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Abstract. We classify all simple bounded highest weight modules of the ortosymplectic
superalgebras osp(1, 2n). The classification is obtained in two independent ways: using
equivalence of categories of osp(1, 2n)-modules and osp(1, 2n)0̄-modules, and by find-
ing primitive vectors in tensor products of bounded and finite-dimensional osp(1, 2n)-
modules. We also obtain character formulae for the simple bounded highest weight
modules of osp(1, 2n).

1. Introduction

Weight modules are modules that are semisimple as modules over a fixed Cartan sub-
algebra. Examples of weight modules include quotients of parabolically induced modules
(in particular, highest weight modules) and some generalized Harish-Chandra modules.
The classification of all simple weight g-modules with finite weight multiplicities over
finite-dimensional simple Lie superalgebras g is not completed yet. This classification
for Lie algebras g was completed in the breakthrough paper [M] by classifying all simple
cuspidal g-modules, i.e. modules on which all root elements of g act bijectively. In the
Lie superalgebra case, the classification was obtained in [DMP] for all g except for the Lie
superalgebra series osp(m; 2n), m = 1, 3, 4, 5, 6; psq(n), D(2, 1, α), and the Cartan series
of type S and H. It is interesting to note that the Lie superalgebras osp(m, 2n), m ≥ 7,
are not in the list because their even parts do not have cuspidal modules. For the clas-
sical Lie superalgebras g, the classification of simple weight modules with finite weight
multiplicities was reduced to the classification of the so-called bounded highest weight
modules, [Gr]. The latter classification was obtained for g = psq(n) and g = D(2, 1, α) in
[GG] and [H], respectively, leaving the orthosymplectic series the only remaining classical
Lie superalgebras to consider.

Fix a triangular decomposition of g and denote by L(λ) the simple highest weight
g-module of highest weight λ. If the set of weight multiplicities of L(λ) is uniformly
bounded we call the module L(λ) bounded and the weight λ g-bounded. In this paper
we make the first step towards the classification of the bounded highest weight modules
L(λ) (and, hence, of the simple weight modules with finite weight multiplicities) of the
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orthosymplectic superalgebras - we solve the problem for osp(1, 2n). Our result can be
written in short as follows.

Theorem. An infinite-dimensional module L(λ) is osp(1, 2n)-bounded if and only if
λ and λ− δn are sp(2n)-bounded.

We believe that our classification will play crucial role in the classification of the simple
bounded highest weight modules for the remaining four orthosymplectic superlagebras
series. In addition to the classification of the bounded osp(1, 2n)-modules L(λ), we obtain
character formulae of L(λ) in terms of characters of simple finite-dimensional so(2n)-
modules, see (2).

We present two alternative proofs of the classifcation of the bounded modules L(λ).
The first is based on the equivalence of categories of graded osp(1, 2n)-modules and of
sp(2n)-modules established in [G2]. The second relies on finding primitive vectors of
tensor products of the Weyl module L(−1

2

∑n
i=1 δi) and finite-dimensional modules.

The paper is organized as follows. The main result together with character formulae
for bounded L(λ) are presented in Section 3. The alternative proof of the classification of
bounded highest weight modules is included in Section 4. Some important facts on the
equivalences of categories and character formulae are collected in the Appendix.

2. Notation and conventions

Except for the appendix, throughout the paper, g = osp(1, 2n). We fix a triangular
decomposition of g, hence of g0̄, and by h we denote the Cartan subalgebra of g and g0̄.

The root system of (g, h) is ∆ = ∆0̄ ∪ ∆1̄, where ∆1̄ = {±δi | i = 1, ..., n}, ∆0̄ =
{±δi ± δj,±2δi | 1 ≤ i < j ≤ n}. We will also use the notation ∆C = ∆0̄ (root system of
Cn = sp(2n)) and ∆D = {±δi ± δj | 1 ≤ i < j ≤ n} (root system of Dn = so(2n)). By
∆+ we will denote the set of all positive roots of g and W will stand for the Weyl group.
Fix (−,−) to be the symmetric bilinear form on h∗ such that (δi, δj) = δi,j.

In most of the paper we will fix Π = {δ1 − δ2, ..., δn−1 − δn, δn} to be the base of ∆.

We will also use Π̃ = {−δ1, δ1 − δ2, ..., δn−1 − δn}. Denote by θ the automorphism of ∆
defined by δi 7→ −δn+1−i. This automorphism extends to an automorphism of g that we

will denote by the same letter. Note that Π̃ = θ(Π).

We will call a vector v in a g-module primitive (respectively, Π̃-primitive), if the ele-

ments of the α-root spaces of g for all α ∈ Π (respectively, α ∈ Π̃) annihilate v.

We denote by W (C) and W (D) the Weyl groups of Cn and Dn, respectively, and by
ρC , ρD the corresponding half sums of positive roots. Also, by ρ = ρ0 − ρ1 we denote the
difference of the half sums of the positive even roots and the positive odd roots of g. We
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have:

ρ = ρC − 1

2

n∑
i=1

δi = ρD +
1

2

n∑
i=1

δi.

We denote by L(λ) (resp., M(λ)) the irreducible (respectively, the Verma) g-module

of highest weight λ. Also, by LΠ̃(λ) we denote the simple Π̃-highest weight module with
highest weight λ. We denote by LC(λ) (resp., LD(λ)) an irreducible Cn (resp., Dn) module
of the highest weight λ. We consider two shifted actions of W (C) to h∗:

w ◦ λ := w(λ+ ρ)− ρ, w ◦C λ := w(λ+ ρC)− ρC ,

and the shifted action of W (D): w ◦D λ := w(λ + ρD) − ρD. For each λ ∈ h∗, W (λ)
stands for the corresponding integral Weyl group, i.e. the subgroup of W generated by
the reflection rα for the even roots α satisfying 2(λ, α) ∈ Z(α, α).

We say that a g-module M is a weight module if M =
⊕

λ∈h∗ Mλ, where Mλ = {m ∈
M | hm = λ(h)m for every h ∈ h} is the λ-weight space. We call a weight module M
bounded if there is C such that dimMλ < C for all λ ∈ h∗. A weight λ is called g-bounded,
or simply bounded, if L(λ) is a bounded module. Analogously, we introduce the notions
of sp(2n)-bounded modules and bounded weights.

For each root α we introduce α∨ := 2α/(α, α). Recall that for a simple Lie algebra
an irreducible module of a highest weight module λ is finite-dimensional if and only if
(λ + ρ, α∨) ∈ Z>0 for each positive root α. A g-module L(λ) is finite-dimensional if
and only if LC(λ) is finite-dimensional, see [K1], Thm. 8. For each λ ∈ h∗ we set
∆(λ) = {α ∈ ∆C | (λ, α∨) ∈ Z} and ∆(λ)+ = ∆(λ) ∩∆+.

3. Bounded highest weight modules of osp(1, 2n)

In this section we classify the bounded highest weight osp(1, 2n)-modules and obtain
their character formulae.

3.1. By [M], Lemma 9.1, LC(λ) is bounded if and only if

(i) (λ, δi − δi+1) ∈ Z≥0 for i = 1, . . . , n− 1, and
(ii) either (λ, δn) ∈ Z≥0 (then LC(λ) is finite-dimensional), or (λ, δn) ∈ Z + 1/2 and

(λ, δn−1 + δn) ∈ Z≥−2.

The above conditions can be rewritten as follows: LC(λ) is bounded if and only if
(λ + ρC , α

∨) ∈ Z>0 for each α ∈ ∆(λ)+ and ∆(λ) = ∆C (then dimLC(λ) < ∞) or
∆(λ) = ∆D.
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3.2. Lemma. If (λ+ρC , α
∨) ∈ Z>0 and ∆(λ) = ∆D (equivalently, if LC(λ) is infinite-

dimensional sp(2n)-bounded module), then

eρC chLC(λ) =
n∏

i=1

(1− e−2δi)−1eρD chLD(λ+ ρC − ρD), dimLD(λ+ ρC − ρD) < ∞.

Proof. Since (λ+ ρC , α
∨) ∈ Z>0 for each α ∈ ∆(λ)+, we have

(1) chLC(λ) =
∑

w∈W (∆(λ))

(−1)l(w) chMC(y ◦C λ).

If ∆(λ) = ∆D, then W (∆(λ)) = W (D). The condition (λ + ρ, α∨) ∈ Z>0 for each
α ∈ ∆(λ)+ is equivalent to dimLD(λ+ρC−ρD) < ∞. Combining (1), the Weyl character
formula for LD(λ+ ρC − ρD) and the formula chMC(ν) =

∏n
i=1(1− e−2δi)−1 chMD(ν) we

obtain the desired identity. �

3.3. Lemma 3.2 implies that for each µ ∈ h∗

dimLC(λ)µ ≤ dimLD(λ+ ρC − ρD).

3.4. Lemma. If L(λ) is an infinite-dimensional bounded module, then LC(λ) and
LC(λ− δn) are bounded sp(2n)-modules.

Proof. Since LC(λ) is an sp(2n)-subquotient of L(λ), LC(λ) is sp(2n)-bounded. It remains
to prove that LC(λ−δn) is sp(2n)-bounded. Since L(λ) is an infinite-dimensional bounded
module, we have that ∆(λ) = ∆D, in particular (λ, δn) ̸= 0. But then one easily checks
that X−δnv is a nonzero g0̄-primitive vector in L(λ), where v is a highest weight vector of
L(λ) and X−δn is in g−δn . Hence L(λ) has a g0̄-subquotient isomorphic to LC(λ− δn). �

3.5. Proposition.

(i) The module L(λ) is bounded if and only if dimL(λ) < ∞ or ∆(λ) = ∆D and
(λ + ρ, α∨) ∈ Z>0 for each α ∈ ∆(λ)+. In other words, L(λ) is bounded if and
only if LC(λ) is bounded and (λ, δn−1 + δn) ̸= −2.

(ii) If L(λ) is bounded and infinite-dimensional, then dimLD(λ+ ρ− ρD) < ∞ and

(2) eρ chL(λ) =
n∏

i=1

(1− e−δi)−1eρD chLD(λ+ ρ− ρD).

In particular, for each µ ∈ h∗ one has

dimL(λ)µ ≤ dimLD(λ+ ρ− ρD).
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Proof. Assume that L(λ) is bounded.

Since LC(λ) is a submodule of L(λ), we conclude that ∆(λ) is ∆C or ∆D. If ∆(λ) = ∆C ,
then dimLC(λ) < ∞, which is equivalent to dimL(λ) < ∞.

Consider the case ∆(λ) = ∆D, in particular, L(λ) is infinite-dimensional. Since LC(λ)
is bounded, for i = 1, . . . , n− 1 we have

(λ+ ρ, δi − δi+1) = (λ+ ρC , δi − δi+1) ∈ Z>0.

Since L(λ) is infinite dimensional, by Lemma 3.4, LC(λ− δn) is bounded. This gives

(λ+ ρ, δn−1 + δn) = (λ− δn + ρC , δn−1 + δn) ∈ Z>0.

Since δi − δi+1, i = 1, . . . , n − 1 and δn−1 + δn are simple roots of ∆(λ) = ∆D, we have
(λ+ ρ, α∨) ∈ Z>0 for each α ∈ ∆(λ)+.

Now let λ be such that ∆(λ) = ∆D and (λ + ρ, α∨) ∈ Z>0 for each α ∈ ∆(λ)+. This
means that W (λ) = W (D), λ is maximal in its W (λ)-orbit W (λ) ◦ λ, and the stabilizer
of λ is trivial. In particular, dimLD(λ + ρ − ρD) < ∞ and the Weyl character formula
gives

eρD chLD(λ+ ρ− ρD) =
∑

w∈W (D)

sgnw chMD(w(λ+ ρ)).

On the other hand, by Corollary 5.5 we obtain

eρ chL(λ) =
∑

w∈W (D)

sgnw chM(w(λ+ ρ)).

Combining the last two identities with the formula chM(ν) =
∏n

i=1(1− e−δi)−1 chMD(ν)
leads to (2). This implies dimL(λ)µ ≤ dimLD(λ+ ρ− ρD) as required. �

4. Bounded highest weight modules of osp(1, 2n): an alternative approach

In this section we establish the classification of bounded weights of g in an alternative
way. Namely, we will present every bounded L(λ) as a subquotient of a tensor product of
a bounded module and a finite-dimensional module.

By D(n) we will denote the Weyl algebra C[x1, ..., xn; ∂1, ..., ∂n] generated by xi, ∂j
subject to the relations xixj − xjxi = ∂i∂j − ∂j∂i = 0; xi∂j − ∂jxi = δij. We consider
D(n) as an associative superalgebra letting xi and ∂i to be odd. There are several ways
to define a homomorphism U(g) → D(n). In this paper we will use a presentation for
which the δi- and (−δi)-root vectors of g act as 1√

2
xi and

1√
2
∂i, respectively.

Fix for convenience elements Xα in the α-root space of g so that [Xδi , X±δj ] = Xδi±δj ,
[X−δi , X−δj ] = −X−δi−δj , i ̸= j, [X±δi , X±δi ] = ±2X±2δi . The complete list of relations
[Xα, Xβ] = cα,βXα+β can be found in §4, [F]. We also fix elements hδi−δj = [Xδi , X−δj ]
and h2δi = [Xδi , X−δi ] = [X2δi , X−2δi ] in h.

The following proposition can be verified with a direct computation, [F].
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4.1. Proposition. The following correspondences define a homomorphism ϕ : U(g) 7−→
D(n) of associative superalgebras:

Xδi−δj 7−→ xi∂j, i ̸= j;

X2δi 7−→
1

2
x2
i ;

X−2δi 7−→ −1

2
∂2
i ;

Xδi+δj 7−→ xixj, i ̸= j;

X−δi−δj 7−→ −∂i∂j, i ̸= j;

hδi−δj 7−→ xi∂i − xj∂j, i ̸= j;

h2δi 7−→ xi∂i +
1

2
;

Xδi 7−→
1√
2
xi;

X−δi 7−→
1√
2
∂i.

From the above proposition we easily find that the D(n)-module C[x1, ..., xn], when
considered as a g-module though the homomorphism ϕ, is isomorphic to LΠ̃(

1
2
(δ1 + · · ·+

δn)).

4.2. Lemma. Let N be positive integer and v be a highest weight vector of LΠ̃(−N(δ1+
· · ·+ δn)). Then the vector

u = x2N
1 ⊗ v +

2N∑
k=1

c2N−kx
2N−k
1 ⊗Xk

δ1
(v)

is a primitive vector of LΠ̃(
1
2
(δ1 + · · · + δn)) ⊗ LΠ̃(−N(δ1 + · · · + δn)), where the scalars

ci are defined as follows:

c2N = 1

c2N−2j =
(2N − 1)(2N − 3)...(2N − (2j − 1))

j!
, j > 0

c2N−(2j+1) = −
√
2c2N−2j, j ≥ 0

Proof. The identity Xδi−δi+1
u = 0 is straightforward. It remains to show that X−δ1u = 0.

We easily check that

X−δ1(x
2N−k
1 ⊗Xk

δ1
(v)) =

{
2N−k√

2
x2N−k−1
1 ⊗Xk

δ1
(v)) + k

2
x2N−k
1 ⊗Xk−1

δ1
(v)) if k is even

2N−k√
2
x2N−k−1
1 ⊗Xk

δ1
(v))−

(
k−1
2

−N
)
x2N−k
1 ⊗Xk−1

δ1
(v)) if k is odd
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Using the above identities we easily complete the proof. �

4.3. Corollary. If λ is such that (λ, δn) ∈ 1
2
+ Z and (λ, δn−1 + δn) ∈ Z≥−1, then λ is

bounded.

Proof. We first prove that for every nonnegative integer N , the weight

λN =

(
N − 1

2

)
δ1 + · · ·+

(
N − 1

2

)
δn−1 +

(
−N − 1

2

)
δn

is bounded. For this we note that the g-module L(λN)
θ obtained by twisting L(λN) by

θ is isomorphic to LΠ̃

((
N + 1

2

)
δ1 +

(
1
2
−N

)
δ2 + · · ·+

(
1
2
−N

)
δn
)
. Then, the latter by

Lemma 4.2 is a subquotient of the tensor product of the bounded g-module LΠ̃(
1
2
(δ1 +

· · ·+ δn)) and the finite-dimensional g-module LΠ̃(−N(δ1 + · · ·+ δn)). Therefore L(λN)
θ

is bounded and hence λN is bounded.

Now let λ be a weight for which (λ, δn) ∈ 1
2
+ Z and (λ, δn−1 + δn) ∈ Z≥−1 and let

µ = λ + 1
2

∑n
i=1 δi. Also, set for simplicity µi = (µ, δi). Then we have that µi ∈ Z, µ1 ≥

µ2 ≥ · · · ≥ µn and µn−1+µn ≥ 0. In particular µ1 ≥ 0 and hence λ′ =
(
µ1 − 1

2

)∑n−1
i=1 δi−(

µ1 +
1
2

)
δn is a bounded weight. But then λ = λ′ + λ′′ for the bounded weight λ′ and for

the dominant integral weight λ′′ =
∑n

i=2(µi − µ1)δi. Thus λ is bounded. �

The above corollary together with Lemma 3.4 leads to an alternative proof of the
classification of bounded weights in Proposition 3.5(i).

5. Appendix: characters of some highest weight modules

5.1. Conventions. In this appendix g = g0⊕g1 will be a basic classical Lie superalgebra
with a fixed triangular decomposition g = n− ⊕ h ⊕ n. By h we denote the Cartan
subalgebra of g, W will be the Weyl group, and ∆ = ∆0 ∪∆1, ∆

+ will be the set of all
roots and all positive roots, respectively. We fix an even non-degenerate bilinear invariant
form (−,−) on h∗. We write ν ≥ µ for weights ν, µ in h∗ if ν − µ ∈ Z≥0∆

+. Like in the
case g = osp(1, 2n), for the shifted action of W on h∗ we write

w ◦ λ := w(λ+ ρ)− ρ,

where ρ = ρ0 − ρ1 is the difference of the half sums of the positive even roots and the
positive odd roots.

By sgn : W → {±1} we denote the sign homomorphism. For each λ ∈ h∗, like one the
case g = osp(1, 2n), W (λ) denotes the corresponding integral Weyl group.

As before, by M(ν) (resp., L(ν)) we denote the Verma (resp., irreducible) module of
highest weight ν. We denote by Ṁ(ν) (resp., L̇(ν)) the corresponding Verma (resp.,
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irreducible) g0-modules. We introduce another shifted action of the Weyl group W on h∗

by

w ◦g0 λ = w(λ+ ρ0)− ρ0.

5.2. Character formulae for typical highest weight modules. Let λ be a maximal
element in its W (λ) orbit W (λ) ◦ λ (i.e., λ ≥ w ◦ λ for each w ∈ W ). Recall that if g is
a semisimple Lie algebra, then for each w ∈ W (λ) the character of an irreducible highest
weight module L(w ◦ λ) is given by the Kazhdan-Lusztig character formula:

(3) chL(w ◦ λ) =
∑

y∈W (λ)

awy chM(y ◦ λ),

and the coefficients awy are given by in terms of the inverse Kazhdan-Lusztig polynomial
for the Weyl group W (λ) and the stabilizer

StabW (λ+ ρ) = {w ∈ W | w(λ+ ρ) = λ+ ρ} = {w ∈ W (λ)| w ◦ λ = λ}.

Note that any weight ν ∈ h∗ is of the form w ◦ λ, where λ is the maximal element in
W (ν) ◦ ν (in this case λ is maximal in W ◦ λ) and w ∈ W (ν) = W (λ). Hence, (3) gives
the character of any irreducible highest weight module.

The character formula (3) also holds for a basic classical Lie superalgebra g in the case
when λ is strongly typical (i.e., (λ + ρ, β) ̸= 0 for each β ∈ ∆1) or some weakly atypical
weights, see §5.5 below; this gives a character formula for all strongly typical highest
weight modules. The coefficients awy are determined by the same formulae as for the Lie
algebras case (they depend on W (λ) and StabW (λ + ρ)). This result easily follows from
the equivalence of categories established in [PS1], [PS2] and [G2], see details below in §5.4
and §5.5.

If λ is strongly typical, maximal in W (λ) ◦ λ, and has the trivial stabilizer, then aey =
sgn y. Hence (3) takes the form

(4) chL(λ) =
∑

y∈W (λ)

sgn(y) chM(y ◦ λ).

This holds, in particular, if L(λ) is typical and finite-dimensional. In the latter case
W (λ) = W and (3) becomes the Weyl-Kac character formula established in [K2].

5.3. Typicality and strong typicality. Recall that λ ∈ h∗ is typical if (λ + ρ, β) ̸= 0
for each isotropic root β. We call λ ∈ h∗ strongly typical if (λ + ρ, β) ̸= 0 for each odd
root β.

A central character χ : Z(U(g)) → C is called typical (resp., strongly typical) if it
is a central character of L(λ) with typical (resp., strongly typical) λ. Note that this
definition does not depend on the triangular decomposition in the following sense. If g =
n−⊕h⊕n = n′−⊕h⊕n′ are two triangular decompositions such that n∩g0 = n′∩g0, and if λ
is typical, then the Verma module M(λ, n) relative to the first triangular decomposition is
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isomorphic to a Verma module M(λ′, n′) relative to the second triangular decomposition;
in this case λ+ ρ = λ′ + ρ′. In particular, if λ is such that (λ+ ρ, β) ̸= 0 for all isotropic
roots β, then L(λ, n) = L(λ′, n′), where λ+ ρ = λ′ + ρ′, so (λ′ + ρ′, β) ̸= 0 for all isotropic
roots β.

We call a g-module strongly typical if it has a strongly typical central character. The
set of highest weights of irreducible highest weight modules with a fixed central character
forms a single W -orbit if and only if this central character is typical: if χ : Z(U(g)) → C
is a central character, then (Kerχ)L(λ) = (Kerχ)L(λ′) = 0 implies λ′ + ρ ∈ W (λ+ ρ) if
and only if χ is typical.

5.4. Strongly typical case. Take any strongly typical central character χ. By [G2]
Theorem 3.3.1, there exists a g0-central character χ̇ : Z(U(g0)) → C such that the map
Ψ : N 7→ Nχ̇ := {v ∈ N | (Ker χ̇)v = 0} provides an equivalence between the category of
g-modules with the central character χ and the category of g0-modules with the central
character χ̇. The map Ψ maps a Verma g module to a Verma g0-module. Recall that
M(ν),M(λ) (resp., Ṁ(ν), Ṁ(λ)) have the same typical central character (resp., the same
central character) if and only if ν ∈ W ◦ λ (resp., ν ∈ W ◦g0 λ).

5.4.1. Lemma. If Ψ(M(ν)) = Ṁ(ν ′), then for each w ∈ W one has

Ψ(M(w ◦ ν)) = Ṁ(w ◦g0 ν ′).

Proof. Recall that M(λ) has a filtration of g0-modules with the factors {Ṁ(λ − γ)}γ∈Γ,
where

Γ :=

{∑
β∈X

β | X ⊂ ∆+
1

}
.

By [G1], Lemma 8.3.4(i), for each M(λ) with central character χ, there exists a unique
γ ∈ Γ such that Ṁ(λ−γ) has the central character χ̇, and such that Ψ(M(λ)) = M(λ−γ).
Thus it is enough to verify that for each w ∈ W one has w ◦ ν−w ◦g0 ν ′ ∈ Γ if ν− ν ′ ∈ Γ.
Observe that

w ◦ ν − w ◦g0 ν ′ = w(ν − ν ′ − ρ1) + ρ1.

One readily sees that

Γ− ρ1 = {γ − ρ1| γ ∈ Γ} =

{∑
β∈Y

β/2 | Y ⊂ ∆1,∆1 = Y ⊔ (−Y )

}
.

Since ∆1 is W -invariant, Γ− ρ1 is also W -invariant and thus ν − ν ′ ∈ Γ implies w ◦ ν −
w ◦g0 ν ′ ∈ Γ as required. �
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5.4.2. Proposition. Let µ be strongly typical and a minimal element in its orbit
W (µ) ◦ µ. Let w0 be the longest element in W (µ) and ν := w0 ◦ µ. Then the character
formula (3) holds for λ = ν, i.e.

chL(w ◦ ν) =
∑

y∈W (ν)

awy chM(y ◦ ν).

Proof. Since M(µ) is an irreducible Verma module, the g0-Verma module Ψ(M(µ)) =
Ṁ(µ′) is also irreducible, that is µ′ is minimal in its orbit W (µ′) ◦g0 µ′. Note that for
each α ∈ ∆0 one has 2(α, β)/(α, α) ∈ Z for all β ∈ ∆ and thus for all β ∈ Γ. Hence
W (µ′) = W (µ). Then ν = w0 ◦ µ (resp., ν ′ := w0 ◦g0 µ′) is a (unique) maximal element
in the orbit W (µ) ◦ µ (resp., W (µ) ◦g0 µ). We have W (ν) = W (µ) = W (µ′) = W (ν ′).
By (3), for each w ∈ W (ν) we have

ch L̇(w ◦g0 ν ′) =
∑

y∈W (ν)

awy ch Ṁ(y ◦g0 ν ′).

Since Ψ is an equivalence of categories, Ψ(M(y ◦ ν)) = Ṁ(y ◦g0 ν ′) for each y ∈ W

(by Lemma 5.4.1) and so Ψ(L(y ◦ ν)) = L̇(y ◦g0 ν ′). A standard reasoning (see [BGG])
leads to

chL(w ◦ ν) =
∑

y∈W (ν)

awy chM(y ◦ ν)

as needed. �

5.5. The special case g = osp(1, 2n). Let now g := osp(1, 2n). Let ν ∈ h∗ be such
that (ν + ρ, β) = 0 for a unique odd positive root β and ν be the maximal element in its
W (ν)-orbit W (ν) ◦ ν (note that if λ ∈ h∗ is such that (λ + ρ, β) = 0 for a unique odd
positive root β, then λ = w ◦ ν, where ν is as above and w ∈ W (ν)). We show that (3)
holds for λ = ν.

Let χ : Z(U(g)) → C be the central character of M(ν). By [G2], Theorem 4.3 there
exists a g0-central character χ̇ : Z(U(g0)) → C such that the map Ψ0 : N 7→ N0,χ̇ := {v ∈
N0| (Ker χ̇)v = 0} provides an equivalence between the category of graded g-modules
(N = N0 ⊕ N1) with the central character χ and the category of g0-modules with the
central character χ̇. The map Ψ0 maps a graded Verma g-module to a Verma g0-module.

Let µ be the minimal element in W (ν) ◦ ν (i.e., µ = w0 ◦ ν, where w0 is the longest
element in W (ν)). View M(µ) as a graded Verma module (with one of two possible
gradings); note that M(µ) is irreducible, so Ψ(M(µ)) = Ṁ(µ′) is irreducible. Thus µ′ is
minimal in its W (µ′)-orbit W (µ′) ◦g0 µ′-orbit and W (ν) = W (µ) = W (µ′). Arguing as

in Lemma 5.4.1, we obtain that Ψ−1(Ṁ(w ◦g0 µ′)) is the Verma module M(w ◦ µ) with
one of two possible gradings (such that M(w ◦ µ)w◦g0µ′ ⊂ M(w ◦ µ)0). Now the argument
in the proof of Proposition 5.4.2 shows that (3) holds for λ = ν.
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Corollary. Let g = osp(1, 2n), λ be maximal in its W (λ)-orbit W (λ) ◦ λ, and the
stabilizer StabW (λ+ ρ) be trivial. Then the character formula (4) holds for λ.
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