefficients in S(p∗) on y, the resulting matrix remains of rank n.

One can conclude from the above discussion that

(Fract S(p)) S(Ṽ ) = (Fract S(p)) Y (g). (∗)
Actually, one may do better. Instead of the rather drastic inversion of all non-zero

elements of S(p), Dixmier showed that it suffices to localize at just one very particular
element which we denote by d. (For a proof see A.2.) It turns out that the semi-invariant
subalgebra Sy(p), as defined in 2.5.6, is a polynomial algebra on one homogeneous gener-
ator, and this is d. The construction of d (obtained independently by Dixmier [14] and by
Joseph [27]) is itself an interesting exercise. One shows, in particular, that d has degree
1
2n(n− 1) which is just the number of positive roots in gl(n).

At the time, this was the first known example when Sy(p) could be determined and
shown to be polynomial. Shortly afterward [28, 4.12, 4.14] it was shown that Sy(b) ,where
b = p∅ is a Borel subalgebra is polynomial, on rank g generators (for any semisimple Lie
algebra). Now we have a much more complete theory establishing polynomiality of Sy(q)
for most cases when q is a biparabolic or centalizer [21], [35], [60].

2.5.2 Let a be any finite dimensional Lie algebra and recall c(a) defined in 2.2.4. Its
significance is the following. The commutative algebra S(a) admits a Poisson algebra
structure coming from the Lie bracket on a. Specifically, choose a basis {xi} of a and
define

{f, g} =
∑ ∂f

∂xi

∂g

∂xj
[xi, xj ],
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for all f, g ∈ S(a). One checks that { , } is a Lie bracket on S(g). It gives g∗ the structure of
a Poisson variety. Let A be the adjoint group of a acting on a∗ by transposition. Then the
A orbits in a∗ are the Poisson leaves of a∗, which are (by definition) symplectic subvarieties.
In this, note that

Y (a) := S(a)A = {f ∈ S(a)| {f, g} = 0, ∀g ∈ S(a)}.
Moreover, the elements of Y (a) become constants on a given A orbit in a∗.

For physicists a symplectic variety S is phase space, that is to say the natural habitat
of Hamiltonian or Lagrangian mechanics. On such a variety S one may choose Darboux
co-ordinates qi, pi : i = 1, 2, . . . , 1

2 dimS defined locally in some open neighbourhood Ns

of a point s ∈ S . In terms of these co-ordinates, the Poisson bracket takes a particularly
simple form

{qi, qj} = {pi, pj} = 0, {qi, pj} = δi,j . (∗)
Finally, any analytic function in a neighbourhood of s can be expressed as analytic functions
of these co-ordinates in some possibly smaller neighbour.

Of course, we would prefer to stick to a purely algebraic context and require that qi, pj ∈
Fract (S(a)/I), where I is the ideal of definition of a coadjoint orbit closure, satisfying (∗)
above with C(qi, pj : i, j = 1, 2, . . . , 1

2 dimS ) = Fract (S(a)/I). For this it is necessary
to assume that a is an algebraic Lie algebra. Then this result is known for a solvable
[51], [29] and for Richardson orbits in a semisimple [30]. (The arguments given in these
references refer mainly to the enveloping algebra; but go over without too much change (cf
[41, Section 6]) to the symmetric algebra with its Poisson structure. One may further ask
if the Goldie skew of a primitive quotient is a Weyl skew field. This question is discussed
in [31], where it is completely resolved for a = sl(n). Some further results of this nature
have been reported by Premet [62].)

The point of the above is that Hamilton’s equations of motion become particularly easy
to solve in Darboux co-ordinates if the Hamiltonian itself can be arranged to become one
of these co-ordinates. The resulting system is said to be completely integrable.

The above circumstance raises the following important question. Can one find a maximal
Poisson commutative subalgebra C of S(a) which specializes on the regular orbits to a sub-
algebra whose fraction field contains a maximal commuting family of Darboux co-ordinates,
for example C(q1, q2, . . . , qs) : 2s = dim a − index a. If, in addition, a is unimodular, we
must have GK dimY (a) = index a and so we require GK dimC = s + index a = c(a).
Preferentially, C should itself be polynomial. We remark that any Poisson commutative
subalgebra of S(a) must satisfy GK dimC 6 c(a) and moreover Sadetov [63] has shown
that the bound can be saturated; but it is not obvious that the algebra he obtains will
have any particularly good properties, for example provide the required co-ordinates.

2.5.3 An elegant approach to the above problem obtains via shift of argument. Consider
f ∈ Y (a) and fix η ∈ a∗. Define new functions fi ∈ S(a) by

f(ξ + λη) =
∑

fi(ξ)λi, ∀ ξ ∈ a∗. (∗)
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Let Tη(a) denote the subalgebra of S(a) generated by all such fi as f runs over Y (a). One
easily checks that it suffices to restrict to generators of Y (a) in computing Tη(a).

Lemma For any η ∈ a∗, the algebra Tη(a) is Poisson commutative.
The proof is an easy induction argument (see [22, Appendice no.1] for example), though

not quite as straightforward as it might first seem. An inductive-free proof may be found
in 2.6.5.

2.5.4 In general, Tη(a) has too small a GK dimension. For example, suppose that Y (a)
is a polynomial algebra on generators pi of degree di. Now shift of argument is essentially
differentiation (with respect to the “dual” variable to η). A given polynomial pi can
therefore provide at most di derivatives, and so we require

∑
di > c(a). (∗)

However, it is not at all obvious that the resulting derivatives are algebraically indepen-
dent. Indeed, this necessarily fails if the inequality in (∗) is strict. Moreover, we should
further expect to require that η be in “general position”, specifically that η ∈ a∗reg. Indeed
this is shown in 2.6.13.

2.5.5 An optimal situation would seem to arise if equality holds in (∗). This situation does
in fact arise when a is semisimple. Moreover, it also holds for most (truncated) biparabolics.
Below we sketch a formulism for showing that Tη(a) has the required properties if η is
appropriately chosen.

2.5.6 Let a be an algebraic Lie algebra, A its algebraic adjoint group. One calls a ∈ S(a)
a semi-invariant if it generates a one-dimensional ad A module. Let Sy(a) denote the span
of all semi-invariant elements of S(a). One calls a semi-invariant free if Sy(a) = Y (a).
Assume a to be semi-invariant free. Under these conditions, the Chevalley-Dixmier lemma
(sometimes known as the Rosenlicht theorem) asserts that

GK dimY (a) = index a.

2.5.7 One cannot expect to get too far unless Y (a) is polynomial and furthermore, that
a∗ admits a slice. In the semisimple case, a slice was constructed from an s-triple. How-
ever, this is too much structure to expect in general. Instead we will make do with an
adapted pair (h, y) which consists of h ∈ a, for which ad h on a∗ is semisimple with rational
eigenvalues, and y ∈ a∗reg such that

(1) (ad h)y = −y.
Since ad h is semisimple, we can find an ad h stable complement V to (ad a)y in a∗. Note

that dimV = index a. We further assume
(2) The eigenvalues ei of (ad h) on V are > 0.
Now recall that we have assumed Y (a) to be polynomial and let {di} be the degrees of

a set of homogeneous generators. Then we shall also require that
(3)

∑index a
i=1 (di − 1) =

∑index a
i=1 ei.
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It is possible that 1), 2) imply 3) and even that 1) implies 2). Indeed this has now been
shown in [42].

For any ξ ∈ a∗ set
aξ = {a ∈ a|(ad a)ξ = 0}.

Lemma The natural ad h invariant pairing a∗×a → C (which is non-degenerate) restricts
to a non-degenerate pairing

V × ay → C.

Proof Of course V identifies with a∗/(ad a)y. Nevertheless, the argument is not quite
standard, since y itself is not an endomorphism of a. We must show that the orthogonal
((ad a)y)⊥ of (ad a)y in a, is just ay.

Consider a ∈ ay. Then ((ad a)y)(b) = 0, ∀ b ∈ a. Yet

((ad a)y)(b) = −y([a, b]) = −((ad b)y)(a).

Thus a ∈ ay ⇔ ((ad b)y)(a) = 0, ∀ b ∈ a ⇔ ((ad a)y)(b) = 0 ⇔
a ∈ ((ad a)y)⊥, as required. ¤

2.5.8 For any ad h invariant subspace b of a (or a∗), let b>(b>, b<) denote the sum
of ad h eigenspaces of b with positive (resp. non-negative, negative) eigenvalues. Clearly,
hypothesis 2) of 2.5.7 is equivalent to V< = 0. Through 2.5.7 it is also equivalent to a

y
> = 0.

This is a property which can be deduced from sl(2) theory if the pair (h, y) forms part of
an s-triple (x, h, y).

For a semisimple, pairs satisfying (1), (2); but without y needing to be regular have
been classified by A. Elashvili and V. Kac [19], who called such pairs “good”. They are
a first step in the construction of vertex operator algebras. Of course given y nilpotent
the Jacobson-Morosov theorem at least one such pairs (h, y) containing y. On the other
hand for an arbitrary finite dimensional Lie algebra a it is not at all obvious if an element
y ∈ N , admits an element h ∈ a such that (adh)y = −y.

2.5.9 Suppose (h, y) is an adapted pair. Then by exactly the argument of Kostant de-
scribed in 2.4.4, we obtain the

Theorem

(1) Restriction of functions induces an isomorphism

Y (a)→̃R[y + V ]

(2) di = ei + 1, for a suitable ordering.
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2.5.10 The hypothesis for an adapted pair further imply the

Lemma Suppose (h, y) is an adapted pair for a and define a∗>0 as in 2.5.8. One has

dim a∗>0 = c(a).

Proof As noted in 2.5.8, one has a
y
> = 0. Since dimV = index a, V has eigenvalues > 0

and the sum (ad a)y + V = a∗ is direct, we obtain

dim a∗> = dim a> + index a.

Yet c(a) = 1
2(dim a + index a)

= 1
2(dim a∗ + index a)

= 1
2(dim a∗> + dim a∗< + index a)

= dim a∗>, by the above.
¤

2.5.11 The above conclusion suggests that for suitable η ∈ a∗, the map

Tη(a) → R[y + a∗>]

defined by restriction, is an isomorphism. However as noted in the proof of 2.6.17 we
certainly need some extra hypotheses. First we have

GK dimTη(a) ≤
∑

di,

so we need the sum on the right hand side to be greater than or equal to c(a). Since we
would like linear independence of the translated functions, we impose equality, that is
(H1)

∑index a
i=1 di = c(a).

Next, in order that eigenvalues match, we must require η to have zero weight for ad h,
that is
(H2) η ∈ a∗0.

To optimize the algebraic independence of the generators of Tη(a), we further require
(H3) η ∈ a∗reg.

Finally, we impose that
(H4) aη = a0.

It is possible that (H2),(H3) imply (H4). One may show that (H2), (H4) imply (H3) [42,
Section 3]. Again (H1) is a consequence of [57, Prop. 1.4], since by construction a truncated
biparabolic is semi-invariant free. On the other hand, (H2) and (H3) are generally speaking
mutually exclusive - generic elements do not like to be eigenvectors! When g is semisimple,
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we can identify g with g∗. Further, let (x, h, y) be a principal s-triple. Then (h, y) is an
adapted pair, (H1) holds and we can satisfy (H2)-(H3) with η = h. One may remark that
g> is a Borel subalgebra, for g semisimple.

Theorem Under the additional hypotheses, (H1)-(H4), the restriction map induces an
isomorphism of Tη(a) onto R[y + a∗>].

2.5.12 The key point in the proof is the adaption of a construction due to Mishchenko
and Fomenko, described below.

Choose a basis {xi}n
i=1 for a and ξ ∈ a∗. For all f ∈ S(a) define

(grad f)(ξ) ∈ a by

(gradf)(ξ) =
n∑

i=1

xi

(
∂f

∂xi
(ξ)

)
.

A key, and almost obvious, fact is that if f ∈ Y (a), then (grad f)(ξ) ∈ aξ. In particular,
this holds if ξ is replaced by ξ + λη. With respect to the expansion given in 2.5.3(∗), a
development of powers of λ gives the following crucial recurrence relation.

(gradfj)(ξ) · ξ + (gradfj−1)(ξ) · η = 0. (∗)
where the dot denotes co-adjoint action.

2.5.13 Let (h, y) be an adapted pair. In general, the eigenvalues of ad h on a∗ have a
pattern very different to the case when (h, y) can be completed to an s-triple. However,
this nice pattern is partly recovered when (H4) holds.

Lemma Suppose (H4) holds. Then for all k > 0 one has
dim a−k − dim a

y
−k = dim a−(k+1).

Proof By 2.5.8 one has V−(k+1) = {0}, if k > 0. Hence the direct sum (ad a)y ⊕ V = a∗
gives

(ad a−k)y = a∗−(k+1), ∀ k > 0.

Hence
dim a−k − dim a

y
−k = dim a∗−(k+1), ∀ k > 0. (∗∗)

Under the hypothesis of (H4)

(ad a)η ⊕ a∗0 = a∗,

and so
(ad a−k)η = a∗−k, for all k > 0.

and hence, by (H4) again,

dim a−k = dim a∗−k, for all k > 0.

Substitution into (∗∗) gives the required conclusion. ¤



24 ANTHONY JOSEPH

2.5.14 Let (h, y) be an adapted pair for a. (For the moment we only need 1),2) of 2.5.7.
Then the assertions of Theorems 2.5.9(i) and 2.5.10 are respectively equivalent to

1) The inclusion C{(gradf)(y)|f ∈ Y (a)} ⊂ ay, is an equality.
2) The inclusion C{(gradf)(y)|f ∈ Tη(a)} ⊂ a6, is an equality.

2.5.15 Recall that Y (a) is assumed polynomial and that a is algebraic and semi-invariant
free. Recall 2.5.6 and set ` = index a. Let {fi : i = 1, 2, . . . , `} be a set of homogeneous
generators of Y (a) with fi of degree ei + 1. Define fi,j : j = 0, 1, 2, . . . , ei as in 2.5.3, with
respect to each fi above and η ∈ a∗.

Theorem Let (h, y) be an adapted pair and assume (H1)-(H4) to hold. Then the following
three conditions are equivalent
(i) {(gradfi)(y)}`

i=1 is a basis for ay.
(ii) {(gradfi,ei)(y)}`

i=1 is a basis for aη = a0.
(iii) {{(gradfi,j)(y)}mi

j=0}`
i=1 is a basis for a6.

Remarks on the Proof That (ii)⇒ (iii) follows from 2.5.12(∗) by downward induction
(note change in notation). Here one also uses (H4), 2.5.10 and 2.5.11. That (iii) implies (i)
(or (ii)) is essentially trivial. That (i)⇒ (iii) follows from 2.5.12(∗), 2.5.10, the regularity
of η and (H1).

2.5.16 Combining Theorem 2.5.9(1) with 2.5.14 and 2.5.15, gives Theorem 2.5.11.

2.5.17 Let us observe that the conclusion of Theorem 2.5.11 implies that Tη(a) is maximal
Poisson commutative.

Corollary Tη(a) equals its Poisson commutant in S(a).

Proof Take f ∈ S(a) such that {f, Tη(a)} = 0. Since GK dim Tη(a) = c(a) and that
this is the maximal GK dim of a Poisson commutative subalgebra of S(a), we conclude
that f is algebraic over Tη(a). Let ψ : S(a) → R[y + a∗>] be defined by restriction.
Recall by Theorem 2.5.11 that ψ|Tη(a) is surjective. Thus, there exists a ∈ Tη(a) such that
ψ(f − a) = 0. Replacing f by f − a we can assume ψ(f) = 0. Suppose f 6= 0. Let s be
minimal such that

s∑

i=0

aif
i = 0 : ai ∈ Tη(a) not all zero.

Then a0 6= 0, for otherwise we could cancel f . Yet ψ(f) = 0, so we also have ψ(a0) = 0.
Yet ψ|Tη(a) is injective by Theorem 2.5.11, so a0 = 0 and a contradiction results. Hence
f = 0, as required. ¤

Remark. Apart from [31] one may also obtain some results on completing these co-
ordinates to Darboux co-ordinates from [48].
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2.6. A Theorem of Bolsinov.

2.6.1 Let a be an algebraic semi-invariant free Lie algebra and recall 2.5.6. In this
situation A. V. Bolsinov [3] has given a remarkably simple and seemingly weak criterion
for when shift of argument provides a Poisson commutative subalgebra Tη(a) of S(a) having
the maximal GK dimension. The proof is also remarkably simple though there are some
subtle points to which careful attention should be given. The conclusion is weaker than
Theorem 2.5.9 and indeed there are situations in which the shifted algebra Tη(a) has the
maximal GK dimension; but is not itself maximal Poisson commutative - see 2.6.17. When
the former is true and Y (a) is polynomial, then the degrees di of the generators must
satisfy the sum rule in (∗) of 2.5.4. This is quite remarkable in that Bolsinov’s criterion
has nothing a priori to do with degrees of generators. Below we examine the proof in detail.

2.6.2 It is convenient to replace x in the right hand side of 2.5.12 by dx. Then the left
hand side becomes df(ξ + λη). This is of course a trivial change of notation. Less trivially
(though this was used implicitly in the derivation of 2.5.12(∗)) differentiation commutes
with translation and so with respect to the development in 2.5.3(∗) we obtain

df(ξ + λη) =
∑

dfi(ξ)λi. (∗)
This leads to an important change of emphasis. Instead of trying to establish enough linear
independence of the dfi at a fixed point ξ, we try to establish enough linear independence of
the df on the affine line (ξ +λη). Correspondingly, instead of just considering the standard
Poisson structure on S(a) given by a Lie bracket, we consider a family of Poisson structures
obtained by translation.

2.6.3 Poisson Structures.

Let V be a finite dimensional vector space with basis {xi}n
i=1. A Poisson structure A on

S(V ) is a matrix with entries Ai,j ∈ S(V ) such that

{f, g} :=
∑

Ai,j∂f/∂xi ∂g/∂xj

is a Lie bracket on S(V ). Obviously this generalizes 2.5.2, which one may view as the linear
case. Historically Sophus Lie had tried to classify all Poisson structures (still an unresolved
problem) and later just considered the linear case which led to Lie algebras.

If A,B are two Poisson structures, we say that A,B are compatible if αA + βB is a
Poisson structure for all α, β ∈ C. Notice that then

{f, g}αA+βB = α{f, g}A + β{f, g}B.

The Poisson centre YA(V ) with respect to A is defined to be

YA(V ) = {f ∈ S(V )|{f, g}A = 0, ∀ g ∈ S(V )}.
Obviously YA(a) = Y (a), when Ai,j = [xi, xj ].
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Notice that if f ∈ YA(V ), g ∈ YB(V ) with A,B compatible, then

{f, g}αA+βB = α{f, g}A + β{f, g}B = 0 for all α, β ∈ C. (∗)
This construction will be used to obtain Poisson commutative subalgebras of S(V ). In

general it may not be enough since, for example, if f, g ∈ YA(V ), it is not immediate that
{f, g}B = 0.

2.6.4 Take V = a in the above and

Ai,j = [xi, xj ] =
∑

ck
i,jxk

which is a Poisson structure A on S(a). One may obtain a second Poisson structure B by
evaluation at η ∈ a∗, that is

Bi,j =
∑

ck
i,j η(xk).

It is compatible with A.
For all λ ∈ C, f ∈ S(a), set

(Tληf)(ξ) = f(ξ + λη). (∗)

Lemma For all f, g ∈ S(a) one has

{Tληf, Tληg}A+λB = Tλη{f, g}A.

In particular Tληf ∈ YA+λB(a) ⇐⇒ f ∈ YA(a).

Proof Indeed
{Tληf, Tληg}A+λB =

∑
ck
i,j(xk + λη(xk))∂Tληf/∂xi ∂Tληg/∂xj ,

=
∑

ck
i,jTλη(xk)Tλη(∂f/∂xi) Tλη(∂g/∂xj),

= Tλη{f, g}A.

Hence the assertion. ¤

2.6.5 Retain the above conventions.

Lemma For all λ, µ ∈ C distinct, one has

{Tληf, Tµηg}A = 0.

Proof Suppose f, g ∈ YA(a). Since λ, µ ∈ C are distinct, we can choose α, β ∈ C, such
that

α(A + λB) + β(A + µB) = A.

By 2.6.4 one obtains Tληf ∈ YA+λB(a) and Tµηg ∈ YA+µB. Then by 2.6.3(∗) the required
result obtains. ¤
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Remark Treating λ and µ as independent parameters and expanding in their powers one
obtains a (rather elegant) proof of 2.5.3.

2.6.6 Families of Bilinear Forms.

The proof of the Bolsinov theorem results from two crucial lemmas on bilinear forms. We
remark that antisymmetry (or symmetry) is needed for 2.6.7(i). Eventually antisymmetry
is needed to calculate dim I0 through 2.6.8.

Let V be a finite dimensional vector space and A a two dimensional space of antisym-
metric bilinear forms on V . Given A ∈ A , we obtain an element ϕ(A) ∈ Hom(V, V ∗) by
ϕ(A)(v)(v′) = A(v, v′). One has

kerA := {v ∈ V |A(v, v′) = 0, ∀ v′ ∈ V } = ker ϕ(A).

Again if W is a subspace of V , then

W⊥
A := {v ∈ V |A(w, v) = 0, ∀ w ∈ W} = ϕ(A)⊥.

Let A0 denote the subset A of all forms of maximal rank, equivalently all forms for which
dimkerA is minimal. It is an open dense Zariski subset of A . Hence dim(A r A0) 6 1.
Consequently either A rA0 = {0}, or the projectivisation of (A rA0) is zero dimensional,
equivalently there exists a finite subset B ⊂ A rA0, such that

(A rA0)r {0} =
∐

B∈B

C∗B.

Set
I0 :=

∑

A∈A0

kerA ⊂ I :=
∑

A∈Ar{0}
kerA.

Lemma ϕ(A)(I0) is independent of the choice of A ∈ A r {0}.

Proof Obviously I0 is a subspace of V . Since the latter is finite dimensional, we can
choose a finite set A1, A2, . . . , At ∈ A0, such that

I0 =
t∑

i=1

kerAi.

In particular

A ′ := A r
t⋃

i=1

{CAi},

is a two dimensional subvariety of A . Choose C, D ∈ A ′, linearly independent. Then we
may write

Ai = αiC + βiD, with αi, βi ∈ C∗.
Then ϕ(C)(kerAi) = ϕ(D)(kerAi), for all i, and so ϕ(C)(I0) = ϕ(D)(I0) =: W .



28 ANTHONY JOSEPH

Consider E ∈ A r {0}. Since {C, D} is a basis for A , we can write E = αC + βD.
Then

ϕ(E)(I0) = αϕ(C)(I0) + βϕ(D)(I0) ⊂ W. (∗)
If E ∈ A ′ and not a multiple of D, then E 6∈ (

⋃
iC∗Ai) ∪ C∗D. Thus we may replace

C by E in the first argument to give equality in (∗). Thus we are reduced to the case
E ∈ ⋃t

i=1C∗Ai. Then I0 ⊃ kerE, so dimϕ(E)(I0) = dim I0 − dimkerϕ(E). The latter is
independent of E ∈ A0 so by comparison with the case E′ ∈ A ′ ∩ A0, we conclude from
(∗) that equality also holds for E. ¤

Remark The assertion is false for I0 replaced by I. Here the last part of the argument
fails.

2.6.7 Set I⊥0 = {v ∈ V |B(v, I0) = 0} = {v ∈ V |B(I0, v) = 0} = ϕ(B)(I0)⊥, which by
2.6.6 is independent of the choice of B ∈ A r {0}.

Corollary
(i) I⊥0 ⊃ kerB, ∀ B ∈ A r {0}.
(ii) I⊥0 ⊃ I ⊃ I0.
(iii) ϕ(B)(I⊥0 ) ⊂ ϕ(A)(I⊥0 ), ∀ B ∈ A , A ∈ A0.

Proof (i) and (ii) are clear. For (iii) observe that (I⊥0 )⊥B = I0 + kerB, whilst (I⊥0 )⊥A =
I0 + kerA = I0, since A ∈ A0. Thus (I⊥0 )⊥B ⊃ (I⊥0 )⊥A. Then {v ∈ V |v(ϕ(B)(I⊥0 )) = 0} =
{v ∈ V |B(v, I⊥0 ) = 0} = (I⊥0 )⊥B ⊃ (I⊥0 )⊥A = {v ∈ V |v(ϕ(A)(I⊥0 )) = 0}. Hence (iii). ¤

2.6.8 Corollary 2.6.7 (ii) asserts that I0 is isotropic. The next result shows under what
conditions it is maximal isotropic and hence of dimension (dimV + dim kerA), for any
A ∈ A0.

Lemma I⊥0 = I0 ⇔ A0 = A \ {0}.

Proof Take A ∈ A0, B ∈ A \ {0} distinct from A. Since ϕ(A)(I0) = ϕ(B)(I0), by 2.6.6,
it follows that kerB ⊂ I0 if and only if B ∈ A0. Hence ⇒.

For ⇐ assume that A,B span A . Moreover up to a non-zero multiple every element of
(A \ {0}) \A0 takes the form B − λA : λ ∈ C.

We construct an element Φ ∈ End I⊥0 /I0. Let π : I⊥0 → I⊥0 /I0 be the natural projection.
Take v ∈ I⊥0 . By 2.6.7(iii) there exists v′ ∈ I⊥0 such that ϕ(A)v′ = ϕ(B)v. Moreover v′ is
unique up to kerϕ(A) ⊂ I0. If v ∈ I0, we can choose v′ ∈ I0 since A(I0) = B(I0) by 2.6.6.
Thus we may define Φ through

Φ(v + I0) = v′ + I0, given ϕ(A)v′ = ϕ(B)v.

If I⊥0 /I0 6= 0, there exists v + I0 ∈ I⊥0 /I0 non-zero such that Φ(v + I0) = λ(v + I0), for
some λ ∈ C. Set W = ϕ(A)(I0). Then

ϕ(A)Φ(v + I0) = λ(v + I0) = λϕ(A)v + W,
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whilst
ϕ(A)Φ(v + I0) = ϕ(A)(v′ + I0) = ϕ(A)v′ + W = ϕ(B)v + W.

Hence ϕ(B − λA)v ∈ W . Yet (B − λA) ∈ A \ {0} and so by 2.6.6, there exists v′′ ∈ I0

such that ϕ(B−λA)(v− v′′) = 0. Since v 6∈ I0, we conclude that ker(B−λA) 6⊂ I0. Hence
(B − λA) 6∈ A0, as required. ¤

2.6.9 Return to the case when V is an algebraic semi-invariant free Lie algebra a with
basis {xi}n

i=1. The space of differentials dS(V ) of S(V ) is by definition the free S(V )
module with generators dxi : i = 1, 2, . . . , n. For a given Poisson structure A on S(a) one
may define an antisymmetric bilinear form, which we denote by Â, on dS(V ) through

Â(dxi, dxj) := Ai,j .

Now let A denote the Poisson structure on S(a) defined by the Lie bracket, that is
Ai,j = [xi, xj ]. For all ξ ∈ a∗, let Aξ denote its evaluation at ξ, namely

(Aξ)i,j = ξ([xi, xj ]).

The map ξ 7→ Aξ is linear. Hence a two dimensional subspace of a∗ gives rise to a
two-dimensional subspace of Poisson structures and hence to a two dimensional subspace
of antisymmetric bilinear forms on C{dxi : i = 1, 2, . . . , n}.

Return for the moment to our general formalism. The easy though crucial identity

{f, g}A = Â(df, dg),

implies that the linear map f 7→ df sends the Poisson centre YA(V ) into ker Â. Its kernel is
the space of the constant functions. One cannot expect this map to be surjective. However
some form of surjectivity is required for the Bolsinov theorem.

Recall that a set f1, f2, . . . , ft of elements of S(V ) are algebraically independent if and
only if their differentials df1, df2, . . . , dft, are linearly independent over F (V ) := Fract S(V ).
This is again equivalent to their differentials df1(ξ), df2(ξ), . . . , dft(ξ), being linearly inde-
pendent at some point ξ ∈ V ∗ and hence on some Zariski open dense subset of V ∗.

Now take ξ ∈ a∗. It is clear that rkA ≥ rkAξ with equality on some Zariski open dense
subset Ω0 of a∗. On the other hand rkA is just the dimension of the co-adjoint orbit
through ξ. (This easy though crucial fact is due to A. A. Kirillov. It implies that every
coadjoint orbit is even dimensional because an antisymmetric bilinear form can only be
non-degenerate on an even dimensional vector space.) We conclude that Ω0 = a∗reg and
that

rkA = dim a− index a.

Now (if a is algebraic and semi-invariant free) then GKdim Y (a) = index a. Dimension-
ality then implies that

F (V ){df |f ∈ Y (a)} = F (V ) ker Â. (1)
This is a weakened version of the required surjectivity in a special case.

Notice that the above dimensionality estimate on Y (a) also implies that the set

Ω := {ξ ∈ a∗| dim{df(ξ)|f ∈ Y (a)} = index a} (2)
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is Zariski open dense in a∗. However is not immediate that Ω ⊃ a∗reg. Indeed already for
a semisimple it is a deep result of Kostant that a regular nilpotent element belongs to Ω.
Thus we do not immediately have an analogue of (1) above, namely

{df(ξ)|f ∈ Y (a)} = kerAξ, for all ξ ∈ a∗reg, (3)

may fail to hold. An example of this failure is given in [42, 8.3, Remark].

2.6.10 Set a∗sing := a∗ \ a∗reg. We remark that as a variety a∗sing is given by the vanishing
of the minors of A of the maximal rank dim a− index a. In this sense a∗sing is calculable.
The Bolsinov criterion for the translated algebra Tη(a) to have the maximal GK dimension
c(a) at some point η ∈ a∗ is that codima∗a

∗
sing > 2. As noted below this implies that we

can find a two dimensional subspace W of a∗ such that W \ {0} ⊂ a∗reg.
View W as a two dimensional subspace A of forms. Then by 2.6.6 and 2.6.8 it follows

that the sum I of the kernels of the forms A ∈ A \ {0} is maximal isotropic for any one of
these forms and so has dimension equal to c(a). However because of a possible failure of
2.6.9 (3) we cannot immediately deduce that GKdim Tη(a) = c(a) for all η ∈ W \ {0}.

2.6.11 The above difficulty is overcome through intersection theory in projective space.
Recall that the projectivisation P(a∗) of a∗ is obtained by removing {0} and identifying
points which are non-zero scalar multiples of each other, that is

P(a∗) = {a∗ \ {0}}/C∗.
Now Ω and a∗sing defined in 2.6.9, 2.6.10 are stable by this action of C∗ and so admit
projectivisations P(Ω) and P(a∗sing), which are respectively open and closed in P(a∗).

Lemma Suppose codima∗a
∗
sing > 2 and η ∈ a∗reg ∩ Ω. Then there exists ξ ∈ a∗reg and a

finite subset F ⊂ C such that W := Cξ + Cη satisfies
(i) W ∩ a∗sing = {0},
(ii) Ω ∩W ⊃ {ξ + λη|λ ∈ C \ F}.

Proof Set n = dimP(a∗),m = dimP(a∗sing). The hypothesis translates to m 6 n − 2.
Since η 6∈ a∗sing, there exists a linear function f1 vanishing at η but not vanishing identically
on a∗sing. Let H1 be the hypersurface in P(a∗) defined by the zeros of f1. Since P(a∗sing)
is closed in P(a∗), dimension theory [64, Sect. 6.2,Thm. 4] gives dim(P(a∗sing) ∩ H1) =
dimP(a∗sing) − 1. Repeating this argument m times and then recalling that a variety of
dimension zero is finite, it follows that there exist linear functions f1, f2, . . . , fm+1 not
vanishing at η so their set of common zeros L has null intersection with P(a∗sing). Since
m + 1 6 n − 1, we may add a further n − (m + 2) linear functions, so that L becomes a
projective line. Let W be the two-dimension subspace of a∗ whose projectivisation is L.
Then η ∈ W , whilst L ∩ P(a∗sing) = ∅. This gives (i).

Since P(Ω) is open in P(a∗), it follows that P(Ω)∩L is open in L, while it is non-empty
by construction. Hence P(Ω) ∩ L is open dense in L. This translates to (ii). ¤
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2.6.12 Let A be an m dimensional space of linear transformations on a C-vector space
V of dimension n. Let {xi}n

i=1 be a basis of V . Let A0 be the subset of A of matrices
of maximal rank, say r. Let Ai : i = 1, 2, . . . ,m, be a basis of A . We identify A with
Cm through the linear map (c1, c2, . . . , cm) 7→ ΣciAi =: A(c). Then A0 identifies with an
irreducible dense open subset Ω0 of Cm.

Set I0 =
∑

A∈A0
kerA. For each s ∈ N+, let A s

1 be the subset of the s-fold Cartesian
product defined by

A s
1 := {(A1, A2, . . . , As) ∈ A s

0 |
s∑

i=1

kerAi = I0}. (∗)

Lemma
(i) A s

1 is Zariski open in A s
0 .

(ii) A s
1 is Zariski dense in A s

0 (and hence in A s), if s > n.

Proof Let {Mt(c)}u
t=1 be the set of r × r minors of A(c) which are not identically zero.

Let Dt ⊂ Cm be the set of zeros of Mt(c). It is Zariski closed. Clearly
u⋃

t=1

Dt = Cm \ Ω0.

Equivalently setting Ot = Cm \Dt, one has
u⋃

t=1

Ot = Ω0,

giving a finite open cover of Ω0. For each s ∈ N+, let Os
t : t ∈ {1, . . . , u}s be the resulting

finite open cover of Ωs
0.

Let R[Ot] denote the algebra of regular functions on Ot. Solving the linear equations for
kerA(c) in Ot, we obtain f t

i,j ∈ R[Ot] such that

kerA(c) =
n∑

j=1

f t
i,j(c)xj , ∀ c ∈ Ot.

Thus the condition that
s∑

i=1

kerA(ci)

has maximal possible dimension defines a Zariski open set in each Ot and hence a Zariski
open set in Ωs

0. On the other hand, the above sum is contained in I0 with equality if and
only if dimensions coincide. Combined with our previous observation this proves (i).

Since dim I0 6 dimV = n, it follows that A s
1 is non-empty for all s > n. Since A s

1 is
irreducible, (i) follows from (ii). ¤



32 ANTHONY JOSEPH

2.6.13 Recall the definition of Ω in 2.6.9 and the construction of W in 2.6.11. Let A
be the subspace of antisymmetric forms corresponding to W . Identify V with its dual
and with m = 2, identify A of 2.6.12 with A above. Obviously A s

1 defined in 2.6.12 (∗)
identifies with a subset Ωs

1 of W s stable by the action of C∗ in each factor and stable under
permutations. Then by the conclusion of 2.6.12, the set

Λn := {λ := (λ1, λ2, . . . , λn) ∈ (C \ F )n|(ξ + λiη)n
i=1 ∈ Ωn

1},
is Zariski open dense in Cn.

Fix λ ∈ Λn. In view of 2.6.8, 2.6.11 and the definitions of Ω, F and Λn we conclude that

M :=
n∑

i=1

∑

f∈Y (a)

Cdf(ξ + λiη),

is maximal isotropic with respect to Aξ, for any ξ ∈ W \{0}. In particular it has dimension
c(a). Moreover it remains maximal isotropic and hence unchanged if λ is augmented to any
m-tuple (λ1, λ2, . . . , λm) of distinct elements. On the other hand by 2.6.2(∗) and 2.6.4(∗),
one has

M :=
m∑

i=1

∑

f∈Y (a)

Cd(Tλiηf)(ξ).

This space having dimension c(a) means that the subalgebra of S(a) generated by the
set {Tλiηf |i = 1, 2, . . . , n, f ∈ Y (a)} has GKdimension c(a). Since the invariants are
polynomial and m can be made arbitrarily large this algebra is just Tη(a). Summarizing
we obtain the following result of Bolsinov [3, Thm. 1.3], [4, Thm. 3.1].

Theorem Suppose a is an algebraic, semi-invariant free Lie algebra. Then there exists
η ∈ a∗ such that GKdim Tη(a) = c(a), if and only if codima∗a

∗
sing > 2.

Proof It remains to verify “only if”. Suppose GKdim Tη(a) = c(a), for some η ∈ a∗.
Then the space of differentials of Tη(a) has dimension c(a) at any point ξ of a Zariski open
dense subset Ω. We may therefore choose ξ ∈ a∗reg ∩ Ω, so that W = Cξ + Cη, is two
dimensional. Reversing the argument in the proof of “if” , it follows that

N :=
∑

ξ∈W∩a∗reg

ker Âξ,

has dimension c(a) and hence is maximal isotropic. By 2.6.8 this forces W ∩ a∗reg =
W \ {0}. Thus the projectivisation P(W ) of W must have null intersection with P(a∗sing).
By intersection theory [64, Sect. 6.2, Cor. 5], this forces codimP(a∗)P(a∗sing) > 2 and hence
codima∗a

∗
sing > 2, as required.

Remark 1. Notice that we have also shown that GKdim Tη(a) = c(a) forces η ∈ a∗reg.
Conversely, if codima∗a

∗
sing > 2, then GK dim Tη(a) = c(a), for all η ∈ a∗reg, via 2.6.11.
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Remark 2. We only need a to be algebraic to ensure that GKdim Y (a) = index a.
However under the hypothesis that a is semi-invariant free this is automatic [57, Prop.
4.1].

Remark 3. For a formulation and proof of this theorem when codima∗a
∗
sing = 1, see

[42, Theorem 7.2].

2.6.14 Consider the Heisenberg algebra a of dimension 2n + 1 and centre Cz. Being
nilpotent it is algebraic and semi-invariant free. Moreover a∗sing is just the zero set Z of z
and so is a hyperplane. Thus a does not satisfy the Bolsinov criterion. Correspondingly
c(a) = n+1, whilst Y (a) has the single generator z and this is of degree 1, so Tη(a) = Y (a)
for all η ∈ a∗.

By contrast if g is semisimple, then codimg∗g
∗
sing = 3. More generally suppose there

exists h ∈ a and regular elements x, h∗, y of a∗ being ad h eigenvectors of eigenvalues
1,0,-1 respectively. We call (h, x, h∗, y) an adapted quadruple. In this case a deformation
argument (as in [36, 8.2], or better [39, 7.8]) shows that (Cx +Ch∗ +Cy) \ {0} ⊂ a∗reg. As
in 2.6.13, this forces codima∗a

∗
sing > 3. For g semisimple we can identify g∗ with g through

the Killing form and take h∗ = h with (x, h, y) a principal s-triple.
Let a∗subreg denote the union of subregular orbits in a∗, that those of codimension index

a+2. For g semisimple g∗subreg is irreducible. It is called the subregular sheet [7]. The orbit
space g∗subreg/G is naturally isomorphic to the quotient of a vector space by a finite group.
Thus g∗subreg has codimension 3. For g semisimple, the remaining orbits can similarly be
shown to make a much smaller contribution to g∗sing. Consequently codimg∗g

∗
sing = 3.

Recently Ooms and van den Bergh [57, Prop 5.11] have shown that

codim∗
a a∗sing ≤ 3, (∗)

for any finite dimensional Lie algebra a satisfying the hypotheses of Theorem 2.6.13 and for
which Y (a) is polynomial. However unlike the semisimple case it is not necessarily orbits
of codimension (index a) + 2, which make the largest contribution to a∗sing.

2.6.15 A more comprehensive formulation of the last part of 2.6.14 is the following. Fix
a finite dimensional Lie algebra a of dimension n and a non-negative integer k. Consider
the union C(k) of all co-adjoint orbits in a∗ of dimension < k. Clearly C(k) is the Zariski
closed set defined by the vanishing all k × k minors of the n × n matrix with entries
[xi, xj ] : i, j = 1, 2, . . . , n. Thus the set S(k) of all co-adjoint orbits of dimension exactly k
is a Zariski locally closed subset of a∗. A sheet is an irreducible component of some S(k).
This concept was first introduced by Dixmier who classified sheets for g simple of type A.
More generally for g semisimple, sheets were classified by Borho [5] and later with Kraft
[6], they showed that every sheet is the orbit space of some affine space At by a finite
group (coming from the Weyl group). We may then regard At as a parameter set for the
orbits in the corresponding sheet with t parameters. Key points in their analysis is the
possibility to identify g with g∗, to use Jordan decomposition and to use the classification
of the nilpotent orbits.
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A goal would be to classify sheets for biparabolic subalgebras. This will need a different
approach and is liable to be very difficult.

2.6.16 Let a(n) : n > 2, be the Lie algebra spanned by a, x1, x2, . . . , xn with non-zero
relations given by [a, xi] = xi+1 : i = 1, 2, . . . , n, with xn+1 set equal to zero. If n = 2, it
is just the Heisenberg Lie algebra of dimension 3. If n = 3, it is the truncated Borel for
g simple of type C2. Being nilpotent it is algebraic and semi-invariant free. One checks
that c(a(n)) = n, whilst the a(n)∗sing is just the zero set of < x2, x3, . . . , xn > and so has
codimension (n − 1). In particular it satisfies the Bolsinov criterion for n > 3. On the
other hand, Dixmier verified by direct computation that Y (a(4)) fails to be polynomial.
Recently Ooms and van den Bergh obtain this as a consequence of a general criterion for
polynomiality [57, Prop. 1.6 (1)]. For n > 4 polynomiality is excluded by a further result
of theirs, namely (∗) of 2.6.14.

When n = 3 the sum of the degrees of the generators equals c(a(n)). That their sum
is at least c(a(n)) is forced by Theorem 2.6.13. That it is exactly three follows from a
general sum rule of Ooms and van den Bergh [57, Prop. 1.4] for a Lie algebra satisfying
the hypotheses of 2.6.15 with Y (a) polynomial on index a generators. This sum rule has
been further extended to the case when a being semi-invariant free is replaced by the
weaker condition of being unimodular with its fundamental semi-invariant (see Remark
2.8.4) being an invariant [42, Thm. 5.7].

On may further remark that whereas Tη(a(3)) must lie in the Poisson commutative
subalgebra generated by x1, x2, x3, it can at best have generators of degrees 1,1,2 and
so cannot be maximal Poisson commutative. This has been recently in a more general
framework by Panyushev and Yakimova [61] who show that a Lie algebra a satisfying the
hypotheses of 2.6.13, the shifted algebra Tη(a) : η ∈ a∗reg is maximal Poisson commutative
if codim∗

a a∗sing ≥ 3.
One of the simplest examples of a Lie algebra a admitting an adapted quadruple is

given by the truncated Borel of sl(3). It has basis {x, y, z, h} with non-zero Lie brackets
being given by [x, y] = z, [h, x] = x, [h, y] = −y. Let {x∗, y∗, z∗, h∗} be the dual basis.
Then {h, y∗, z∗, x∗} is an adapted quadruple. In this case the conclusion of Theorem 2.5.11
holds.

2.6.17 Now suppose that q is a truncated biparabolic. In most cases Y (q) is polynomial
and the sum of the degrees of the generators equals c(q). After Ooms van den Bergh
[57, Prop 1.4] the first property implies that the sum of the degrees of the generators is
≤ c(q) with equality if and only if codimq∗q

∗
sing ≥ 2. Unfortunately it is not always true

that Y (q) is polynomial as a counterexample was found by Yakimova [70] in type E8 by
direct computation (for the truncated parabolic which is the centralizer of a highest weight
vector). So far this has not been understood in a more general context.

An even more interesting question is how to construct these generators in the polynomial
case. One finds that a subalgebra (and a surprisingly large one) Y0(q) of Y (q) obtains from
corresponding invariants in the Hopf dual of U(q). Moreover in most cases (even more
surprisingly) all of Y (q) obtains in this fashion. A crucial question is how to obtain the
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missing part of Y (q). When Bolsinov’s criterion holds it is natural to suggest that Y (q)
lies in Fract Y0(q). Otherwise it would seem we need to take square roots of generators,
which in general can be expected to imply that the sum of the degrees is strictly less than
c(q).

As an example suppose q is the truncated Borel of a simple Lie algebra g. Such an
algebra takes the form q = n+ t, where n is the nilradical of the Borel and t is the subspace
of h of elements vanishing on the weights of Y (n). Set r = rk g and t = dim t. Let
{$i : i = 1, 2, . . . , r}, be the set of fundamental weights and w0 the unique longest element
of the Weyl group. When $i = −w0$i, there is just one (up to scalars) element of Y (q)
of this weight of degree. Using the notation of [21, Lemme 4.9] we denote its degree by
si. Otherwise there are two elements of degrees si and ti = si + 1, moreover this occurs
exactly t times. Let s be the sum of the degrees of these elements. By [22, Lemme 4.9] it
follows that

2s− t =
1
2
(dim g + rk g).

On the other hand the right hand side of the above is just dim q + index q− t and so

s =
1
2
(dim q + index q).

When $i = −w0$i there can sometimes be an element of Y (q) of this weight (and of
degree sk/2). Let p denote the sum of the degrees of such elements. It turns out [28, 4.12,
4.14] that these elements together with those described above which are not squares of the
former form a system of polynomial generators of Y (q). In particular the sum sq of the
degrees of the generators of Y (q) satisfies

sq =
1
2
(dim q + index q)− p.

In the language of [57], let pq be the fundamental semi-invariant (see 2.8.4, Remark) of
q. Since q is semi-invariant free (by construction) and Y (q) is polynomial, the Ooms-van
den Bergh sum rule [57, Prop. 1.4] gives

sq =
1
2
(dim q + index q)− deg pq.

We conclude that p = deg pq. Moreover this strongly suggests that pq is just the product
of the generators of Y (q) which are square roots of the elements of weight 2$i coming from
invariants in the Hopf dual of U(q). Through the tables in [28] (as corrected in [21] !) one
may note that p = 0 exactly when g is of type A or C.

One may remark that the fundamental semi-invariant of a Lie algebra a is scalar if and
only if codima∗ a∗sing ≥ 2.

From the above we obtain the following improvement of a result appearing in the original
version of these notes. Set c := codimq∗ q∗sing, where we recall that q is the truncated Borel
of a simple Lie algebra g.

Lemma. If g is of type A (resp. Cn : n ≥ 2) then c = 3(resp. c = 2). Otherwise c = 1.
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Proof. By the above it remains to consider types A and C. By the Ooms-van den Bergh
result noted in (∗) of 2.6.14 and the existence [40, Section 4] of an adapted quadruple
in type A, the assertion for type A results. Then for type C we just have to show that
the inequality codimq∗ q∗sing ≤ 3 is strict. If not a result of Panyushev and Yakimova [61]
implies that Tη(q) is maximal Poisson commutative for all η ∈ q∗reg.

In type Cn the truncated Borel is just its nilradical nn. One may write nn = nn−1 + hn,
with hn an ideal isomorphic to a Heisenberg subalgebra of dimension 2n−1 having a unique
up to scalars central element zn.

One may choose η ∈ (nn)∗reg to be one on each zm : m ≤ n and zero on the remaining
root vectors. (These roots form the so-called Kostant cascade. It is a general fact that if
η ∈ q∗ is non-zero on the root vectors of the Kostant cascade and zero on the remaining
root vectors, then η is regular.)

Adopt the Bourbaki [7, Planche III] notation. Let n+
n be the subalgebra of nn with basis

the root vectors with roots in the set {εi + εj : i, j = 1, 2, . . . , n}. It is commutative of
dimension c(nn). One may remark that S(n+

n ) is maximal Poisson commutative in S(nn).
On the other hand from the tables in [28], [21], Y (nn) has a generator of degree m : m =

1, 2, . . . , n of weight 2(ε1 + ε2, . . . + εm). It follows that Y (nn) is contained in S(n+
n ) and a

fortiori so in Tη(nn). Yet since n ≥ 2 the generators of Tη(nn) cannot all be linear, so this
inclusion is strict and so Tη(nn) is not maximal Poisson commutative. ¤

Remark. Let q be a truncated Borel of a simple Lie algebra. As in type C the nilradical
n of b may be written as a direct sum of Heisenberg subalgebra whose centres run over the
root vectors whose roots form the Kostant cascade. Let z be the (unique up to scalars)
highest root vector and Z the zero set of z. It is a union of co-adjoint orbits. The
Heisenberg subalgebra with centre z has dimension d > 2rk g−1, with equality if and only
if g is simple of type A or C. Now rk g = index q by [28, 4.14]. On the other hand the
number of Heisenberg subalgebras occurring in the decomposition of n equals rk g− dim t.
In particular, the dimension of the space spanned by t and the centres of the remaining
Heisenberg subalgebras equals rk g−1. Let {xi} be a basis for q. One checks that if ξ ∈ Z,
then

dim q− rk ξ[xi, xj ] > d− (rk g− 1).

From this and the remark above it follows that Z is an irreducible component of q∗sing,
outside types A and C.

2.6.18 Assume that a is algebraic and semi-invariant free. Assume further that Y (a) is
polynomial.

Recall 2.5.7 and let (h, η) ∈ a × a∗reg be an adapted pair. Then the conclusion of 2.5.9
combined with 2.5.14(1) implies that η ∈ a∗reg ∩ Ω (with Ω ⊂ a∗ defined as in 2.6.9).

2.6.19 Since we always have codima∗a
∗
sing > 1, Lie algebras not satisfying the Bolsinov

criterion are very special and it would be interesting to classify them. Call an algebraic
Lie algebra a singular if codima∗a

∗
sing = 1. Set dim a = n and let {xi}n

i=1 be a basis for a.
Set m = n− index a.



INVARIANTS AND SLICES 37

Lemma Suppose a is a singular Lie algebra. Let V be an irreducible component of a∗sing of
dimension n− 1. Then V is the zero variety of some homogeneous semi-invariant element
f of S(a) of positive degree. Moreover, f is a divisor of every non-zero m ×m minor of
{[xi, xj ]}n

i,j=1.

Proof Let A be the algebraic adjoint group of a. It acts on a∗ by transposition. Clearly
a∗sing is A stable and since A is irreducible, so is any irreducible component, for example
V . Similarly, a∗sing, being stable for the natural action of C∗, forces the same of V . By
Krull’s theorem, there exists a unique up to scalars polynomial f on a∗ such that V is the
variety of zeros of f . Then I(V ) = S(a)f . Take a ∈ A. Since a−1V ⊂ V it follows that
a.f vanishes on V , and so a.f ∈ I(V ). Hence a.f divides f . Yet, deg a.f = deg f and so
a.f ∈ C∗f , which shows that f must be a semi-invariant. Again, V being C∗ stable, forces
f to be homogeneous. Finally, a∗sing is just the set of common zeros of the m×m minors
of {[xi, xj ]}n

i,j=1, each of which must be divisible by f . ¤

2.6.20 Of course, if a is semi-invariant free, then f in the conclusion of 2.6.19 must lie in
Y (a) and indeed, in its augmentation Y (a)+. Let Na denote the set of zeros of S(a)Y (a)+
which we called (1.6) the nilfibre (of the categorical quotient map). If g is semisimple,
then identifying g with g∗ through the Killing form, Ng identifies with the nilpotent cone
(2.3). As we have seen, in this case Ng ∩ g∗reg 6= ∅. More generally, recall (2.5.7) that if
(h, η) ∈ a× a∗reg is an adapted pair then (ad h)η = −η.

Notice this latter condition implies that η ∈ Na. The Jacobson-Morosov theorem gives
an adapted pair for g semisimple, starting from a regular nilpotent element. More generally,
one may construct an adapted pair for any (truncated) biparabolic subalgebra of sl(n) and
even for certain maximal parabolics in general. Thus it is worthwhile to point out the
following

Lemma Suppose a is semi-invariant free. If a is singular, then Na ∩ a∗reg = ∅.

Proof Let V , f be as in 2.6.19. Then a∗sing ⊃ V = V (S(a)f) ⊃ Na, since f is a
homogeneous invariant of positive degree. Hence the assertion. ¤

Remark Suppose a is semi-invariant free. If a admits an adapted pair (h, η) one has
GKdim Tη(a) = c(a), via 2.6.13 and Remark 3 of the latter.

2.7. A Comparison Inequality.

2.7.1 Let a be a finite dimensional Lie algebra. Then a acts on a∗ by transposition of
the adjoint action. For all ξ ∈ a∗ set aξ = {x ∈ a|x . ξ = 0}. Duflo and Vergne [17] showed
that aξ is commutative if ξ ∈ a∗reg.

Bolsinov [3, see after Prop. 3.1] notes the following, namely index aξ > index a, for all
ξ ∈ a∗ for which he refers the reader to a book of Arnold and Givental. Here we remark
that if ξ ∈ a∗reg, then index a = dim aξ. yet index b > dim b for a Lie algebra b implies that
b is commutative. Hence the above extends the Duflo-Vergne result.
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The proof of the above generalization may be obtained by adapting the Duflo-Vergne
argument and is given below. (We later learnt that it is also a consequence of an inequality
attributed to Vinberg. This is discussed in the next section.)

2.7.2 Fix ξ ∈ a∗ and let ι : a∗ → (aξ)∗ be the surjective linear map defined by restriction.
Since (aξ)∗reg is open dense in (aξ)∗ it follows that ι−1((aξ)∗reg) is non-empty and open
in a∗. Hence it meets the open dense set a∗reg. Thus we can choose η ∈ a∗reg such that
ι(η) ∈ (aξ)∗reg, which we fix from now on. Recall that dim aη = index a.

2.7.3 Fix a complementary subspace b to aη in a. Let {xi}n
i=1 be a basis for a such that

{xi}m
i=1 is a basis for b and {xi}n

i=m+1 as basis for aη. The relation η([xi, xj ]) = −(xi . η)(xj)
implies that aη is just the kernel of the matrix with entries η([xi, xj ]) : i, j = 1, 2, . . . , n. In
particular, m = codim aη = dim a − index a. Again there exists a subset J of cardinality
m such that det{η([xi, xj ])}i∈I,j∈J 6= 0, where I = {1, 2, . . . , m}.

Since η is regular, one has for all λ ∈ C that

a = b⊕ aη+λξ ⇐⇒ b ∩ aη+λξ = 0.

Moreover, the set Ω of all λ ∈ C satisfying this latter condition is open in C and contains
0 by construction.

2.7.4 Given x ∈ aη, set x =
∑n

i=m+1 cixi. For all λ ∈ Ω, we may write x = x1(λ)+x2(λ)
with x2(λ) ∈ aη+λξ and x1(λ) =

∑m
i=1 di(λ)xi ∈ b. Then the condition x2(λ) . (η+λξ) = 0,

becomes
m∑

i=1

di(λ)(η + λξ)([xi, xj ]) =
n∑

i=m+1

ci(η + λξ)([xi, xj ]), (∗)

which we solve for the di(λ) : i = 1, 2, . . . ,m. Since d(λ) := det{η +λξ)([xi, xj ]}i∈I,j∈J 6= 0
at λ = 0, it is also non-zero in some Ω′ ⊂ Ω open in C. It follows that we may solve (∗)
for the di(λ) : i = 1, 2, . . . ,m, at any λ ∈ Ω′ and that these are rational functions in λ. We
can write di(λ) uniquely in the form di(λ) = pi(λ)/qi(λ), with pi, qi coprime polynomials
and qi(λ) monic. Then each qi(λ) is a factor of d(λ) and so is non-zero at λ = 0. Let q(λ)
be their lowest common multiple, set mi(λ) = q(λ)pi(λ)/qi(λ)q(0) : i = 1, 2, . . . , m, and

x(λ) :=
q(λ)
q(0)

x−
m∑

i=1

mi(λ)xi. (∗)

Then x(λ) is just the component of q(λ)
q(0)x in the direct summand b of b⊕ aη+λξ. Obviously

x(0) = x.

2.7.5 Now consider λ as an independent parameter t and let a(t) be the C[t] module
generated by the polynomials x(t) in 2.7.4(∗) above, as x runs through a basis of aη. Now
a(t) is finitely generated and torsion free over the principal ideal domain C[t], so is free of
rank equal to dim aη. Let {xi(t)}n−m

i=1 be a free basis over C[t] such that
∑n−m

i=1 deg xi(t) is
minimal over all possible choices.
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Lemma The leading coefficients xi,di
of the xi(t) : i = 1, 2, . . . , n−m, are linearly inde-

pendent.

Proof Suppose ∑

k∈K

ck xk,dk
= 0 (∗)

for some non-empty subset K ⊂ {1, 2, . . . , n −m}, with ck 6= 0 ∀ k ∈ K. Choose ` ∈ K
such that d` is maximal and replace just x`(t) in the given basis by

x`(t) +
∑

k∈K\{`}
(ck/c`)xk(t)td`−dk

which through (∗) has degree < d`. This gives a new C[t] basis contradicting the hypothesis
on the given one. ¤

2.7.6 Fix a basis element y(t) of a(t) and write

y(t) =
d∑

i=0

yit
i : yd 6= 0.

Lemma yd ∈ (aξ)ι(η).

Proof Equating powers of t in the equation y(t) . (η + tξ) = 0 gives

yd . ξ = 0, yd . η + yd−1 . ξ = 0.

The first relation means that yd ∈ aξ. Evaluated on aξ, the second relation gives

0 = (yd . η)(aξ) = η([yd , aξ])

= ι(η)([yd , aξ]), since yd ∈ aξ,

= (yd . ι(η))(aξ),

as required. ¤

2.7.7 The desired result now obtains.

Proposition Let a be a finite dimensional Lie algebra. Then for all ξ ∈ a∗ one has

index aξ > index a.

Proof By the choice of η and 2.7.5, 2.7.6 we obtain

index a = dim aη 6 dim(aξ)ι(η) = index aξ.

¤
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2.7.8 By contrast, suppose we take y ∈ a and set ay = {x ∈ a|[x, y] = 0}. Unless a
is semisimple, it can be false that index a 6 index ay, even if y is ad-semisimple. For
example, let n denote the nilradical of the Borel subalgebra of a semisimple Lie algebra
g with Cartan subalgebra h. By [28, 4.14] one may easily deduce that 1

2 rk g 6 index
n 6 rk g. Now choose h ∈ h such that [h, x] = x, for every simple root vector x ∈ n. Then
(n⊕ Ch)h = Ch and so has index 1. On the other hand, index (n⊕ Ch) > index n− 1.

2.7.9 One may appreciate the difficulty raised in 2.7.8 by the following. Let g be semisim-
ple with Cartan subalgebra h. Let a be a subalgebra of g and h ∈ h satisfying (ad h)a ⊂ a.
Let a⊥ denote the orthogonal with respect to the Killing form K. Let κ be the ad g iso-
morphism of g onto g∗ defined by K, namely κ(x)(y) = K(x, y), ∀ x, y ∈ g. Let ι be the
surjection of g∗ onto a∗ defined by restriction.

Lemma aικ(h) = ah + a ∩ a⊥.

Proof One has
aικ(h) = {y ∈ a|y . ικ(h) = 0}

= {y ∈ a|κ(h)([y, a] = 0)}

= {y ∈ a|K((ad h)y, a) = 0}

= {y ∈ a|(ad h)y ∈ a⊥} ⊃ ah.

On the other hand, a and a⊥ are ad h stable and hence so is aικ(h). Consequently, b :=
a∩a⊥ ⊂ aικ(h). Conversely an ad h stable complement c to b in aικ(h) must satisfy (ad h)c ⊂
b ∩ c = 0 and so lies in ah. ¤

2.8. Vinberg’s Inequality.

2.8.1 It turns out that there is a more efficient way to obtain 2.7.7. This derives from
an inequality attributed to E.B. Vinberg by A.G. Elashvili. Our exposition follows that of
D.I. Panyushev [58, Prop. 1.6].

2.8.2 Let a be a finite dimensional Lie algebra and V an a module. Fix w ∈ V . One
checks that aw is a aw submodule of V . Let π : V → V/aw be the canonical projection.

Proposition (Vinberg) For all w ∈ V one has

max
x∈V

dim ax > max
y∈π(V )

dim awy + dim aw.

Proof Let b be a complement to aw in a. Choose y = v + aw ∈ π(V ) so that dim awy is
maximal. For all t ∈ C \ {0} one has a(tv + w) = awv + b(tv + w). The condition that the
right hand side does not have its maximal dimension for t ∈ C is given by a polynomial in
t and so defines a finite subset F of C. When t = 0 (which may or may not belong to F )
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the right hand side equals awv + bw ⊃ bw = aw. Hence at t = 0 the dimension of the right
hand side equals dim aw + dim awπ(v) = maxy∈π(V ) dim awy + dim aw, by the choice of v.
Consequently, for all t /∈ F \ {0} one has

max
x∈V

dim ax > dim a(tv + w) > max
y∈π(v)

dim awy + dim aw.

¤

2.8.3 In the above proposition we may take V = a∗, given its coadjoint action. The
kernel of the restriction map a∗ → (aw)∗, which is surjective equals {ξ ∈ a∗|ξ(aw) = 0}
and has dimension dim a − dim aw = dim aw. On the other hand, (a.w)(aw) = w[a, aw] =
(aww)(a) = 0 and so the above kernel contains a.w. Hence (aw)∗ identifies with a∗/aw =
V/aw. Then, by the Vinberg proposition

index a = dim a−max
x∈V

dim ax

6 (dim a− dim a.w)− max
y∈(aw)∗

dim awy

= index aw.

Hence 2.7.7.

2.8.4 A slightly more effective way of calculating index than just computing rk{[xi, xj ]}n
i,j=1

derives from the following.
Let V be an even dimensional vector space and {xi}2n

i=1 a basis for V . Let ξi,j : 1 6 i <
j 6 2n be indeterminates and set ξj,i = −ξi,j for i < j and ξi,i = 0.

Let Mξ be the matrix with entries {ξi,j}2n
i,j=1 and set qξ = detMξ. Define ωξ ∈ C[ξi,j :

i, j = 1, 2, . . . , 2n]⊗ ∧∗∨ by

ωξ =
∑

16i<j62n

ξi,j(xi ∧ xj).

We may write
ωn

ξ = n!pξ(x1 ∧ x2 ∧ . . . ∧ x2n)

Lemma qξ = p2
ξ .

Proof View the ξi,j : 1 6 i < j 6 2n as the co-ordinate functions on the affine space
of dimension n(2n − 1) which we denote simply by A. Then qξ, pξ ∈ R[A]. Let us show
that qξ, pξ have the same set of zeros on A. Observe that Mξ(a) defines an antisymmetric
bilinear form on V ∗ through

Mξ(a)(ξi, ξj) = ξi,j(a), for all i, j = 1, 2, . . . , 2n,

where {ξi}2n
i=1 is a dual basis. Moreover, Mξ(a) is non-degenerate if and only if qξ(a) 6= 0.
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We may write

ωξ(a) =
∑

16i<j62n

ξi,j(a)(xi ∧ xj) =
1
2

2n∑

i,j=1

Mξ(a)(ξi, ξj)(xi ∧ xj),

which is independent of choice of basis.
Suppose qξ(a) = 0 and set W = kerMξ(a) which is even-dimensional. Choose a basis

{yi}2n
i=1 for V such that with respect to the dual basis {ηi}2n

i=1, the subset {ηi}2m
i=1 is a basis

for W . Then

ωξ(a) =
2n∑

i=1

Mξ(a)(ηi, ηj)(yi ∧ yj)

and so ωt
ξ(a) = 0, for t > n−m. In particular, ωn

ξ(a) = 0 and so pξ(a) = 0.
Conversely, suppose that qξ(a) 6= 0. Scaling we can assume qξ(a) = 1. By base change

we may reduce Mξ(a) to canonical form, namely

1 = Mξ(a)(η2i−1, η2i) = −Mξ(a)(η2i, η2i−1) : i = 1, 2, . . . , n

with all other entries zero. However, in this case, it is immediate that ωn = n! and so
pξ(a) = 1.

From the above it follows that p, q have the same irreducible factors. On the other hand,
p is multilinear in the ξi,j : 1 6 i < j 6 2n, that is to say in each monomial of p every
exponent is at most one. Consequently, p is a product of distinct irreducible factors, say
pξ = p1p2 . . . pr. Again, since qξ is obtained by evaluating a determinant with entries ξi,j ,
where ξj,i = −ξi,j every monomial in qξ has exponent at most two. We conclude that up
to a non-zero scalar qξ = ps1

1 ps2
2 . . . psr

t : 1 6 si 6 2, for all i = 1, 2, . . . , t.
It is clear that p is homogeneous of degree n whilst q is homogeneous of degree 2n.

Combined with the previous observation, we conclude that qξ = p2
ξ , up to a non-zero

scalar. Yet as we have seen, there exists a ∈ A such that qξ(a) = pξ(a) = 1. Hence qξ = p2
ξ ,

as required. ¤

Remark. Recall 2.6.19 and let qa denote the greatest common divisor of the minors
of {[xi, xj ]}n

i,j=1. Then by the above there exists a polynomial pa whose square is qa.
Moreover pa is semi-invariant. It is what Ooms-van den Bergh [57] call the fundamental
semi-invariant of a.

2.9. The Rais theorem, index and the singular set.

Let a be a finite dimensional Lie algebra. In some good situations, particularly for
semi-direct products, the Rais theorem can be used to describe a∗sing.

2.9.1 Let p be a finite dimensional Lie algebra. Take p ∈ p∗, x ∈ p and let (x, p) 7→ x.p
designate the coadjoint action of p on p∗. Set pp = {x ∈ p|x.p = 0}. Recall the alternating
two form Bp : (x, y) 7→ p([x, y]) on p. Given a subspace a of p, let a⊥ denote its orthogonal
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in p with respect to this form. One has ap = a ∩ p⊥. If a is a subalgebra, let a ∈ a∗ be the
restriction of p to a. Then aa = a ∩ a⊥.

2.9.2 From now on we suppose that a is an ideal of p. Then h := a⊥ is a subalgebra of
p.

Lemma hh = pp + aa.

Proof By 2.9.1, one has

hh = h ∩ h⊥ = a⊥ ∩ a⊥⊥ = a⊥ ∩ (p⊥ + a)
= p⊥ + a ∩ a⊥, since p⊥ ⊂ a⊥
= pp + aa, as required.

2.9.3 From now on we suppose that a is an abelian ideal of p. Then in 2.9.2 one has
aa = a. Moreover, we assume that a is complemented in p by a subalgebra g. We may
write p = g + a, where g (resp. a) is extended to p by setting g(a) = 0 (resp. a(g) = 0).
Then gg is independent of whether we view g as an element of g∗ or of p∗ (the same does
not apply to aa). Set g(a) = {x ∈ g|x.a = 0} which is also independent of whether we
view a as element of a∗ or of p∗. It is a subalgebra of g. Let g0 denote the restriction g,
equivalently of p, to g(a).

Lemma Set h = a⊥, h = p|h. Then
(i) h = g(a)⊕ a,
(ii) hh = g(a)g0 ⊕ a.

Proof Clearly h ⊃ a, whilst h ∩ g = {x ∈ g|p[x, a] = 0} = {x ∈ g|(x.a)(a) = 0} = g(a),
since (x.g)(a) = 0. Hence (i). By 2.9.2 or directly hh ⊃ a, whilst

hh ∩ g(a) = {x ∈ g(a)|p([x, y]) = 0, ∀ y ∈ h}
= {x ∈ g(a)|g0([x, y]) = 0, ∀ y ∈ g(a)} = g(a)g0 ,

since a([x, y]) = 0 for x ∈ g(a) and g([x, y]) = 0 for y ∈ a. Hence (ii). ¤

2.9.4 Combining 2.9.2 and 2.9.3, we obtain the

Proposition For all p ∈ p∗ with a = p|a, g0 = p|g(a) one has

dim pp = dim g(a)g0 + codima∗g.a.

Proof Observe that a ∩ pp = {x ∈ a|a([x, g]) = 0} which is just the orthogonal of g.a in
a. Hence dim(a ∩ pp) = dim a− dim g.a. Then, by 2.9.2, we obtain

dim hh = dim pp + dim a− dim a ∩ pp

= dim pp + dim(g.a)

Substitution from 2.9.3 gives the required assertion. ¤
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2.9.5 Significantly g0 only occurs in the first factor on the right hand side of 2.9.4. This
gives the

Corollary
(i) p ∈ p∗reg ⇒ g0 ∈ g(a)∗reg,
(ii) g0 ∈ g(a)∗sing ⇒ p ∈ p∗sing.

2.9.6 Let ρ denote the representation of g defined by its action on a∗. Let a∗r denote the
subset of a ∈ a∗ such that codima∗(g.a) is minimal and call this minimal value index ρ.
Obviously a∗r is open dense in a∗ and hence so is its inverse image in p∗ under the restriction
map ι. Set Ω = ι−1(a∗r) ∩ p∗reg, which is open dense in p∗.

Theorem(Rais) Suppose p = g⊕ a, with g a subalgebra and a an abelian ideal. Then
(i) index p = index g(a) + codima∗g.a, if ι−1(a) ∩ p∗reg 6= ∅.
(ii) index p = index g(a) + index ρ, if ι−1(a) ∩ Ω 6= ∅.
(iii) index p− index ρ = infι−1(a)∩p∗reg 6=∅ index g(a).

Proof For (i) take p ∈ p∗reg and apply 2.9.4 and 2.9.5(i). Then (ii) follows from (i) by
definition of Ω. By (i) if ι−1(a) ∩ p∗reg 6= ∅, one has

index g(a) = index p− codimag.a,
> index p− index ρ.

By (ii) equality holds if ι−1(a) ∩ Ω 6= ∅. Hence (iii). ¤

2.9.7 Recall the definition of a∗r given in 2.9.6. Set a∗s = a∗ \ a∗r. Since a∗r is open dense
in a∗ one has codima∗ a∗s > 1. Equality forces a similar conclusion to 2.6.19, namely an
irreducible subvariety of a∗s of codimension 1 in a∗ is the zero set of a g semi-invariant
homogeneous element of S(a) dividing every maximal rank minor of the matrix describing
the action of g on a. In particular suppose that there are no g semi-invariants in S(a).
Then if there exists a pair (h, y) ∈ g×a∗r with [h, y] ∈ C∗y, then codima∗ a∗s > 2. Moreover,
codimp∗ ι−1a∗s = codima∗ a∗s, so in the latter case it suffices to compute from the following
to determine if p is singular.

Corollary For all a ∈ a∗r one has

dim(p∗sing ∩ ι−1(a)) = dim g(a)∗sing.

Proof It is enough to show that the reverse implications, to those given in 2.9.5, hold,
under the hypothesis that a ∈ a∗r . By the hypothesis codima∗ g.a = index ρ. Suppose
g0 ∈ g(a)∗reg. Then dim g(a)g0 = index g(a). Substitution into 2.9.4 and 2.9.6(ii) gives
index p = dim pp and so p ∈ p∗reg, as required. ¤
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2.9.8 The condition a ∈ a∗r ⇒ g(a) = 0, is independent of the choice of a ∈ a∗r. Suppose it
holds (which is often the case if dim a is large enough). Then by the corollary ι−1(a∗r) ⊂ p∗reg.
Thus if in addition codima∗ a∗s ≥ 2, then p is non-singular.

This result may also be used to prove that p is non-singular even if the above conditions
do not hold. For example the first condition can be replaced by g(a) being commutative for
all a ∈ a∗r, for then g(a)∗sing = ∅. An intermediate case is provided by the following example.
For all n > 1, let pn denote the derived algebra of a (standard) parabolic subalgebra of
sl(n + 1) of codimension n. Then pn is the semi-direct product of sl(n) and an abelian
ideal an of dimension n on which sl(n) acts by its standard representation. Observe that
dim p1 = 1 and so index p1 = 1, whilst (p1)∗2 = ∅.
Lemma For all n > 2 one has

(i) index pn = 1,
(ii) codim (pn)∗sing = 2.

Proof Both statements are proved by induction on n. Set g = sl(n), a = an, p = g + a.
Notice that a∗r = a∗ \ {0}. Moreover, if a ∈ a∗r, then codima∗(g.a) = 0, whilst g(a) ∼= pn−1.
Thus, by 2.9.6, we obtain
index pn = index pn−1. Since index p1 = 1, this gives (i).

For (ii) write p∗sing as the disjoint union of p∗s,0 := ι−1(0) ∩ p∗sing and its complement

p∗s,1 :=
⊔

a∈a∗\{0}
ι−1(a) ∩ p∗sing.

Take ξ ∈ ι−1(0) = g∗. Then codimp∗(p.ξ) > codimg∗(g.ξ) > rk g. Yet index p = 1. So if
n > 2 we obtain ι−1(0) ⊂ p∗sing, that is p∗s,0 = ι−1(0) and hence

codimp∗ p∗s,0 = n. (∗)
(Notice that here the reverse implication in 2.9.5 fails.)

Now suppose p∗s,1 is non-empty and take p ∈ p∗s,1. Denote a := p|a and g0 = p|g(a).
Then codima∗(g.a) = 0 and so, by 2.9.4, we have dim g(a)g0 = dim pp > index p = 1. Yet
g(a) = pn−1 = 0, so our hypothesis forces n > 2. Thus for n = 2, p∗s,1 = ∅ and so the
assertion follows from (∗).

Now suppose n > 2 and take a ∈ a∗r. Then g(a) = pn−1 and so codimg(a)∗ g(a)∗sing = 2,
by the induction hypothesis. Hence dim(ι−1(a) ∩ p∗sing) = dim pn−1 − 2, by 2.9.7. Thus
codimp∗p

∗
s,1 = 2. Combined with (∗), this gives (ii). ¤

2.10. Distinguished Orbits - Bala-Carter Theory.

Let g be a reductive Lie algebra and x ∈ g. Elashvili conjectured that index gx = rank g.
Through Jordan decomposition we may assume x nilpotent and of course that g is simple.
Through the Killing form and Proposition 2.7.7 (say via the Vinberg inequality 2.8.2)
we immediately obtain index gx ≥ rank g. The opposite inequality is apparently much
more difficult, although it may just be that we are not as smart as Vinberg. In any case
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Yakimova [69] checked this last inequality in classical type. This is effected by taking a
Jordan decomposition compatible with an invariant symmetric (for so(n)) or antisymmetric
(for sp(n)) form on the underlying vector space. Here type A is straightforward, type C
doable and types B,D, simply “épouvantable”. In addition van den Graaf [23] has verified
the conjecture for the exceptional Lie algebras by computer. More recently Charbonnel
and Moreau [12] have reported a proof using much less computer aided computations.
Indeed they reduce the question to the case of so-called rigid orbits. On the other Elashvili
suggested it is possible to also reduce the question to the case of distinguished orbits. Since
a distinguished orbit is always a Richardson orbit in a smaller Lie algebra, together this
would give a computer free proof. Unfortunately we could not see how to achieve Elashvili’s
suggestion. However we describe below the theory of distinguished orbits. It allows one
describe all the Dynkin data. Our treatment follows closely that given in [9].

2.10.1 Recall 2.3.7. Let g be a semisimple Lie algebra and (x, h, y) an s-triple. Set
s = Cx ⊕ Ch ⊕ Cy, which is isomorphic to sl(2). By sl(2) theory, the eigenvalues of ad h
on g take integer values. Thus, if we set

gi = {z ∈ g|(ad h)z = iz}, ∀ i ∈ Z.

Then
g =

⊕

i∈Z
gi,

is a grading of g as a Lie algebra. The subalgebra

p :=
⊕

i>0

gi

is a parabolic subalgebra, called the Dynkin parabolic. Its Levi factor is g0 and its nilradical
is

m :=
⊕

i>0

gi.

By sl(2) theory, px = gx. (One may further prove that P x = Gx for the corresponding
connected groups P, G. This is stronger if Gx is not connected.)

One calls (x, h, y) distinguished if px = mx. Now gx
0 = gs, by sl(2) theory, and the latter

is reductive. Thus (x, h, y) is distinguished if and only if gx is a nilpotent Lie algebra.

2.10.2 Suppose (x, h, y) is not distinguished. Let t be a Cartan subalgebra of gs and
consider r := gt, which is again reductive. Thus r is a direct sum of its centre z and its
derived algebra r′ which is semisimple. Since t 6= 0, it follows that rk r′ < rk g. Since
x, h, y commute with elements of gs and hence with t, we obtain x, h, y ∈ r. Moreover,
adx = adz + adx′, with z ∈ z, x′ ∈ r′ is a Jordan decomposition of adx ∈ End g. Hence
z = 0. Consequently x and similarly, y lie in r′. Hence so does h.

Lemma (x, h, y) is distinguished in r′.
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Proof Set r′i = r′ ∩ gi, which is just the Dynkin grading of r′. It remains to show that
(r′0)

x = 0. Now (gs)t = t, because t is a Cartan subalgebra of gs. Then (r′0)
x = r′ ∩ gx

0 =
r′ ∩ gs = r′ ∩ (gs)t = r′ ∩ t = r′ ∩ (t ∩ gt) = r′ ∩ z = 0. ¤

Remark Similarly rx
0 = r ∩ gs = z.

2.10.3 The above result allows one to reduce the classification of nilpotent orbits to the
distinguished ones. The Bala-Carter theory described below reduces the latter to an easily
solved purely combinatorial problem.

2.10.4 Recall (2.3.11) that dim gh 6 dim gx with equality if and only if all eigenvalues
of ad h on g are even. In the latter case one calls (x, h, y) an even s-triple and Gx an
even orbit. In terms of Dynkin data (2.3.11), this means that h(α) ∈ {0, 2}, for all α ∈ π
(instead of h(α) ∈ {0, 1, 2}). A key tool in analyzing nilpotent orbits is provided by a
theorem of Richardson. It asserts that any parabolic subgroup P has a dense orbit on
the nilradical m of its Lie algebra p, and that dimGx = 2dim Px. We shall not give the
proof. However, we remark that it results from Bruhat decomposition, particularly that
B\G/B is finite, where B is a Borel subgroup, the finiteness of N /G, and finally using
the Steinberg triple variety. In Lie algebraic terms, the first part of Richardson’s theorem
is equivalent to the following assertion. There exists m ∈ m such that [p,m] = m. As
observed by Jantzen, this already gives an easy proof of the following key result.

Lemma A distinguished orbit is even.

Proof Let p be the Dyknin parabolic and m its nilradical. Write m in the conclusion of
Richardson’s theorem as m = m1 + m2 + . . ., with mi ∈ gi. Then [p,m] = m implies

[g0,m1] = g1, [g1, m1] + [g0, m1 + m2] = g1 + g2.

If (x, h, y) is not even, then g1 6= 0, by sl(2) theory. This forces m1 6= 0, which in turn
implies dim[g1,m1] < dim g1. Then the second relation above implies that

dim g1 + dim g0 > dim g1 + dim g2,

forcing dim g0 > dim g2. By sl(2) theory, one has [g0, x] = g2 and so gx
0 6= 0 and hence

(x, h, y) is not distinguished. ¤

2.10.5 For the moment let h denote an element of h satisfying h(α) = {0, 2}, ∀ α ∈ π.
Any such function obtains from a standard parabolic subalgebra pπ′ by setting h(α) =
0, ∀ α ∈ π′, h(α) = 2, ∀ α ∈ π \ π′.

Conversely, suppose h is as above and set ∆i = {α ∈ ∆|h(α) = i} with

g0 = h⊕
⊕

α∈∆0

gα, gi =
⊕

α∈∆i

gα : i 6= 0.

Then
g =

⊕

i∈Z
g2i,
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and is a grading of g. As in 2.10.1, a grading defines a parabolic subalgebra p = ⊕i>0 g2i,
with nilradical m = ⊕i>0 g2i and Levi factor g0. Moreover, p = pπ′ , where π′ = h−1(0).
Obviously each g2i is a g0 module. Recall that [gα, gβ] = gα+β. if α, β, α + β are non-zero
roots. Since π generates ∆+ additively and lies in ∆0 ∪ ∆2, it follows that g2 (which is
g0 stable) generates m. In particular, the injection g2 ↪→ m factors to an isomorphism
g2→̃m/m′. On the other hand, by the first part of the previous lemma (replacing 1 by 2)
we see that Richardson’s theorem implies that dim g0 > dim g2.

One says that a parabolic subalgebra p with Levi decomposition p = r⊕m is distinguished
if dim r = dimm/m′.

The previous analysis shows that the construction of all (standard) distinguished parabol-
ics is the purely combinatorial problem of finding all h as above, satisfying

|∆2| = |∆0|+ dim h.

Moreover, we shall see in (2.10.9), that this problem is rather easy.

2.10.6 The Bala-Carter theory asserts that there is a natural one to one correspondence
between distinguished orbits and distinguished parabolics, namely every distinguished par-
abolic is the Dynkin parabolic of a distinguished orbit. By 2.10.4, a distinguished orbit
gives rise to a distinguished parabolic. Below, the converse is established. Since Dynkin
data uniquely determines a nilpotent orbit, this will establish the correspondence.

2.10.7 If (x, h, y) in an even s-triple, then by definition of the Dynkin grading, one has
x ∈ g2. Now let p = r⊕m be the corresponding Dynkin parabolic. Then, recalling 2.10.4,
one has dim px = dim gx ≤ dim gh and so the inclusion [p, x] ⊂ m is an equality. This
translates to imply that the unique dense P orbit in m must be Px and so in particular,
meets g2. A key fact is that this property holds automatically for a distinguished parabolic.

Proposition Let p = pπ′ be a distinguished (standard) parabolic and Px its unique dense
orbit in m. Then with respect to the grading defined by π′, one has Px ∩ g2 6= ∅.
Proof Clearly [m, x] ⊂ m′. Yet

dim[m, x] = dimm− dimmx,
> dimm− dim px,
= 2dimm− dim p, since [p, x] = m,
= dimm′, by 2.10.5 and since dim g0 = dim g2.

Hence [m, x] = m′.
This translates to imply that Mx, which lies in the affine space x + m′, has the same

dimension as the latter. Yet M is unipotent so Mx is closed by a theorem of Rosenlicht.
Since x + m′ is irreducible, we conclude that Mx = x + m′. Yet (x + m′) ∩ g2 6= 0, hence
the assertion. ¤

Remark We can write x = x2 + x4 + . . . , with x2 ∈ g2:. Since x4 ∈ m′, there exists
x′2 ∈ m such that [x′2, x] = x4 +x′6 + . . .. Yet ad x′2 is a nilpotent endomorphism of g and so
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exp ad x′2 is a well-defined automorphism of g (over characteristic zero) lying in M whilst
(exp - ad x′2)x = x2 + x′′6 + . . .. Eventually one obtains m ∈ M such that mx = x2. This
avoids Rosenlicht’s theorem.

2.10.8 Retain the hypotheses and notations of 2.10.7 and choose x′ ∈ Px∩g2. Obviously
Px′ = Px. By the first part of Richardson’s theorem, the inequality dimGx′ 6 dimG/P +
dimPx′, is an equality and of course, equals 2 dimm. Thus dim gx′ = dim g0 = dim g2 =
dimmx′ . Thus the inclusion mx′ ⊂ gx′ is an equality, so x′ is distinguished. Replace x′ by
x.

Set ng(x) = {z ∈ g|[z, x] ∈ Cx}. Obviously gx ⊂ ng(x) and dimng(x)/gx = 1. Since
x ∈ g2 we have [h, x] = 2x and so we conclude that ng(x) = Ch⊕mx. On the other hand,
by the Jacobson-Morosov theorem (2.3.7), we can embed x in an s-triple (x, h′, y′) with
[h′, x] = 2x. Thus h′ − h ∈ mx. Yet Mx is unipotent and since mx ⊂ ⊕i>0g2i it follows
that (mx)h = 0. Thus dimMxh = dim mx, whilst Mxh ⊂ h + mx. Then by Rosenlicht’s
theorem (or as in the Remark following 2.10.7) we can find m ∈ Mx such that h′ = mh.
Thus we can replace our s-triple by (x, h, y) with y′ = my. This completes the proof of the
Bala-Carter correspondence.

2.10.9 Let us describe the distinguished parabolic subalgebras for g of classical type. In
type A every nilpotent orbit is generated by an element of the form

xπ′ :=
∑

α∈π′
xα.

Such an element is defined in general and said to be of Bala-Carter type. A Bala-Carter
orbit is regular and distinguished if π′ = π. Otherwise h ∩ gxπ′ is generated by the funda-
mental weights $α : α ∈ π \ π′ and hence non-zero. Thus if π′  π such an orbit is not
distinguished.

Now suppose π = {αi}`
i=1 is of type B` with α` the short root. Choose positive integers

n1, n2, . . . , nk−1 and nk non-negative, whose sum is `. For all 1 6 r < k, set mr :=
∑

i6r ni.
Define π′ ⊂ π by setting π \ π′ := {αmr}k−1

r=1 . Define h ∈ h by

h(α) =
{

2 : α ∈ π \ π′
0 : α ∈ π′

One easily checks that

dim g2 =
k−2∑

i=1

nini+1 + nk−1(2nk + 1),

whilst

dim g0 =
k−1∑

i=1

ni(ni − 1) + 2n2
k + `.
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Thus

dim g0 − dim g2 =
1
2

k−2∑

i=1

(ni − ni+1)2 +
1
2
(nk−1 − 2nk)2 + nk − nk−1 +

1
2
n2

1

Now the first term is greater than 1
2(nk−1 − n1) with equality if and only if the ni :

i = 1, 2, . . . , k − 1 are increasing and by at most one at each step. The second term is
greater than 1

2(nk−1 − 2nk) with equality if and only if nk−1 − 2nk equals 0 or 1, the
choice being dictated by whether nk−1 is even or odd. Thus the overall sum is greater
than 1

2n1(n1 − 1) with equality exactly when the above two conditions hold. Thus the
distinguished parabolics corresponds exactly to the choices n1 = 1, ni+1 = ni or ni + 1,
for i = 1, 2, . . . , k − 1 and nk = [nk−1

2 ]. The regular orbit corresponds to the choice
ni = 1 : i = 1, 2, . . . , k − 1, nk = 0.

The result for Dn is similar. The result for Cn is slightly different; but the proof is very
similar.

The complete set of distinguished parabolics in all types was computed by P.Bala and
R.W. Carter. The list can be found in [9, pp. 174-177].

2.10.10 Suppose π = {αi}`
i=1 is the set of roots of a simple Lie algebra g with unique

highest root β. Set α0 = −β. Then π0 := {αi}`
i=0 is the set of simple roots of the

affinisation of g. Of course, as described above, these roots are not linearly independent,
though any proper subset π′ of π0 does have this property. In particular, if |π′| = |π| then
the element ∑

α∈π′
xα (∗)

has a chance of being distinguished. For example, the unique non-regular distinguished
orbit in type C2 and type G2 occurs in this fashion. However, in type D4 such an orbit is
either regular or not distinguished. Moreover in type D4 apart from the regular orbit, just
the subregular orbit is distinguished. The latter possesses a representative of the form

x =
∑

α∈S

xα.

For example, we can take S = {α1, α3, α4, α1 +α2} in the Bourbaki convention. In general
one can always write a distinguished element as the sum of rank g root vectors with roots
spanning h∗ [11, Section 1].

2.10.11 Let us briefly describe how to obtain all Dynkin data from those of distinguished
orbits. Recall the notation of 2.10.2 and let (x, h, y) be a distinguished s-triple in r′. Since
r = gt, by choosing t dominant (and correspondingly conjugating r) we can assume that r
is a Levi factor gπ′ of some standard parabolic. Then h ∈ g′π′ is a sum of coroot vectors
α∨ : α ∈ π′ and so uniquely determined by its values on π′. Through W we may conjugate
h into a unique dominant element hd. Then the required Dynkin data of Gx is simply
{hd(α)}α∈π. For example, consider g of type A3 with π = {α1, α3, α3}. Then regular orbit
in g′{α1} is given by h = α∨1 and so {hd(αi)}3

i=1 = {1, 0, 1}. For the regular orbit in g′{α1,α2}
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one has h = 2(α∨1 + α∨2 ) and so {hd(αi)}3
i=1 = {2, 0, 2}. Finally, for the regular orbit in

g′{α1,α3} one obtains {hd(αi)}3
i=1 = {0, 2, 0}. For the regular (resp. zero) orbit, the Dynkin

data is {2, 2, 2} (resp. {0, 0, 0}). This describes all possible Dynkin data in type A3. All
possible Dynkin data for all g simple is listed by Carter [9, pp. 418-433].

2.10.12 The signficance of Dynkin data is rather mysterious. However, we do have
the following observation of G. Lusztig and N. Spaltenstein which is easily checked. Let
Gx ⊂ gπ be a nilpotent orbit. Retain only the subset π′ of π being the inverse image of
{0, 1}. Assume that the resulting data on π′ is the Dynkin data of a nilpotent element x′
of the corresponding Levi factor gπ′ . Then x is “induced” from x′, that is to say it is the
generator of the unique dense orbit in G(x′+m), where m is the nilradical of the parabolic
with Levi factor gπ′ . A nilpotent orbit of a (Levi factor of g) is said to be rigid if it cannot
be induced from a smaller Levi factor. The subset of the Dynkin data corresponding to the
set of rigid orbits has been described, though there does not seem to be an easy or elegant
way to do this as for distinguished orbits. Only the zero orbit is rigid in type A and more
generally, there are no distinguished orbits which are rigid, as a consequence (of an easy
case) of the Lusztig-Spaltenstein [50] result above. If x′ ∈ gπ′ generates a rigid orbit, then
it defines a sheet S in gπ in the sense of 2.6.15. Let z be the centre of pπ′ . Then S is the
union of all orbits of maximal dimension in G(x′ + m + z). It contains the induced orbit as
its unique nilpotent orbit. All sheets are so obtained.

Outside type A, sheets may intersect non-trivially. If Wz is the normalizer of z in the
Weyl group, then the natural map z → S /G factors to a homeomorphism of z/Wz→̃S /G.
(For more details see [5] and [6]). Sheets are important to the Borho-Dixmier programme of
studying the prime spectrum Spec U(g) of the enveloping algebra U(g) of g. For example,
there is a decomposition of Spec U(g) into sheets [1] which are further parameterized by a
positive integer (the Goldie rank). There are finitely many sheets up to a given Goldie rank
[1, Prop. 6.13]. In particular there are finitely many Goldie rank one sheets. It would be
of some interest to classify the latter. Their exact relation with the finitely many (though
generally less) sheets in g (more properly in g∗) is an important open question [1, Conj.
7.11].

Notice that for the sheet S consisting of all regular co-adjoint orbits on has h/W→̃S /G.
However, in this case, the Kostant slice better describes S /G as x+gy. A similar descrip-
tion is not known for the remaining sheets and must fail outside type A since z/Wg need
not be an affine space [7].

A.1 Let a be a finite dimensional Lie algebra. Given an a module M , set

Fa(M) := {m ∈ M |dimU(a)m < ∞}.

For all λ ∈ (a/[a, a])∗, set

Mλ = {m ∈ M |am = λ(a)m, ∀ a ∈ a}.
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Let D(a) be the multiplicative set generated by the non-zero elements of
⋃

λ∈(a/[a,a])∗
S(a)λ.

Lemma Fa(Fract S(a)) = D(a)−1S(a).

Proof The inclusion ⊃ is immediate. For the reverse inclusion, let â denote the almost
ad-algebraic hull of a. Any ad a module is automatically an ad â module and we can write
â = r ⊕ n, where ad r acts reductively and ad n acts nilpotently. Moreover r = s ⊕ z with
z the centre of r and s semisimple. Let ∆ be the set non-zero roots of s with respect to
a Cartan subalgebra. Given x ∈ â, write X = ad x. Let M ⊂ Fa (Fract S(a)) be a finite
dimensional submodule.

Set I = {a ∈ S(a)|aM ⊂ S(a)}. An element of I is a common denominator of the
elements of M , which we simply call a denominator of M . We must show that I∩D(a) 6= ∅.
Since M is a finite sum of its cyclic submodules we can assume M cyclic.

Step 1 Since M is finite dimensional, I is non-zero. Again I is an ideal of S(a) and
is ad â stable, since M is an ad â module. Since n is a finite dimensional nilpotent ideal
of â acting by locally nilpotent derivations, one obtains In 6= 0. Thus we can choose a
denominator of M to lie in J := In. Let K denote the set of z semi-invariant elements of
J .
Step 2 Now suppose that c is an X eigenvector, so then c divides Xc. Decompose c as
a product of its irreducible factors ci with appropriate multiplicites. Since S(a) is factorial
it follows that ci divides Xci. Yet deg Xci 6 deg ci, so ci is again an X eigenvector.
Moreover since the base field is of characteristic zero if X annihilates c, then it annihilates
ci. Notice that this also holds if X is replaced by a collection of elements.
Step 3 Let ξ be a cyclic generator for M . We can write ξ = a−1b. Then Xξ =
−a−2(Xa)b + a−1(Xb). Repeating this argument and using the finite dimensionality of
M , shows that there exists n ∈ N such that an ∈ I.
Step 4 Take X = ad x : x ∈ â. Suppose ξ ∈ Fract S(a) satisfies Xξ = µξ, for some µ
scalar. Write ξ = a−1b, with a, b coprime. Then a(Xb) = (Xa)b + µab and since S(a) is
factorial, a divides Xa. Then as in step 2, we obtain Xa = λa. In particular, λ = 0 if X
is nilpotent.
Step 5 Let S be a simple r submodule of M . Since z acts by scalars on S, it follows from
steps 1 and 4 that we can choose a denominator of S to be a z semi-invariant element of J .

Fix α ∈ ∆ and set X = ad xα. Fix a cyclic generator ξ ∈ S, satisfying Xξ = 0. By step
5 we can write ξ = a−1b with a ∈ K. Eliminating common factors we can assume that
a, b are coprime with a being z + n semi-invariant. Then by step 4, one has Xa = 0. Then
by step 3, S admits a denominator which is annihilated by X and is z + n semi-invariant.



INVARIANTS AND SLICES 53

Since α ∈ ∆ is arbitrary, when we write ξ ∈ S as a−1b, with a, b coprime, it follows from
step 2, that a is a semi-invariant, that is lies in D(a).

Since r is reductive, M is a direct sum of its simple submodules, so this completes the
proof. ¤

A.2 We may now obtain Dixmier’s result mentioned on 2.5.1.
Take g, p, Ṽ as in 2.5.1, and recall that p⊕ Ṽ = g. Consequently, S(g) ⊂ S(p)⊗S(Ṽ ) ⊂

(Fract S(p))Y (g) by 2.5.1 (∗), and so D(p)−1S(g) ⊂ (Fract S(p))Y (g). Now ad p acts
locally finitely on S(g) and hence locally finitely on the left hand side. On the other hand,
the multiplication map Fract S(p)⊗ Y (g) → (Fract S(p))Y (g) is injective (via the discus-
sion in 2.5.1) and so Fp(Fract S(p)Y (g)) = Fp(Fract S(p))Y (g) = (D(p)−1S(p))Y (g) ⊂
D(p)−1S(g). Recalling that D(p)−1 =

⋃
n∈N dn, we can write D(p)−1S(g) simply as S(g)d.

We have proved the

Corollary (Dixmier)
S(g)d = S(p)dY (g).

A.3 A more rapid though less elementary proof of A.1 obtains from the following result
of Dixmier, Duflo and Vergne [16].

Theorem Let a be a finite dimensional Lie algebra. Any non-zero ad a invariant ideal I
of S(a) contains a non-zero semi-invariant element.

Remark. Let M be a finite dimensional ad a invariant subspace of Fa(Fract S(a)).
Observe that the set {a ∈ S(a) aM ⊂ S(a)} is a non-zero ad a invariant ideal I of S(a)¿
Apply the conclusion of the theorem to I.

A.4 Actually, Dixmier also proved an enveloping algebra version of A.2 basically by
explicit computation. One can obtain this latter result of Dixmier as above using the
following result of C. Moeglin [54].

Theorem Let a be a finite dimensional Lie algebra. Any non-zero two-sided ideal I of
U(a) meets its semi-centre Sz(a).

Moeglin’s proof of this theorem uses Duflo’s classification of minimal primitive ideals
(see [15, Chap. 10] and as a consequence, is rather long and complicated. One might hope
to shorten it using A.3 but this is not immediate. The difficulty is the following.

Let I be as in the hypothesis of the Moeglin’s theorem. Define â as in A.1. Just as in
Step 1 of A.1, it follows that In 6= 0. Since r is reductive, In and grF In are isomorphic
as r modules. Thus, to prove Moeglin’s theorem, it suffices to show that grF In admits
a one-dimensional r module. By A.3 it follows that (grF I)n admits a one dimensional r
module. With respect to the canonical filtration F of U(a), one has grF In ⊂ (grF I)n.
However this inclusion is generally not an equality.
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Moeglin used the above theorem to prove a further important result, namely that every
completely prime primitive ideal of U(sl(n)) is induced [55]. This fails for g semisimple in
general, yet can be replaced by the conjecture [1, 7.13] that if a completely prime ideal is
rigid (that is not induced) then it is completely rigid (not minimal over an induced ideal).
The point is that completely rigid primitive ideals are relatively easy to classify. They
come in “coherent families” [1, Lemma 6.4] and such families are identifiable by the simple
W module M spanned by their associated Goldie rank polynomials. Indeed let Wπ′ be
the Weyl subgroup generated by a subset π′ of the set π of simple roots. Then the family
consists of completely rigid ideals if and only if M cannot be generated by a simple Wπ′

module with π′ ( π.

A.5 Fauquant-Millet [20] obtained a quantized enveloping algebra version of A.2 again
by explicit computation. To avoid this as above one would need the following genealization
of Moeglin’s theorem which we state as a conjecture.

Let H be a Hopf algebra. In particular H admits a coproduct ∆ and an antipode σ. We
recall that ∆ is an algebra homomorphism of H to H⊗H and we write ∆(h) =

∑
h(1)⊗h(2)

using the Sweedler sum convention. Again σ is an algebra endomorphism of H. Then one
may define an adjoint action of H on itself by

(ad h)h′ :=
∑

h(1)h
′σ(h(2)), ∀h, h′ ∈ H.

One may check for example the ad-invariant elements of H form its centre Z(H) and
that a left or right ideal of I is two sided if and only if it is ad-invariant.

Conjecture Let H be a Hopf algebra. Any non-zero two-sided ideal I of H admits a
non-zero ad H eigenvector.

Remark. M. Gorelik has pointed out (see [39, 7.12]) that this holds for the Drinfeld-
Jimbo quantized enveloping algebra Uq(g). For the result of Fauquant-Millet mentioned
above we would like to know that this also holds for the quantized enveloping algebra Uq(p)
of a parabolic subalgebra p, specifically the parabolic described in A.2.

A.6 Take p = g⊕a as in 2.9.6. In principle one may use the Rais theorem to compute both
index p and codim psing. However this may not be too easy in practice. In [3, Corollary
to Theorem 1.3] Bolsinov claims that codim psing ≥ 2 if g is a classical simple Lie algebra
and a is a simple g module. This seems to have been verified case by case along the lines
indicated in 2.9.8.

Non-singularity can fail if a is not a simple g module. The example below was obtained
following a suggestion of V. Kac.

Take g to be sl(n) and a to be n copies of its fundamental module Cn. The action of g
on S(a) admits an invariant d of degree n which can be viewed as the determinant of the
matrix formed by the n copies of the fundamental module Cn.

Adopt the notation of 2.9.6.
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Lemma.
(i) index p = 1.
(ii) S(p) = C[d].
(iii) codim psing = 1.
(iv) the fundamental semi-invariant of p is dn−1.

Proof. Take a ∈ a∗ in general position. One checks that Stabga = {0}. Indeed in the
matrix presentation of a indicated above, it is enough that a to be non-zero on all diagonal
entries for it to admit a trivial stabilizer. Thus the SL(n) orbits in a∗r have codimension
one. Consequently index p = index ρ = 1, by 2.9.6 (iii).

One obtains GKdim Y (p) ≤ 1 from (i). Thus the elements of Y (p) are algebraic over
C[d]. Taking account of the C∗ action coming from the action of GL(n) on a gives (ii).

Let pp denote the fundamental semi-invariant of p. Since p is semi-invariant free the
Ooms-van den Bergh sum rule [57, Prop. 1.4] gives deg pp = c(p) − n = n(n − 1), by (i)
and (ii). This gives (iii) and since pp is homogeneous of degree n we also obtain (iv). ¤

Remark. At least for n = 2 it is easy enough to check (iv) by explicit computation.

A.7 Let a be a finite dimensional Lie algebra. Fix a basis {xi}n
i=1 for a and let {ξi}n

i=1

be a dual basis for a∗. Define the structure constants {ck
i,j : i, j, k = 1, 2, . . . , n} for a by

[xi, xj ] =
n∑

k=1

ck
i,jxk.

Let a act on ∧∗a∗ through transposition and the Leibnitz rule. Set

Ψ(ξk) =
∑

1≤i<j≤n

ck
i,j(ξi ∧ ξj).

Observe that
n∑

k=1

xk ⊗Ψ(ξk) =
n∑

i,j=1

xixj ⊗ (ξi ∧ ξj), (∗)

where the left hand factors are taken in the enveloping algebra.
From the Jacobi identities it follows that Ψ is an a module map and hence extends to a

homomorphism of S(a∗) → ∧∗a∗ of a algebras.

A.8 Let g be a semisimple Lie algebra. In the notation of 2.2.1, we define Im,λ(x) =
trV (λ)xm,∀m ∈ N, λ ∈ P+. The Weyl character formula implies that the ψ(Im,λ) : m ∈
N, λ ∈ P+ span S(h∗)W . Then by the Chevalley theorem (2.2.1) it follows that the Im,λ :
m ∈ N, λ ∈ P+ span S(g)G. Let S(g)+ denote the augmentation ideal of S(g). Apply the
notation of A.7 to g.

Lemma. Ψ(S(g)G
+) = 0.
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Proof. Written out in terms of bases one has

Im,λ =
n∑

i1,i2,...,im=1

(trV (λ)xi1 . . . xim)ξi1 . . . ξim .

From the definition of Ψ, the fact that it is an algebra map and A.7 (∗) we obtain

Ψ(Im,λ) =
n∑

i1,i2,...,i2m=1

(trV (λ)xi1 . . . xi2m)ξi1 ∧ . . . ∧ ξi2m .

Assume m ≥ 1. Then the right hand side above vanishes because trace is cyclically sym-
metric whereas the wedge product of an even number of factors is cyclically antisymmetric.
Hence the assertion of the lemma.

¤

A.9 In the above identify ξi with ∂/∂xi and hence S(g∗) with the algebra of constant
coefficient differential operators acting on S(g). Given f ∈ S(g) let f(0) denote its value
at 0 ∈ g∗. Then given ∂ ∈ S(g∗) set

〈∂, f〉 = (∂f)(0).

The subspace H ⊂ S(g) of harmonic functions is defined by

H := {a ∈ S(g)|∂a = 0,∀∂ ∈ S(g∗)G
+}.

Lemma. H is the orthogonal of S(g∗)S(g∗)G
+ in S(g∗) with respect to 〈, 〉.

Proof. It is immediate that
〈S(g∗)S(g∗)G

+,H〉 = 0.

On the other hand if h /∈ H, then there exists ∂ ∈ S(g∗)G
+ such that ∂h 6= 0 and so there

exists ∂′ ∈ S(g∗) such that ∂′∂h is a non-zero scalar necessarily equal to 〈∂′∂, h〉, which is
therefore non-zero, as required.

¤

A.10 Let Sm denote the permutation group on m letters. Identify ∧mg∗ with (∧mg)∗
through the pairing

〈(ξj1 ∧ . . . ∧ ξjm), (xi1 ∧ . . . ∧ xim)〉 =
∑

σ∈Sm

sg(σ)
m!

m∏

r=1

〈ξjr , xσ(ir)〉.

Identify S(g) with the graded dual of S(g∗). Let Ψ∗ : ∧(g) → S(g) be defined by
transport of structure.

Lemma. Im Ψ∗ ⊂ H.

Proof. Since Ψ is an algebra map this follows from Lemmas A.8 and A.9. ¤
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Remark. This result is due to Kostant [46, Thm. 3.4], though with a different proof.
Kostant has asked if one can determine the precise image.

A.11 Define ω ∈ g⊗ ∧2g by

ω =
∑

1≤i<j≤n

[xi, xj ]⊗ (ξi ∧ ξj) =
n∑

k=1

xkΨ(ξk).

Lemma. For all m ∈ N+, one has

ωm =
∑

1≤i1<i2<...<i2m≤n

Ψ∗(xi1 ∧ . . . ∧ xi2m)⊗ ξi1 ∧ . . . ∧ ξi2m .

In particular
ωm ∈ H ⊗ ∧2mg∗.

Proof. One has

〈ωm, xi1 ∧ . . . ∧ xi2m〉 =
∑n

j1...jm=1〈Ψ(ξj1 . . . ξjm), xi1 ∧ . . . ∧ xi2m〉xj1 . . . xjm ,

=
∑n

j1...jm=1〈ξj1 . . . ξjm , Ψ∗(xi1 ∧ . . . ∧ xi2m〉xj1 . . . xjm ,

= Ψ∗(xi1 ∧ . . . ∧ xi2m).

Hence the assertion. The last part follows from A.10. ¤

A.12 It is clear from 2.2.2.7 (∗), that a non-scalar element of cannot divide an element
of H. In view of A.11, it follows that the fundamental semi-invariant of a semisimple Lie
algebra is scalar. Of course we knew this already but the above proof has in principle more
mileage to be extracted out of it. For example take p as in A.6 with g semisimple and a
a finite dimensional g module. One possibility to show codima∗ a∗s 6= 1 is via an adapted
pair as described in 2.9.7. An alternative is to show that the largest common factor of the
largest non-vanishing minors of the matrix with entries describing the action of g on a, is
scalar. Now exactly as in the case of the fundamental semi-invariant, such a factor must
be a semi-invariant for the action of G on S(a).

Now suppose a is the adjoint representation. Then our previous result implies that
the above semi-invariant is indeed scalar and so codima∗ a∗s ≥ 2. (By contrast in A.6 we
exhibited an example for which this semi-invariant was invariant and non-scalar.)

To show that p is non-singular it remains to show (cf 2.9.7) that ι−1(a∗r) ⊂ p∗reg.
By our hypothesis there exists a g module isomorphism ι : g∗ → a∗.
Adopt the notation of 2.9.6. Take x ∈ g∗reg and set a := ι(x). Then Stabgx = Stabga =:

g(a) and has dimension rank g. Then index g(a) = rank g, by 2.7.7. We conclude that g(a)
is commutative and so p is non-singular by the discussion in the first part of 2.9.8.

We remark that index ρ = rank g. In particular it follows from 2.9.6 (ii) that index p =
2 rank g.
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[7] N. Bourbaki, Éléments de mathématique. (French) [Elements of mathematics] Groupes et algèbres de
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