THE CENTRE OF A SIMPLE P-TYPE LIE SUPERALGEBRA.

MARIA GORELIK

ABSTRACT. We describe the centre of a simple Lie superalgebra of type P(n). The description is based on the notion of anticentre.

Keywords and phrases: Lie superalgebra, universal enveloping algebra, adjoint action. 2000 Mathematics Subject Classification 17B20, 17B35.

The author was partially supported by TMR Grant No. FMRX-CT97-0100 and Koshland Scholar award. Research at MSRI was supported in part by NSF grant DMS-9701755.

1. INTRODUCTION

1.1. The Lie superalgebra $\mathfrak{g} := P(n-1)$ is described in [K1]. It consists of the matrices of the block form

$$\begin{pmatrix} a & \mid & b \\ -- & - & -- \\ c & \mid & -a^T \end{pmatrix}$$

where a, b, c are $n \times n$ -matrices over a base field k of characteristic zero such that a is traceless, b is symmetric and c is skew-symmetric. The even part $\mathfrak{g}_{\overline{0}}$ consists of the matrices with b = c = 0 and the odd part $\mathfrak{g}_{\overline{1}}$ consists of the matrices with a = 0. The Lie bracket on \mathfrak{g} is given by the formula [x, y] = xy - yx if x or y is even and [x, y] = xy + yx if both x and y are odd. The Lie superalgebra P(n-1) is simple for $n \geq 3$; its even part $\mathfrak{g}_{\overline{0}}$ is a simple Lie algebra $\mathfrak{sl}(n)$. The Lie superalgebra \mathfrak{g} admits also a \mathbb{Z} -grading $\mathfrak{g} = \mathfrak{g}_{-1} \oplus \mathfrak{g}_0 \oplus \mathfrak{g}_1$ where \mathfrak{g}_0 coincides with $\mathfrak{g}_{\overline{0}}, \mathfrak{g}_1$ consists of the matrices with a = b = 0 and \mathfrak{g}_{-1} consists of the matrices with a = c = 0. The last grading induces a \mathbb{Z} -grading on the universal enveloping superalgebra $\mathcal{U}(\mathfrak{g})$.

The central elements of the *P*-type Lie superalgebras were investigated by Scheunert in [Sch]. It was shown that any central element without constant term is of degree -n(with respect to the \mathbb{Z} -grading above) and its order is at least $\frac{1}{2}n(n+1)$. The first statement has the following important consequences. First, it shows that the centre $\mathcal{Z}(\mathfrak{g})$ of $\mathcal{U}(\mathfrak{g})$ is highly degenerate: the product of any two central elements without constant term vanishes. Second, this implies that such central elements annihilate all completely reducible representations. For n = 3 Scheunert constructed the lowest-order central element (of order 6).

1.2. Our goal is to determine the centre $\mathcal{Z}(\mathfrak{g})$. It turns out that for *P*-type Lie superalgebras the structure of the centre $\mathcal{Z}(\mathfrak{g})$ is similar to the structure of the *anticentre* $\mathcal{A}(\mathfrak{g})$. Recall that the even elements of the centre $\mathcal{Z}(\mathfrak{g})$ commute with all element of $\mathcal{U}(\mathfrak{g})$ and the odd elements of $\mathcal{Z}(\mathfrak{g})$ commute with the even elements of $\mathcal{U}(\mathfrak{g})$ and anticommute with the odd ones. By contrast, the odd elements of the anticentre $\mathcal{A}(\mathfrak{g})$ commute with all element of $\mathcal{U}(\mathfrak{g})$ and the even elements of $\mathcal{A}(\mathfrak{g})$ commute with the even elements of $\mathcal{U}(\mathfrak{g})$ and anticommute with the odd ones. In the situation when any even element of the Lie superalgebra $\mathfrak{p} = \mathfrak{p}_{\overline{0}} \oplus \mathfrak{p}_{\overline{1}}$ annihilates the one dimensional module $\Lambda^{\text{top}}\mathfrak{p}_{\overline{1}}$, the anticentre $\mathcal{A}(\mathfrak{p})$ can be easily determined — see [G1]. Namely, there is an explicit construction of a linear isomorphism from the centre $\mathcal{Z}(\mathfrak{p}_{\overline{0}})$ to the anticentre $\mathcal{A}(\mathfrak{p})$ and the image of $\mathcal{A}(\mathfrak{p})$ in the symmetric algebra $\mathcal{S}(\mathfrak{p})$ is equal to $\Lambda^{\text{top}}\mathfrak{p}_{\overline{1}}\mathcal{S}(\mathfrak{p}_{\overline{0}})^{\mathfrak{p}_{\overline{0}}}$.

Since $\mathfrak{g}_{\overline{0}}$ is a simple Lie algebra $\mathfrak{sl}(n)$, $\Lambda^{\operatorname{top}}\mathfrak{p}_{\overline{1}}$ meets the above condition and the isomorphism $\phi' : \mathcal{Z}(\mathfrak{g}_{\overline{0}}) \to \mathcal{A}(\mathfrak{g})$ can be easily written down. Note that $\mathcal{A}(\mathfrak{g})$ lies in the homogeneous component $\mathcal{U}(\mathfrak{g})_{-n}$ since the image of $\mathcal{A}(\mathfrak{g})$ in the symmetric algebra $\mathcal{S}(\mathfrak{g})$ is equal to $\Lambda^{\operatorname{top}}\mathfrak{g}_{\overline{1}}\mathcal{S}(\mathfrak{g}_{\overline{0}})^{\mathfrak{g}_{\overline{0}}} = \Lambda^{\operatorname{top}}\mathfrak{g}_{1}\Lambda^{\operatorname{top}}\mathfrak{g}_{-1}\mathcal{S}(\mathfrak{g}_{\overline{0}})^{\mathfrak{g}_{\overline{0}}}$ and dim $\mathfrak{g}_{1} - \dim \mathfrak{g}_{-1} = -n$. Using the isomorphism ϕ' , we construct a linear isomorphism $\phi : \mathcal{Z}(\mathfrak{g}_{\overline{0}}) \to \mathcal{Z}(\mathfrak{g}) \cap \mathcal{U}(\mathfrak{g})_{-n}$. This provides a full description of $\mathcal{Z}(\mathfrak{g})$ since, due to Scheunert, $\mathcal{Z}(\mathfrak{g}) = k \oplus \mathcal{Z}(\mathfrak{g})_{-n}$ where $\mathcal{Z}(\mathfrak{g})_{-n} := \mathcal{Z}(\mathfrak{g}) \cap \mathcal{U}(\mathfrak{g})_{-n}$.

1.3. Remark that for other Lie superalgebras the structures of the centre and the anticentre are not so similar. However one might notice a certain connection. For instance, for a non-simple *P*-type Lie superalgebra GP(n-1) $(n \ge 3)$ (consisting of the block matrices of the same type as above but with an arbitrary matrix *a*) and for a Cartan type superalgebra W(n) $(n \ge 3)$ both centre and anticentre are trivial: the centre coincides with the base field— see [Sch], [Sh] and the anticentre is equal to zero ([G1]).

The sum of the centre and the anticentre is a subalgebra of $\mathcal{U}(\mathfrak{g})$ which we call *ghost* centre. Contrary to the case of basic classical Lie superalgebras where all central and anticentral elements are non-zero divisors, for $\mathfrak{g} = P(n-1)$ $(n \geq 3)$ one has $\mathcal{Z}(\mathfrak{g})_{-n}\mathcal{Z}(\mathfrak{g})_{-n} = \mathcal{Z}(\mathfrak{g})_{-n}\mathcal{A}(\mathfrak{g}) = \mathcal{A}(\mathfrak{g})\mathcal{A}(\mathfrak{g}) = 0$. Thus the ghost centre $\tilde{\mathcal{Z}}(\mathfrak{g}) := \mathcal{Z}(\mathfrak{g}) + \mathcal{A}(\mathfrak{g}) = k \oplus \mathcal{Z}(\mathfrak{g})_{-n} \oplus \mathcal{A}(\mathfrak{g})$ is an algebra with a trivial multiplication.

1.4. As in the cases of basic classical Lie superalgebras (that are the general linear, the special linear, and the orthosymplectic Lie superalgebras) we denote a lowest-order anticentral element by T (this is an element of $\mathcal{A}(\mathfrak{g})$ whose image in the symmetric algebra belongs to $\Lambda^{\text{top}}\mathfrak{g}_{\overline{1}}$, the above condition determines T up to a scalar). For a basic classical Lie superalgebra \mathfrak{p} the restrictions of Harish-Chandra projection P to the centre $\mathcal{Z}(\mathfrak{p})$ and to the anticentre $\mathcal{A}(\mathfrak{p})$ are injections. The image of $\mathcal{Z}(\mathfrak{p})$ is a subalgebra of the algebra of W-invariant polynomials $\mathcal{S}(\mathfrak{h})^{W}$ described in [K2], [S], [BZV]. The image of $\mathcal{A}(\mathfrak{p})$ is simply $t\mathcal{S}(\mathfrak{h})^{W}$ where t := P(T) takes the form

$$t = \prod_{\alpha \in \Delta_1^+} (\alpha^{\vee} + (\alpha, \rho)), \tag{1}$$

see [G1]. The element t is "in charge" of strong typicality. This means that for $\lambda \in \mathfrak{h}^*$ satisfying $t(\lambda) \neq 0$ the category of \mathfrak{p} representations whose central character coincides with the one of a simple module of the highest weight λ is equivalent to the the category of $\mathfrak{p}_{\overline{0}}$ representations with a certain central character (see [PS],[P],[G2]).

A specific feature of $\mathfrak{g} = P(n-1)$ is the lack of symmetry: the fact that the anticentral elements as well central elements without constant terms are homogeneous of degree -nreflects the fact that the dimensions of \mathfrak{g}_1 and \mathfrak{g}_{-1} are not equal (the difference is exactly -n). Since the Harish-Chandra projection of an element of non-zero degree vanishes, we substitute the Harish-Chandra projection by another map $P_{-n} : \mathcal{U}(\mathfrak{g})_{-n} \to \mathcal{S}(\mathfrak{h})$. The restrictions of this map to the centre $\mathcal{Z}(\mathfrak{g}) \cap \mathcal{U}(\mathfrak{g})_{-n}$ and to the anticentre $\mathcal{A}(\mathfrak{g})$ are again injections. Moreover both images are equal to $t\mathcal{S}(\mathfrak{h})^{W}$ where $t := P_{-n}(T)$ can be written in the form

$$t = \prod_{\alpha \in \Delta_0^+} (\alpha^{\vee} + (\alpha, \rho) - 1).$$
⁽²⁾

Observe that the linear factors of t correspond to the odd coroots in the formula (1) and to the even coroots in the formula (2). This difference is connected to the following fact: if x, y are odd elements of a basic classical Lie superalgebra of the opposite weights β and $-\beta$ respectively then [x, y] is proportional to the odd coroot β^{\vee} ; by contrast, if x, y are odd elements of $\mathfrak{g} = P(n-1)$ meeting the same condition then [x, y] is proportional to a certain *even* coroot (see (3)).

1.5. For a basic classical Lie superalgebra \mathfrak{p} a central (or anticentral) element z annihilates a Verma module of the highest weight λ iff $P(z)(\lambda) = 0$. Since $P(\mathcal{A}(\mathfrak{p})) = P(T)\mathcal{S}(\mathfrak{h})^{W}$ it follows that a Verma module annihilated by T is annihilated by any anticentral element. This last property remains true for $\mathfrak{g} = P(n-1)$; moreover, if a Verma module is annihilated by T then it is annihilated not only by all anticentral elements but also by all central elements without constant term (this immediately follows from Theorem 4.1 (iii)). However, the equality $P_{-n}(z)(\lambda) = 0$ does not force that $z \in \mathcal{Z}(\mathfrak{g})_n \cup \mathcal{A}(\mathfrak{g})$ annihilates a Verma module of the highest weight λ (see 4.3).

2. Preliminaries

2.1. Notation. Let $\mathfrak{g} = \mathfrak{g}_{\overline{0}} \oplus \mathfrak{g}_{\overline{1}}$ be a Lie superalgebra P(n-1) endowed with the \mathbb{Z} -grading described above. Extend this \mathbb{Z} -grading to the universal enveloping algebra $\mathcal{U}(\mathfrak{g})$ and denote by $\mathcal{U}(\mathfrak{g})_r$ $(r \in \mathbb{Z})$ the corresponding graded component. For any subspace N of $\mathcal{U}(\mathfrak{g})$ set $N_r := N \cap \mathcal{U}(\mathfrak{g})_r$. Denote by ad the adjoint action of $\mathcal{U}(\mathfrak{g})$ on itself.

For a superalgebra \mathfrak{p} denote its universal enveloping algebra by $\mathcal{U}(\mathfrak{p})$. Since $\mathfrak{g}_{\pm 1}$ are supercommutative pure odd Lie superalgebras, $\mathcal{U}(\mathfrak{g}_{\pm 1})$ is canonically isomorphic to the exterior algebra $\Lambda \mathfrak{g}_{\pm 1}$.

2.1.1. Retain notation of 1.1. Denote by \mathfrak{h} the set of diagonal matrices belonging to \mathfrak{g}_0 , by \mathfrak{n}_0^- (resp., \mathfrak{n}_0^+) the set of matrices whose upper-left block a is lower (resp., upper) triangular and both blocks b and c are equal to zero. Then $\mathfrak{g}_0 := \mathfrak{n}_0^- \oplus \mathfrak{h} \oplus \mathfrak{n}_0^+$ is a "standard" triangular decomposition of $\mathfrak{g}_0 \cong \mathfrak{sl}(n)$. As usual, it is convenient to present \mathfrak{h}^* as the quotient of the n dimensional vector space with a basis $\{\varepsilon_i\}_1^n$ by the one-dimensional subspace spanned by $\sum_{i=1}^{n} \varepsilon_i$. Denote by W the Weyl group of \mathfrak{g}_0 ; it acts on the set $\{\varepsilon_i\}_1^n$ by the permutations. Denote by (-, -) the canonical W-invariant bilinear form on \mathfrak{h}^* .

Set $\mathfrak{n}_1^+ := \mathfrak{g}_1$, $\mathfrak{n}_1^- := \mathfrak{g}_{-1}$ and $\mathfrak{n}^{\pm} := \mathfrak{n}_0^{\pm} + \mathfrak{n}_1^{\pm}$.

With this notation one has

$$\begin{array}{lll} \Delta_0^+ = \Omega(\mathfrak{n}_0^+) = & \{\varepsilon_i - \varepsilon_j\}_{1 \le i < j \le n}, \\ \Delta_1^+ = \Omega(\mathfrak{n}_1^+) = & \{-\varepsilon_i - \varepsilon_j\}_{1 \le i < j \le n}, \\ \Delta_1^- = \Omega(\mathfrak{n}_1^-) = & \{2\varepsilon_i; \varepsilon_i + \varepsilon_j\}_{1 \le i < j \le r} \end{array}$$

where $\Omega(N)$ stands for the multiset of \mathfrak{h} -weights of N. Set $\rho := \frac{1}{2} \sum_{\alpha \in \Delta_0^+} \alpha$.

For $r, s \in \{1, \ldots, 2n\}$ let $E_{r,s}$ be the $2n \times 2n$ matrix whose only non-zero entry is 1 at the place (r, s). For each pair (i, j) with $1 \le i < j \le n$ set

$$\begin{split} e_{\varepsilon_i - \varepsilon_j} &:= E_{i,j} - E_{n+j,n+i}, \\ f_{-\varepsilon_i + \varepsilon_j} &:= E_{j,i} - E_{n+i,n+j}, \\ (\varepsilon_i - \varepsilon_j)^{\vee} &= E_{i,i} - E_{j,j} - E_{n+i,n+i} + E_{n+j,n+j}, \\ x_{-\varepsilon_i - \varepsilon_j} &:= E_{n+j,i} - E_{n+i,j}, \\ y_{\varepsilon_i + \varepsilon_j} &:= E_{i,n+j} + E_{j,n+i}, \\ y_{2\varepsilon_i} &:= E_{i,n+i}. \end{split}$$

The set $\{e_{\alpha}\}_{\alpha\in\Delta_{0}^{+}}$ (resp., $\{f_{-\alpha}\}_{\alpha\in\Delta_{0}^{+}}$) forms a basis of \mathfrak{n}_{0}^{+} (resp., \mathfrak{n}_{0}^{-}) and the set $\{x_{\alpha}\}_{\alpha\in\Delta_{1}^{+}}$ (resp., $\{y_{\alpha}\}_{\alpha\in\Delta_{1}^{-}}$) forms a basis of \mathfrak{n}_{1}^{+} (resp., \mathfrak{n}_{1}^{-}). As always $(\varepsilon_{i} - \varepsilon_{j})^{\vee}$ is the coroot corresponding to $(\varepsilon_{i} - \varepsilon_{j})$ that is given by the formula $(\varepsilon_{i} - \varepsilon_{j})^{\vee}(\mu) = (\varepsilon_{i} - \varepsilon_{j}, \mu)$ for any $\mu \in \mathfrak{h}^{*}$. One has

$$[e_{\varepsilon_i - \varepsilon_j}, f_{-\varepsilon_i + \varepsilon_j}] = [x_{\varepsilon_i + \varepsilon_j}, y_{-\varepsilon_i - \varepsilon_j}] = (\varepsilon_i - \varepsilon_j)^{\vee}.$$
(3)

Denote by J the set of odd positive roots (that is Δ_1^+) with a fixed total order. For a subset $J' \subseteq J$ denote by $x_{J'}$ and $y_{J'}$ respectively the products $\prod_{\beta \in J'} x_{\beta}, \prod_{\beta \in J'} y_{-\beta}$ taken with respect to the total order. Set also

$$y_{I\setminus J} := \prod_{i=1}^{n} y_{-2\varepsilon_i},$$
$$y_I := y_{I\setminus J} y_J$$

Since \mathfrak{n}_1^{\pm} are supercommutative one has $y_I = \pm y_J y_{I\setminus J}$, $x_{J'} x_{J''} = \pm x_{J'\cup J''}$, $y_{J'} y_{J''} = \pm y_{J'\cup J''}$ if $J' \cap J'' = \emptyset$ and $x_{J'} x_{J''} = y_{J'} y_{J''} = 0$ if $J' \cap J'' \neq \emptyset$. Note that the elements $y_I, y_J, y_{I\setminus J}, x_J$ lie in $\mathcal{U}(\mathfrak{g})^{\mathfrak{h}}$. Moreover $x_J \in \Lambda^{\mathrm{top}} \mathfrak{n}_1^+, y_I \in \Lambda^{\mathrm{top}} \mathfrak{n}_1^-$ and, in particular, x_J, y_I are \mathfrak{g}_0 -invariant.

2.1.2. For $\mu \in \mathfrak{h}^*$ and a vector subspace $N \subset \mathcal{U}(\mathfrak{g})$ denote by $N|_{\mu}$ the corresponding \mathfrak{h} -weight subspace of N.

We identify $\mathcal{U}(\mathfrak{h})$ with $\mathcal{S}(\mathfrak{h})$. Define a twisted action of the Weyl group W on $\mathcal{S}(\mathfrak{h})$ by setting

$$w.p(\lambda) = p(w^{-1}(\lambda + \rho) - \rho)$$

for any $w \in W, p \in \mathcal{S}(\mathfrak{h}), \lambda \in \mathfrak{h}^*$.

Recall that the elements y_{β} ($\beta \in \Delta_1^-$) have degree -1 and the elements x_{β} ($\beta \in \Delta_1^+$) have degree 1; thus one has $\mathcal{U}(\mathfrak{g})_r = 0$ if $r < -\#\Delta_1^- = -\frac{n(n+1)}{2}$ or $r > \#\Delta_1^+ = \frac{n(n-1)}{2}$ (where # stands for the cardinality).

The universal enveloping algebra $\mathcal{U}(\mathfrak{g})$ admits the canonical filtration given by $\mathcal{F}^k(\mathcal{U}(\mathfrak{g})) = \mathfrak{g}^k$; the associated graded algebra is the symmetric algebra $\mathcal{S}(\mathfrak{g}) = \mathcal{S}(\mathfrak{g}_0)\Lambda\mathfrak{g}_{\overline{1}}$. For any $u \in \mathcal{U}(\mathfrak{g})$ denote by gr u the image of u in the symmetric algebra $\mathcal{S}(\mathfrak{g})$.

2.1.3. Verma modules. For $\lambda \in \mathfrak{h}^*$ denote by k_{λ} a one-dimensional $(\mathfrak{h} + \mathfrak{n}^+)$ -module such that $\mathfrak{n}^+ v = 0$ and $hv = \lambda(h)v$ for any $h \in \mathfrak{h}, v \in k_{\lambda}$. Define a Verma module $\widetilde{M}(\lambda)$ by setting $\widetilde{M}(\lambda) := \mathcal{U}(\mathfrak{g}) \otimes_{\mathcal{U}(\mathfrak{b})} k_{\lambda}$. Call the image of a fixed non-zero element of k_{λ} in $\widetilde{M}(\lambda)$ a canonical generator of $\widetilde{M}(\lambda)$. Similarly, denote by $M(\lambda)$ a Verma \mathfrak{g}_0 -module of the highest weight λ .

Suppose that $\lambda \in \mathfrak{h}^*$ is such that $(\lambda + \rho, \alpha)$ is a positive integer for some $\alpha \in \Delta_0^+$. Let v be a canonical generator of $\widetilde{M}(\lambda)$; then $\mathcal{U}(\mathfrak{g}_0)v \cong M(\lambda)$ contains an \mathfrak{n}_0 -invariant vector uv (with $u \in \mathcal{U}(\mathfrak{g}_0)$) of the weight $s_{\alpha}.\lambda$ (here $s_{\alpha} \in W$ is the reflection corresponding to the root α). The vector uv is \mathfrak{n} -invariant because \mathfrak{n}_1^+ is ad \mathfrak{g}_0 -invariant. Since $u \in \mathcal{U}(\mathfrak{g}_0)$ is a non-zero divisor in $\mathcal{U}(\mathfrak{g})$, the vector uv generates a submodule isomorphic to $\widetilde{M}(s_{\alpha}.\lambda)$. Hence $\widetilde{M}(s_{\alpha}.\lambda) \subset \widetilde{M}(\lambda)$.

Caution: The module $\widetilde{M}(\lambda)$ is never simple because $[y_{2\varepsilon_1}, \mathfrak{n}^+] \subset \mathfrak{n}^+$ and so for a canonical generator $v \in \widetilde{M}(\lambda)$ the subspace $\mathcal{U}(\mathfrak{g})(y_{2\varepsilon_1}v)$ is a proper submodule.

2.1.4. Projections P_+ , P. Denote by P_+ the projection $\mathcal{U}(\mathfrak{g}) \to \mathcal{U}(\mathfrak{n}^- + \mathfrak{h})$ with respect to the decomposition $\mathcal{U}(\mathfrak{g}) = \mathcal{U}(\mathfrak{n}^- + \mathfrak{h}) \oplus \mathcal{U}(\mathfrak{g})\mathfrak{n}^+$ and by P the Harish-Chandra projection $P: \mathcal{U}(\mathfrak{g}) \to \mathcal{U}(\mathfrak{h})$ with respect to the decomposition $\mathcal{U}(\mathfrak{g}) = \mathcal{U}(\mathfrak{h}) \oplus (\mathfrak{n}^-\mathcal{U}(\mathfrak{g}) + \mathcal{U}(\mathfrak{g})\mathfrak{n}^+)$. The restrictions of P_+ and P to the subalgebra $\mathcal{U}(\mathfrak{g})_0^{\mathfrak{h}}$ coincide and give an algebra homomorphism. Note that the restrictions of P_+ and P to the subalgebra $\mathcal{U}(\mathfrak{g})_0^{\mathfrak{h}}$ do not coincide and are not algebra homomorphisms — for instance, both y_J, x_J lie in $\mathcal{U}(\mathfrak{g})^{\mathfrak{h}}$ and $P(y_J) = 0$, but $P_+(y_J) = y_J$ and $P(x_J y_J) \neq 0$ by Lemma 3.1 below.

The inclusion $\mathcal{U}(\mathfrak{g})\mathfrak{n}^+\mathcal{U}(\mathfrak{h}) \subset \mathcal{U}(\mathfrak{g})\mathfrak{n}^+$ implies that

$$P_{+}(ab) = P_{+}(a)P(b), \quad \forall a \in \mathcal{U}(\mathfrak{g}), b \in \mathcal{U}(\mathfrak{g})_{0}^{\mathfrak{g}}.$$
(4)

2.2. Anticentre $\mathcal{A}(\mathfrak{g})$. The anticentre $\mathcal{A}(\mathfrak{g})$ can be defined as the set of invariants of $\mathcal{U}(\mathfrak{g})$ with respect to a twisted adjoint action: $\mathcal{A}(\mathfrak{g}) = \mathcal{U}(\mathfrak{g})^{\mathrm{ad'}\mathfrak{g}}$ where ad' is given by the formula

$$(\mathrm{ad}' g)u = gu - (-1)^{d(g)(d(u)+1)}ug$$

for all homogeneous $g \in \mathfrak{g}, u \in \mathcal{U}(\mathfrak{g})$ (here d(.) stands for the \mathbb{Z}_2 -degree of the element that is d(u) = 0 for $u \in \mathcal{U}(\mathfrak{g})_{\overline{0}}$ and d(u) = 1 for $u \in \mathcal{U}(\mathfrak{g})_{\overline{1}}$). Note that the odd elements of the anticentre $\mathcal{A}(\mathfrak{g})$ commute with all element of $\mathcal{U}(\mathfrak{g})$ and the even elements of $\mathcal{A}(\mathfrak{g})$ commute with the even elements of $\mathcal{U}(\mathfrak{g})$ and anticommute with the odd ones.

By Theorem 3.3 of [G1], gr $\mathcal{A}(\mathfrak{g}) = \Lambda^{\text{top}} \mathfrak{g}_{\overline{1}} \operatorname{gr}(\mathcal{Z}(\mathfrak{g}_0))$. This can be rewritten as

$$\operatorname{gr} \mathcal{A}(\mathfrak{g}) = \operatorname{gr}(x_J y_I \mathcal{Z}(\mathfrak{g}_0))$$

because gr $x_J y_I$ spans $\Lambda^{\text{top}} \mathfrak{g}_{\overline{1}}$. Since $\mathcal{A}(\mathfrak{g})$ is a graded subspace of $\mathcal{U}(\mathfrak{g})$, the elements of $\mathcal{A}(\mathfrak{g})$ have degree equal to #J - #I = -n. Therefore,

$$\mathcal{A}(\mathfrak{g}) = \mathcal{A}(\mathfrak{g})_{-n}.$$

3. Useful assertions.

The element

$$t := P(x_J y_J)$$

plays an important role in the description of the centre and seems to be instrumental in the study of representations of \mathfrak{g} .

3.1. **Proposition.** One has

$$t = \pm \prod_{\alpha \in \Delta_0^+} (\alpha^{\vee} + (\alpha, \rho) - 1).$$

Proof. The proof has two steps. As a first step, let us prove by induction that for all r = 2, ..., n one has

$$P\Big(\prod_{1 < j \le r} x_{-\varepsilon_1 - \varepsilon_j} \prod_{1 < j \le r} y_{\varepsilon_1 + \varepsilon_j}\Big) = \pm \prod_{1 < j \le r} \Big((\varepsilon_1 - \varepsilon_j)^{\vee} + j - 2 \Big).$$
(5)

For r = 2 the assertion immediately follows from the equality (3). For the induction step observe that

$$P\left(\prod_{1 < j \le r+1} x_{-\varepsilon_1 - \varepsilon_j} \prod_{1 < j \le r+1} y_{\varepsilon_1 + \varepsilon_j}\right) = \pm P\left(\prod_{1 < j \le r} x_{-\varepsilon_1 - \varepsilon_j} \cdot x_{-\varepsilon_1 - \varepsilon_{r+1}} \cdot y_{\varepsilon_1 + \varepsilon_{r+1}} \prod_{1 < j \le r} y_{\varepsilon_1 + \varepsilon_j}\right)$$
$$= \pm P\left(\prod_{1 < j \le r} x_{-\varepsilon_1 - \varepsilon_j} \left((\varepsilon_1 - \varepsilon_{r+1})^{\vee} - y_{\varepsilon_1 + \varepsilon_{r+1}} x_{-\varepsilon_1 - \varepsilon_{r+1}}\right) \prod_{1 < j \le r} y_{\varepsilon_1 + \varepsilon_j}\right)$$
(6)

It is easy to see that $\mathcal{U}(\mathfrak{n}^-)|_{\mu} \neq 0$ for $\mu = \sum_i c_i \varepsilon_i$ only if $c_s + c_{s+1} + \ldots + c_n \geq 0$ for all $s = 1, \ldots, n$. In particular, $\mathcal{U}(\mathfrak{n}^- + \mathfrak{h})$ does not contain a non-zero element of weight $(r-2)\varepsilon_1 + \varepsilon_2 + \ldots \varepsilon_r - \varepsilon_{r+1}$. Therefore the element $x_{-\varepsilon_1 - \varepsilon_{r+1}} \prod_{1 < j \leq r} y_{\varepsilon_1 + \varepsilon_j}$ belongs to $\mathcal{U}(\mathfrak{g})\mathfrak{n}^+$ and thus (6) implies

$$P\Big(\prod_{1$$

Taking into account that

$$(\varepsilon_1 - \varepsilon_{r+1})^{\vee} \prod_{1 < j \le r} y_{\varepsilon_1 + \varepsilon_j} = \prod_{1 < j \le r} y_{\varepsilon_1 + \varepsilon_j} ((\varepsilon_1 - \varepsilon_{r+1})^{\vee} + r - 1),$$

one obtains the required equality (5) by induction.

The second step of the proof is to show that for r = 1, ..., n - 1 the term

$$t_r := P\Big(\prod_{n-r \le i < j \le n} x_{-\varepsilon_i - \varepsilon_j} \prod_{n-r \le i < j \le n} y_{\varepsilon_i + \varepsilon_j}\Big)$$

is given by the formula

$$t_r = \pm \prod_{n-r \le i < j \le n} \left((\varepsilon_i - \varepsilon_j)^{\vee} + (\varepsilon_i - \varepsilon_j, \rho) - 1 \right).$$
(7)

We again proceed by induction. For r = 1 the equality (3) gives

$$t_1 = P(x_{-\varepsilon_{n-1}-\varepsilon_n}y_{\varepsilon_{n-1}+\varepsilon_n}) = (\varepsilon_{n-1}-\varepsilon_n)^{\vee} = \left((\varepsilon_{n-1}-\varepsilon_n)^{\vee} + (\varepsilon_{n-1}-\varepsilon_n,\rho) - 1\right)$$

as required.

Assume that (7) holds for some r < n. For $s = 1, \ldots, n-1$ let $\mathbf{n}_{(s)}^-$ (resp., $\mathbf{n}_{(s)}^+$) be the Lie subalgebra of \mathbf{n}^- (resp., \mathbf{n}^+) spanned by the elements $f_{-\varepsilon_i+\varepsilon_j}, y_{2\varepsilon_i}, y_{\varepsilon_i+\varepsilon_j}$ (resp., $e_{\varepsilon_i-\varepsilon_j}, x_{-\varepsilon_i-\varepsilon_j}$) with $n-s \leq i < j \leq n$. Set $X_{(r)} := \prod_{n-r \leq j \leq n} x_{-\varepsilon_{n-r-1}-\varepsilon_j}$. Let us show that $(\operatorname{ad} \mathbf{n}_{(r)}^-)X_{(r)} \in \mathbf{n}^-\mathcal{U}(\mathbf{g})$. Indeed, fix a pair (i, j) with $n-r \leq i < j \leq n$. The equality $(\operatorname{ad} f_{-\varepsilon_i+\varepsilon_j})X_{(r)} = 0$ immediately follows from the supercommutativity of \mathbf{n}^+ . Furthermore it is easy to see that a homogeneous element of degree m belonging to the algebra $\mathcal{U}(\mathbf{\mathfrak{h}}+\mathbf{n}_{(r+1)}^+)$ has a weight of the form $\sum_{j=n-r-1}^n c_j\varepsilon_j$ with $c_{n-r-1} \geq -m$. Combining the facts that the terms $(\operatorname{ad} y_{\varepsilon_i+\varepsilon_j})X_{(r)}, (\operatorname{ad} y_{2\varepsilon_i})X_{(r)}$ lie in $\mathcal{U}' := \mathcal{U}(\mathbf{n}_{(r+1)}^- + \mathbf{\mathfrak{h}} + \mathbf{n}_{(r+1)}^+)$, have degree r and weights of the form $(-(r+1)\varepsilon_{n-r-1} + \ldots)$, one concludes that these terms lie in $\mathbf{n}^-\mathcal{U}(\mathbf{g})$ because $\mathcal{U}' = \mathbf{n}_{(r+1)}^-\mathcal{U}' \oplus \mathcal{U}(\mathbf{n}_{(r+1)}^+ + \mathbf{\mathfrak{h}})$ and the rth graded component of the algebra $\mathcal{U}(\mathbf{n}_{(r+1)}^+ + \mathbf{\mathfrak{h}})$ does not contain non-zero elements of the weights of the above form.

One has

$$t_{r+1} = P\left(\prod_{n-r-1 \le i < j \le n} x_{-\varepsilon_i - \varepsilon_j} \prod_{n-r-1 \le i < j \le n} y_{\varepsilon_i + \varepsilon_j}\right)$$

=\pm P\left(X_{(r)} \Pm \Pi_{n-r \left(s < j \left(s) n} x_{-\varepsilon_i - \varepsilon_j} \Pm \Pi_{n-r \left(s < j \left(s) n} y_{\varepsilon_i + \varepsilon_j} \Pm \Pi_{n-r \left(s) < n} y_{\varepsilon_i - r-1 + \varepsilon_j}\right) (8)
=\pm P\left(X_{(r)} (t_r + \sum_s u_s \Pm u_s) \Pm \Pi_{n-r \left(s) < n} y_{\varepsilon_{n-r-1} + \varepsilon_j}\right) (8)

where each term u_s^- belongs to $\mathbf{n}_{(r)}^-$ and u_s are some elements of $\mathcal{U}(\mathbf{g})$. As we have shown above $(\operatorname{ad} \mathbf{n}_{(r)}^-)X_{(r)}$ lies in $\mathbf{n}^-\mathcal{U}(\mathbf{g})$ and thus $P(X_{(r)}u_s^-u_s\prod_{n-r\leq j\leq n}y_{\varepsilon_{n-r-1}+\varepsilon_j})=0$ for any index s. Therefore

$$t_{r+1} = \pm P \left(X_{(r)} t_r \prod_{n-r \le j \le n} y_{\varepsilon_{n-r-1} + \varepsilon_j} \right)$$

$$= \pm P \left(X_{(r)} \prod_{n-r \le i < j \le n} \left((\varepsilon_i - \varepsilon_j)^{\vee} + (\varepsilon_i - \varepsilon_j, \rho) - 1 \right) \prod_{n-r \le j \le n} y_{\varepsilon_{n-r-1} + \varepsilon_j} \right)$$

$$= \pm P \left(\prod_{n-r \le j \le n} x_{-\varepsilon_{n-r-1} - \varepsilon_j} \prod_{n-r \le j \le n} y_{\varepsilon_{n-r-1} + \varepsilon_j} \right) \prod_{n-r \le i < j \le n} \left((\varepsilon_i - \varepsilon_j)^{\vee} + (\varepsilon_i - \varepsilon_j, \rho) - 1 \right)$$

The formula (5) implies that

$$P\left(\prod_{n-r\leq j\leq n} x_{-\varepsilon_{n-r-1}-\varepsilon_j} \prod_{n-r\leq j\leq n} y_{\varepsilon_{n-r-1}+\varepsilon_j}\right) = \prod_{n-r\leq j\leq n} \left((\varepsilon_{n-r-1}-\varepsilon_j)^{\vee} + j - (n-r-1) - 1 \right)$$
$$= \prod_{n-r\leq j\leq n} \left((\varepsilon_{n-r-1}-\varepsilon_j)^{\vee} + (\varepsilon_{n-r-1}-\varepsilon_j,\rho) - 1 \right)$$

Hence

$$t_{r+1} = \pm \prod_{n-r-1 \le i < j \le n} \left((\varepsilon_i - \varepsilon_j)^{\vee} + (\varepsilon_i - \varepsilon_j, \rho) - 1 \right)$$

as required. Finally observing that $t = \pm t_{n-1}$ one completes the proof.

3.2. **Proposition.** For any Zariski dense subset Ω of \mathfrak{h}^* one has

$$\bigcap_{\lambda \in \Omega} \operatorname{Ann}_{\mathcal{U}(\mathfrak{g})} \tilde{M}(\lambda) = 0.$$

Proof. Let Ω be a Zariski dense subset of \mathfrak{h}^* . By Proposition 3.1, $P(x_J y_J)$ is a non-zero polynomial and so the set $\Omega' := \Omega \cap \{\lambda \in \mathfrak{h}^* | P(x_J y_J)(\lambda) \neq 0\}$ is also Zariski dense in \mathfrak{h}^* . Assume that $N := \bigcap_{\lambda \in \Omega'} \operatorname{Ann} \widetilde{M}(\lambda)$ is non-zero. One has $\mathcal{U}(\mathfrak{g}) = \mathcal{U}(\mathfrak{g}_0 + \mathfrak{n}_1^-)\mathcal{U}(\mathfrak{n}_1^+) = \mathcal{U}(\mathfrak{g}_0 + \mathfrak{n}_1^-)\Lambda\mathfrak{n}_1^+$. Since N is a right ideal, it contains a non-zero element of the form ux_J where $u \in \mathcal{U}(\mathfrak{g}_0 + \mathfrak{n}_1^-)$. Let λ be an element of Ω' and v be a canonical generator of $\widetilde{M}(\lambda)$. Then

$$0 = ux_J(\mathcal{U}(\mathfrak{g}_0)y_Jv) = u\mathcal{U}(\mathfrak{g}_0)x_Jy_Jv = u\mathcal{U}(\mathfrak{g}_0)P(x_Jy_J)(\lambda)v.$$

Note that $P(x_J y_J)(\lambda)v \in k^* v$ since $\lambda \in \Omega'$ and thus the space $\mathcal{U}(\mathfrak{g}_0)P(x_J y_J)(\lambda)v$ is isomorphic to a Verma \mathfrak{g}_0 -module $M(\lambda)$. Writing $u = \sum_{S \subseteq I} y_S u_S$ where $u_S \in \mathcal{U}(\mathfrak{g}_0)$, one concludes that each u_S annihilates $M(\lambda)$. However, by [D],

$$\bigcap_{\lambda \in \Omega'} \operatorname{Ann}_{\mathcal{U}(\mathfrak{g}_0)} M(\lambda) = 0$$

and thus all terms u_S are equal to zero. This gives the required contradiction.

3.3. The map P_{-n} . The Harish-Chandra projection P annihilates the homogeneous component $\mathcal{U}(\mathfrak{g})_r$ for any $r \neq 0$. In particular, $P(\mathcal{Z}(\mathfrak{g})_{-n}) = 0$ and thus P itself is useless for a description of the centre $\mathcal{Z}(\mathfrak{g})$. For this purpose it is convenient to use a map $P_{-n} : \mathcal{U}(\mathfrak{g})_{-n}^{\mathfrak{h}} \to \mathcal{U}(\mathfrak{h})$ constructed below. For $a \in \mathcal{U}(\mathfrak{g})_{-n}^{\mathfrak{h}}$ one has $y_J a \in$ $\mathcal{U}(\mathfrak{g})^{\mathfrak{h}} \cap \mathcal{U}(\mathfrak{g})_{\#\Delta_1^-} = y_I \mathcal{U}(\mathfrak{g}_0)^{\mathfrak{h}}$. This allows us to define the linear map $P_{-n} : \mathcal{U}(\mathfrak{g})_{-n}^{\mathfrak{h}} \to \mathcal{U}(\mathfrak{h})$ by the condition

$$P_+(y_J a) = y_I P_{-n}(a)$$

for any $a \in \mathcal{U}(\mathfrak{g})_{-n}^{\mathfrak{h}}$.

3.3.1. **Lemma.** The restrictions of P_{-n} to $\mathcal{Z}(\mathfrak{g})_{-n}$ and to $\mathcal{A}(\mathfrak{g})$ are (vector space) monomorphisms.

Proof. Take a non-zero element $a \in \mathcal{Z}(\mathfrak{g})_{-n} \cup \mathcal{A}(\mathfrak{g})_{-n}$. Combining Proposition 3.1 and Proposition 3.2 one concludes the existence of $\lambda \in \mathfrak{h}^*$ such that $P(x_J y_J)(\lambda) \neq 0$ and $a\widetilde{M}(\lambda) \neq 0$. Let v be a canonical generator of $\widetilde{M}(\lambda)$; the condition $P(x_J y_J)(\lambda) \neq 0$ implies that $x_J y_J v \in k^* v$ and so the vector $y_J v$ generates $\widetilde{M}(\lambda)$. Since a is either central or anticentral, $a\mathcal{U}(\mathfrak{g}) = \mathcal{U}(\mathfrak{g})a$ and so the condition $a\widetilde{M}(\lambda) \neq 0$ forces $a(y_J v) \neq 0$. One has $a(y_J v) = P_+(ay_J)v = \pm y_I P_{-n}(a)v$. Hence $P_{-n}(a) \neq 0$ as required. \Box 3.3.2. Set

$$T := (\operatorname{ad}' x_J) y_I.$$

Lemma. For any $a \in \mathcal{Z}(\mathfrak{g})_{-n} \cup \mathcal{A}(\mathfrak{g})$ one has

$$P_{+}(a)t = P_{+}(T)P_{-n}(a).$$
(9)

Proof. Any $a \in \mathcal{Z}(\mathfrak{g})_{-n} \cup \mathcal{A}(\mathfrak{g})$ commutes with the term $x_J y_J$ and so $P_+(x_J y_J a) = P_+(a)P(x_J y_J)$ by (4). On the other hand,

$$P_{+}(x_{J}y_{J}a) = P_{+}(x_{J}P_{+}(y_{J}a)) = P_{+}(x_{J}y_{I}P_{-n}(a)) = P_{+}(x_{J}y_{I})P_{-n}(a)$$

Therefore $P_+(x_Jy_I)P_{-n}(a) = P_+(a)P(x_Jy_J) = P_+(a)t$ for any $a \in \mathcal{Z}(\mathfrak{g})_{-n} \cup \mathcal{A}(\mathfrak{g})$. It is easy to see from the definition of ad' that $P_+(T) = P_+(x_Jy_I)$. The assertion follows. \Box

4. Main result

Recall that $\mathcal{Z}(\mathfrak{g}) = k \oplus \mathcal{Z}(\mathfrak{g})_{-n}$ (see [Sch]). In this section we prove the following theorem which describes $\mathcal{Z}(\mathfrak{g})_{-n}$ and $\mathcal{A}(\mathfrak{g}) = \mathcal{A}(\mathfrak{g})_{-n}$.

4.1. **Theorem.** i) The map $\phi : \mathcal{Z}(\mathfrak{g}_0) \to \mathcal{U}(\mathfrak{g})$ given by $z \mapsto (\operatorname{ad} x_J)(y_I z)$ induces a linear isomorphism $\mathcal{Z}(\mathfrak{g}_0) \xrightarrow{\sim} \mathcal{Z}(\mathfrak{g})_{-n}$.

ii) The map $\phi' : \mathcal{Z}(\mathfrak{g}_0) \to \mathcal{U}(\mathfrak{g})$ given by $z \mapsto (\operatorname{ad}' x_J)(y_I z)$ induces a linear isomorphism $\mathcal{Z}(\mathfrak{g}_0) \xrightarrow{\sim} \mathcal{A}(\mathfrak{g}).$

iii) One has

$$P_{+}(\phi(z)) = P_{+}(\phi'(z)) = P_{+}(T)P(z),$$

$$P_{-n}(\phi(z)) = P_{-n}(\phi'(z)) = tP(z).$$

iv) The restriction of P_{-n} to $\mathcal{Z}(\mathfrak{g})_{-n}$ and to $\mathcal{A}(\mathfrak{g})$ induces linear isomorphisms

$$\mathcal{Z}(\mathfrak{g})_{-n} \xrightarrow{\sim} t\mathcal{S}(\mathfrak{h})^{W_{\cdot}}, \quad \mathcal{A}(\mathfrak{g}) \xrightarrow{\sim} t\mathcal{S}(\mathfrak{h})^{W_{\cdot}}.$$

4.2. Proof of Theorem 4.1.

4.2.1. The image of ϕ lies in $\mathcal{Z}(\mathfrak{g})$. To show that $\operatorname{Im} \phi \subseteq \mathcal{Z}(\mathfrak{g})$ fix $z \in \mathcal{Z}(\mathfrak{g}_0)$. First, let us check that $(\operatorname{ad} y_{2\varepsilon_1})\phi(z) = 0$. One has $(\operatorname{ad} y_{2\varepsilon_1})\phi(z) = (\operatorname{ad} y_{2\varepsilon_1}x_J)(y_Iz)$. The element $y_{2\varepsilon_1}x_J$ belongs to $\mathcal{U}(\mathfrak{g})(\mathfrak{g}_0 + \mathfrak{n}_1^-)$ because $\Lambda \mathfrak{n}_1^+$ does not contain a non-zero element whose weight and degree coincide respectively with the weight and the degree of $y_{2\varepsilon_1}x_J$. Since the element $y_I z$ is $\operatorname{ad}(\mathfrak{g}_0 + \mathfrak{n}_1^-)$ -invariant one obtains $(\operatorname{ad} y_{2\varepsilon_1}x_J)(y_I z) = 0$.

Since x_J, y_I and z are $\operatorname{ad} \mathfrak{g}_0$ -invariant, $\phi(z) = (\operatorname{ad} x_J)(y_I z)$ is $\operatorname{ad} \mathfrak{g}_0$ -invariant. Combining the equalities $(\operatorname{ad} \mathfrak{g}_0)\phi(z) = (\operatorname{ad} y_{2\varepsilon_1})\phi(z) = 0$ and $\mathfrak{n}_1^- = [\mathfrak{g}_0, y_{2\varepsilon_1}]$, one concludes $(\operatorname{ad} \mathfrak{n}_1^-)\phi(z) = 0$. The remaining equality $(\operatorname{ad} \mathfrak{n}_1^+)\phi(z) = 0$ immediately follows from the supercommutativity of \mathfrak{n}_1^+ . Hence $\phi(z) \in \mathcal{Z}(\mathfrak{g})$.

4.2.2. Proof of (ii). Replacing the adjoint action ad by the twisted adjoint action ad' and repeating the above reasoning one concludes that $\operatorname{Im} \phi' \subseteq \mathcal{U}(\mathfrak{g})^{\operatorname{ad}' \mathfrak{g}} = \mathcal{A}(\mathfrak{g}).$

Remark that $(\operatorname{ad}' g)u = 2gu - (\operatorname{ad} g)u$ for all $g \in \mathfrak{g}_1, u \in \mathcal{U}(\mathfrak{g})$ and that $\operatorname{gr} u$ and $\operatorname{gr}((\operatorname{ad} g)u)$ have the same degree in the symmetric algebra $\mathcal{S}(\mathfrak{g})$. Therefore

$$\operatorname{gr}((\operatorname{ad}' g)u) = 2(\operatorname{gr} g)(\operatorname{gr} u), \ \forall g \in \mathfrak{g}_1, u \in \mathcal{U}(\mathfrak{g}) \text{ s.t. } \operatorname{gr}(gu) = (\operatorname{gr} g)(\operatorname{gr} u).$$

This implies $\operatorname{gr} \phi'(z) = \operatorname{gr}((\operatorname{ad}' x_J)(y_I z) = 2^{\#J} \operatorname{gr}(x_J y_I z)$ for any $z \in \mathcal{Z}(\mathfrak{g}_0)$. In particular, $\operatorname{gr} \phi'(z) \neq 0$ and so ϕ' is a monomorphism. Moreover, by 2.2, $\operatorname{gr} \mathcal{A}(\mathfrak{g}) = \operatorname{gr}(x_J y_I \mathcal{Z}(\mathfrak{g}_0))$ that is $\operatorname{gr} \mathcal{A}(\mathfrak{g}) = \operatorname{gr}(\operatorname{Im} \phi')$. This proves that ϕ' is an isomorphism.

4.2.3. Proof of (iii). Combining Lemma 3.3.1 and the definition of P_{-n} , one concludes that $P_{+}(a) \neq 0$ for any non-zero $a \in \mathcal{Z}(\mathfrak{g})_{-n} \cup \mathcal{A}(\mathfrak{g})$. Recall that $T = (\operatorname{ad}' x_J)y_I = \phi'(1)$. Applying the formula (4) one obtains

$$P_{+}(\phi'(z)) = P_{+}((\mathrm{ad}' x_{J})(y_{I}z)) = P_{+}(x_{J}y_{I}z) = P_{+}(x_{J}y_{I})P(z) = P_{+}(T)P(z).$$

Similarly $P_+(\phi(z)) = P_+(T)P(z)$. Taking $a := \phi(z)$ in the formula (9) one gets

$$P_{+}(T)P(z)t = P_{+}(T)P_{-n}(\phi(z)) = P_{+}(T)P_{-n}(\phi'(z)).$$

Using the fact that the non-zero elements of $\mathcal{U}(\mathfrak{h})$ are non-zero divisors in $\mathcal{U}(\mathfrak{g})$ and the inequality $P_+(T) \neq 0$, one obtains

$$P_{-n}(\phi(z)) = P_{-n}(\phi'(z)) = tP(z)$$

This completes the proof of (iii).

4.2.4. Proof of (iv). It is well-known that the restriction of P to $\mathcal{Z}(\mathfrak{g}_0)$ induces the Harish-Chandra (algebra) isomorphism $\mathcal{Z}(\mathfrak{g}_0) \xrightarrow{\sim} \mathcal{S}(\mathfrak{h})^{W}$. Combining already proven assertions (ii) and (iii) of Theorem 4.1, one concludes that the restriction of P_{-n} to $\mathcal{A}(\mathfrak{g})$ induces a linear isomorphism $\mathcal{A}(\mathfrak{g}) \xrightarrow{\sim} t \mathcal{S}(\mathfrak{h})^{W}$.

Combining Lemma 3.3.1 and (iii) one concludes that the restriction of P_{-n} to $\mathcal{Z}(\mathfrak{g})_{-n}$ is an injective map whose image contains $t\mathcal{S}(\mathfrak{h})^{W_{\cdot}}$. Thus to show that the restriction of P_{-n} to $\mathcal{Z}(\mathfrak{g})$ induces a linear isomorphism $\mathcal{Z}(\mathfrak{g}) \xrightarrow{\sim} t\mathcal{S}(\mathfrak{h})^{W_{\cdot}}$, it remains to check that $P_{-n}(a) \in$ $t\mathcal{S}(\mathfrak{h})^{W_{\cdot}}$ for any $a \in \mathcal{Z}(\mathfrak{g})_{-n}$. We proceed in two steps. First, we verify that $P_{-n}(a) \in$ $t\mathcal{S}(\mathfrak{h})$. By (9) $P_+(a) = P_+(T)(P_{-n}(a)/t)$. Write $P_+(T) = \sum u_r s_r$ where u_r are elements of a basis of $\mathcal{U}(\mathfrak{n}^-)$ and s_r are elements of $\mathcal{S}(\mathfrak{h})$. Then $\sum u_r s_r(P_{-n}(a)/t) = P_+(a) \in \mathcal{U}(\mathfrak{n}^- + \mathfrak{h})$ and so $s_r(P_{-n}(a)/t) \in \mathcal{S}(\mathfrak{h})$ for all k. Lemma 4.2.5 asserts that $P_+(T) \notin \mathcal{U}(\mathfrak{b}^-)t$ or, in other words, that $s_r \notin \mathcal{S}(\mathfrak{h})t$ for some r. This gives that $P_{-n}(a)/t \in \mathcal{S}(\mathfrak{h})$ and completes the first step. In the second step (Lemma 4.2.6) we show that the fraction $P_{-n}(a)/t$ is W.-invariant.

4.2.5. **Lemma.** The element $P_+(T)$ does not belong to $\mathcal{U}(\mathfrak{b}^-)t$.

Proof. This follows from 2.1.3 and the fact that t is not W.-invariant. Indeed, if v is a canonical generator of a Verma module $\widetilde{M}(\lambda)$ then

$$y_J T v = P_+(y_J T) v = y_I P_{-n}(T) v = y_I t(\lambda) v$$

$$\tag{10}$$

and thus $T\widetilde{M}(\lambda) \neq 0$ provided $t(\lambda) \neq 0$. By 3.1, $t(\lambda) = 0$ iff $(\lambda + \rho, \alpha) = 1$ for some $\alpha \in \Delta_0^+$. Take μ such that $(\mu + \rho, \varepsilon_1 - \varepsilon_2) = 1$ and $(\mu + \rho, \alpha) \notin \mathbb{Z}$ for the other roots $\alpha \in \Delta_0^+$. A Verma module $\widetilde{M} := \widetilde{M}(\mu)$ contains a submodule isomorphic to a Verma module $\widetilde{M}' := \widetilde{M}(\mu - (\varepsilon_1 - \varepsilon_2))$, see 2.1.3. Since $(\mu - (\varepsilon_1 - \varepsilon_2) + \rho, \alpha) \neq 1$ for all $\alpha \in \Delta_0^+$, one has $T\widetilde{M}' \neq 0$ and, consequently, $T\widetilde{M} \neq 0$. Since T is anticentral, this implies that T does not annihilate a canonical generator of \widetilde{M} that is $P_+(T)(\mu) \neq 0$. Taking into account that $t(\mu) = 0$ one obtains the required assertion.

As we explained in 4.2.4, the above lemma implies that $P_{-n}(\mathcal{Z}(\mathfrak{g})) \subseteq t\mathcal{S}(\mathfrak{h})$. The following lemma demonstrates that $P_{-n}(\mathcal{Z}(\mathfrak{g})) \subseteq t\mathcal{S}(\mathfrak{h})^{W}$.

4.2.6. Lemma. For any $a \in \mathcal{Z}(\mathfrak{g})_{-n}$ the fraction $P_{-n}(a)/t$ is W.-invariant.

Proof. Fix $\alpha \in \Delta_0^+$ and let $s \in W$ be the corresponding reflection. Let $\lambda \in \mathfrak{h}^*$ be such that $t(\lambda) \neq 0, t(s,\lambda) \neq 0$ and that $(\lambda + \rho, \alpha)$ is a positive integer. Observe that the set of suitable λ 's is Zariski dense in \mathfrak{h}^* . Let v be a canonical generator of $\widetilde{M}(\lambda)$ and v' = uv $(u \in \mathcal{U}(\mathfrak{g}_0))$ be a canonical generator of $\widetilde{M}(s,\lambda) \subset \widetilde{M}(\lambda)$ (see 2.1.3). Take $a \in \mathcal{Z}(\mathfrak{g})_{-n}$. One has $av = P_+(a)v$, $av' = P_+(a)v'$. Applying (9) one obtains

$$\begin{aligned} av &= cTv, & \text{where } c := P_{-n}(a)(\lambda)/t(\lambda), \\ av' &= c'Tv', & \text{where } c' := P_{-n}(a)(s.\lambda)/t(s.\lambda). \end{aligned}$$

On the other hand,

av' = auv = uav = cuTv = cTuv = cTv'

By (10), the inequality $t(\lambda) \neq 0$ implies $Tv \neq 0$. Thus c = c' and the assertion follows. \Box

4.2.7. Now (iv) follows from 4.2.4. Combining 4.2.1 with (iii) and (iv) one concludes (i). Theorem 4.1 is proven.

4.3. Remark. Lemma 4.2.6 might let one think that P_{-n} plays for $\mathcal{Z}(\mathfrak{g})_{-n}$ a role similar to the one played by the Harish-Chandra projection for the centre of the enveloping algebra of semisimple Lie algebra. However, Lemma 4.2.5 shows that $t(\lambda) = 0$ does not imply $\phi(1)\widetilde{M}(\lambda) = 0$ even though $P_{-n}(\phi(1)) = t$.

References

- [BZV] M. Bershadsky, S. Zhukov, A. Vaintrob, $\mathfrak{psl}(n|n)$ sigma model as a conformal field theory, Nuclear Phys. B, **559** (1999), no.1-2, p. 205–234.
- [D] M. Duflo, Construction of primitive ideals in an enveloping algebra, in: I. M. Gelfand, ed..
 Publ. of 1971 Summer School in Math., Janos Bolyai Math. Soc., Budapest p.77—93.
- [G1] M. Gorelik, On the ghost centre of Lie superalgebras, preprint (1999).
- [G2] M. Gorelik, Strongly typical representations of the basic classical Lie superalgebras, preprint (2000).
- [K1] V. G. Kac, Lie superalgebras, Adv. in Math. **26** (1977), p.8–96.
- [K2] V. G. Kac, Characters of typical representations of Lie superalgebras, Comm. Alg. 5 (1977) p.889–997.
- [P] I. Penkov, Generic representations of classical Lie superalgebras and their localization, Monatshefte f. Math., 118 (1994) p.267–313.
- [PS] I. Penkov, V. Serganova, Representation of classical Lie superalgebras of type I, Indag. Mathem., N.S. 3 (4) (1992), p.419–466.
- [Sch] M. Scheunert, Invariant supersymmetric multilinear forms and the Casimir elements of Ptype Lie superalgebras, J. Math. Phys. 28 (1987), p.1180–1191.
- [S] A. N. Sergeev, Invariant polynomial functions on Lie superalgebras, C.R.Acad. Bulgare Sci. 35 (1982), no.5, p. 573–576.
- [Sh] N. Shomron, Blocks of Lie superalgebras of Type W(n), math.Rt/0009103.

DEPARTMENT OF MATHEMATICS, WEIZMANN INSTITUTE OF SCIENCE, REHOVOT 76100, ISRAEL EMAIL: GORELIK@WISDOM.WEIZMANN.AC.IL