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STRONGLY TYPICAL REPRESENTATIONS OF THE BASIC

CLASSICAL LIE SUPERALGEBRAS.

MARIA GORELIK

Abstract. We describe the category of representations with a strongly typical central
character of a basic classical Lie superalgebra in terms of representations of its even part.

1. Introduction

1.1. In [PS1], I. Penkov and V. Serganova show that the category of representations
of a basic classical Lie superalgebra g of type I with a fixed typical central character is
equivalent to the category of representations of the even part g0 with a suitable central
character. A similar result for type II was proven by I. Penkov in [P] for “generic” central
characters. The aim of this paper is to understand for which central characters such an
equivalence holds. We also study a simplest example when such an equivalence fails to
exist, but the corresponding category of representations of a Lie superalgebra still has a
good description.

1.2. The basic classical Lie superalgebras were described by V. Kac in [K1]. These Lie
superalgebras are the closest to the ordinary simple Lie algebras: for instance, they can
be described by their Cartan matrices. The even part of a basic classical Lie superalgebra
g is a reductive Lie algebra. The centre Z(g) is described in [K2], [S1], [BZV]; it is
isomorphic to a subalgebra of S(h)W and their fields of fractions coincide (here h is a
Cartan subalgebra of g0 and W is the Weyl group of g0).

1.3. Let g = g0 ⊕ g1 be a basic classical Lie superalgebra, Ũ be its universal enveloping
superalgebra and Z(g) be the centre of Ũ . Let T be a special ghost element constructed
in [G1]— see 2.3. We call a maximal ideal χ̃ of Z(g) strongly typical if it does not contain
T 2.

For a maximal ideal χ̃ of Z(g) and a g-module Ñ set Ñχ̃ := {v ∈ Ñ | χ̃rv = 0, ∀r >> 0}.

For a fixed χ̃ ∈ MaxZ(g), denote by gr C̃r the category of graded g-modules Ñ satisfying

χ̃rÑ = 0 and by gr C̃∞ the category of graded g-modules Ñ satisfying Ñχ̃ = Ñ .

Consider g0 as a purely even Lie superalgebra. Denote by U its enveloping algebra and
by Z(g0) the centre of U . For a maximal ideal χ of Z(g0) and a g0-module N define Nχ
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as above. For a fixed χ ∈ Z(g0), denote by gr Cr the category of graded g0-modules N

satisfying χrN = 0 and by gr C∞ the category of graded g0-modules N satisfying Nχ = Ñ .
In Sect. 3 we prove the following

1.3.1. Theorem. For a strongly typical χ̃ ∈ MaxZ(g) the category gr C̃∞ is equivalent

to the category gr C∞ where χ is a suitable maximal ideal of Z(g0). The equivalence is

given by the functors

Ñ 7→ Ñχ, N 7→ (Indg
g0
N)χ̃.

The restriction of these functors provide also the equivalence of gr C̃r with gr Cr.

A maximal ideal χ ∈ MaxZ(g0) is suitable in the sense of the above theorem iff for

some projective Verma g-module M̃ satisfying χ̃M̃ = 0, the g0-module M̃χ is Verma and,

moreover, one has M̃ = ŨM̃χ. Note that if χ is a perfect mate for χ̃ in the sense of [G2],
then it fulfills these conditions. In [G2], Sect.8 we prove the existence of a perfect mate

χ for each strongly typical χ̃ ∈ MaxZ(g). This allows one to describe the category gr C̃∞

corresponding to any strongly typical χ̃ in terms of Theorem 1.3.1.

The proof is based on the theorem stating that for a strongly typical χ̃ the annihilator
of a Verma g-module M̃ satisfying χ̃M̃ = 0 is equal to Ũ χ̃— see [G2].

An analogue of Theorem 1.3.1 for the basic classical Lie superalgebras of type I is proven
in [PS1]; for “generic” χ̃ in type II case, it is proven in [P]. Both proofs are based on a

realization of the categories gr C̃1, gr C1 as categories of D-modules on the corresponding
flag varieties.

1.4. Theorem 1.3.1 suggests a study of categories of representations of g corresponding
to a non strongly typical character χ̃. Call such χ̃ weakly atypical. If χ̃ is not typical,
the category C̃∞ has a very complicated structure— for instance, it contains non-trivial
extensions of non-isomorphic finite dimensional modules. An “intermediate” case, when
χ̃ is typical but not strongly typical (it is possible only for the types B(m,n), G(3)),
seems to be less complicated. We consider the case when g = osp(1, 2l) (B(0, 2l)) and the
maximal ideal is a “generic” weakly atypical (see the condition (10)). This means that
the highest weight λ of a highest weight module annihilated by m belongs to exactly one
of the hyperplanes Sβ, β ∈ ∆+

1 where Sβ := {µ ∈ h∗| (µ+ ρ, β) = 0}.

It is convenient to substitute the maximal ideal m of Z(g) by the maximal ideal χ̃ of

the “ghost centre” Z̃(g) (see [G1] for definition) which contains m. For g = osp(1, 2l) one

has Z̃(g) = Z(g) ⊕ TZ(g) and the ideal χ̃ := m ⊕ TZ(g) is a maximal ideal of Z̃(g).

Define the categories gr C̃r and gr C̃∞ for such χ̃ ∈ Max Z̃(g) in the same way as it was
done above for χ̃ ∈ MaxZ(g). For fixed χ, denote by Cr the category of non-graded
g0-modules N satisfying χrN = 0 and by C∞ the full subcategory of the category of
non-graded g0-modules consisting of the modules N satisfying Nχ = Ñ .

Under the above assumption on m, we prove in Sect. 4 the following
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1.4.1. Theorem. The category gr C̃∞ is equivalent to the category C∞ where χ is a

suitable maximal ideal of Z(g0). The equivalence is given by the functors

Ñ 7→ Ñχ ∩ Ñ0, N 7→ (Indg
g0
N)χ̃

where the grading on Indg
g0
N is determined by the assuming N to be even.

The restriction of these functors provide also the equivalence of gr C̃r with Cr.

A maximal ideal χ ∈ MaxZ(g0) is suitable in the sense of the above theorem iff for

some projective Verma g-module M̃ satisfying χ̃M̃ = 0, the g0-module M := M̃χ ∩ M̃0 is

Verma and M̃ = ŨM . In 4.5.3 we construct such a suitable ideal χ for each m ∈ MaxZ(g)
satisfying the above assumption.

The proof is based on the theorem stating that the annihilator of a Verma g-module M̃
satisfying mM̃ = 0 is equal to Ũ χ̃ (see [GL1], 6.2) and on Proposition 4.7 which describes

the locally finite part F (M̃, M̃) of endomorphisms of a Verma module M̃ through the

image of Ũ in it.

1.5. Acknowledgments. The results of this paper were obtained when the author was
a visitor at MSRI and at Max-Planck Institut für Mathematik at Bonn. I express my
gratitude to these institutions for the hospitality and excellent working conditions. I wish
to thank V. Serganova and I. Penkov for helpful discussions.

2. Preliminaries

Everywhere in the paper g = g0⊕g1 denotes one (unless otherwise specified, an arbitrary
one) of the basic classical complex Lie superalgebras gl(m,n), sl(m,n), osp(m,n), psl(n, n).
Each of these Lie superalgebras possesses the following properties: it admits a g-invariant
bilinear form which is non-degenerate on [g, g] and the even part g0 is a reductive Lie
algebra.

2.1. Conventions. In this paper the ground field is C. We denote by N+ the set of
positive integers. If A is an algebra, N is an A-module and X, Y are subsets of A and
N respectively, we denote by XY the submodule spanned by the products xy where
x ∈ X, y ∈ Y .

For a Z2-homogeneous element u of a superalgebra denote by d(u) its Z2-degree. In all
formulae where this notation is used, u is assumed to be Z2-homogeneous.

For a Lie superalgebra m denote by U(m) its universal enveloping algebra and by S(m)
its symmetric algebra. All modules in the text are assumed to be left modules unless
otherwise specified. An m-module N is called locally finite if dimU(m)v < ∞ for all

v ∈ N . Set Ũ := U(g) and U := U(g0).
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The symbol Ṽ (resp., V ) is always used for a simple g (resp., g0) module and the symbol

M̃ (resp., M) for a Verma g (resp., g0) module.

2.2. Fix a triangular decomposition g = n− ⊕ h ⊕ n+— see [PS2] for definition. Denote
by ∆ the set of all non-zero roots of g and by ∆+

0 (resp., ∆+
1 ) the set of non-zero positive

even (resp., odd) roots of g. Set ∆
+
1 := {β ∈ ∆+

1 | 2β 6∈ ∆+
0 }. and

ρ :=
1

2
(

∑

α∈∆+
0

α−
∑

β∈∆+
1

β).

Let W be the Weyl group of g0. For w ∈W,µ ∈ h∗ set

w.µ = w(µ+ ρ) − ρ.

Denote by (−,−) a g-invariant bilinear form on g which is non-degenerate on [g, g] and

also the induced W -invariant bilinear form on h∗. One has ∆
+
1 = {β ∈ ∆+

1 | (β, β) = 0}.

2.3. Define the adjoint action of g on Ũ by setting

(ad g)u = gu− (−1)d(g)d(u)ug, ∀g ∈ g, u ∈ Ũ

By default, the action of g on Ũ is assumed to be the adjoint action. The centre Z(g) of

Ũ is equal to Ũad g.

Define the twisted adjoint action of g on Ũ by setting

(ad′ g)u = gu− (−1)d(g)(d(u)+1)ug, ∀g ∈ g, u ∈ Ũ .

The anticentre A(g) := Ũad′ g contains an element T defined in [G1]. This is a unique

element of A(g) satisfying P(T )(λ) =
∏

β∈∆+
1
(β, λ+ ρ) for any λ ∈ h∗; here P : Ũ → S(h)

is the Harish-Chandra projection. The element T is even. Since T belongs to A(g), it

commutes with the even elements of Ũ and anticommutes with the odd ones; in particular,
T 2 ∈ Z(g).

The Harish-Chandra projection P provides a monomorphism ι : Z(g) → S(h)W.. The
image of ι is described in [K2], [S1], [BZV]; ι is bijective iff g = osp(1, 2l). The centre
Z(g) contains an element Q such that

P(Q)(λ) =
∏

β∈∆
+
1

(β, λ+ ρ).

The localized algebra Z(g)[T−2] is isomorphic to a localization of a polynomial algebra
S(h)W by P(Q)—see [K3]. The localized algebra Z(g)[T−2] is isomorphic to a localization
of a polynomial algebra S(h)W .
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2.4. The category Õ and Verma modules. Denote by O the full subcategory of the
category of g0-modules consisting of finitely generated h-diagonalizable g0-modules which
are n+

0 -locally finite. Denote by Õ the similarly defined category of g-modules. Since
U(n+) is finite over U(n+

0 ), a g-module N belongs Õ iff as a g0-module N belongs to O.

In particular, any module of category Õ has a finite length.

2.4.1. For λ ∈ h∗ denote by Cλ a one-dimensional b-module such that n+v = 0 and
hv = λ(h)v for any h ∈ h, v ∈ Cλ. Define a Verma module M̃(λ) by setting

M̃(λ) := Ũ ⊗U(b) Cλ.

A Verma g0-module M(λ) is defined similarly.

2.4.2. A maximal ideal χ̃ ∈ MaxZ(g) is called typical if it does not contain Q defined
in 2.3. If χ̃ ∈ MaxZ(g) is typical then the set

W (χ̃) := {λ ∈ h∗| χ̃M̃(λ) = 0}

forms a single W.-orbit. For g = osp(1, 2l) all χ̃ ∈ MaxZ(g) are typical.

Call a g-module N typical if AnnZ(g)N is a typical maximal ideal of Z(g). Define the
partial order on h∗ by setting µ ≥ ν ⇐⇒ (µ− ν) ∈

∑
α∈∆+ Nα. A typical Verma module

M̃(λ) is projective (resp., simple) in Õ if λ is maximal (resp., minimal) in W.λ—see, for
instance, [G2], 2.5.3. In particular, for a typical χ̃ ∈ MaxZ(g) there exists a projective

Verma module M̃ satisfying χ̃M̃ = 0.

A maximal ideal χ̃ ∈ MaxZ(g) is called strongly typical if T 2 6∈ χ̃. A strongly typical
central character is typical. Call a g-module N strongly typical if AnnZ(g)N is a strongly
typical maximal ideal of Z(g).

If g is not of types B(m,n), G(3) then ∆+
1 = ∆

+
1 and so the notion of typical and

strongly typical module coincide.

2.5. Throughout the paper we shall write “ad g-module” instead “g-module with respect
to the adjoint action”. For any g-modules N1, N2 view Hom(N1, N2) := HomC(N1, N2) as
a g-module with respect to the adjoint action and denote by F (N1, N2) the locally finite
part of the ad g-module Hom(N1, N2). Similarly for any g0-modules N1, N2 denote by
F (N1, N2) the locally finite part of the ad g0-module Hom(N1, N2). Notice that for any

g-module N its locally finite part coincides with its ad g0-locally finite part, since Ũ is a
finite extension of U .

2.5.1. Let N be a g0-module and E be a finite dimensional g0-module. It is easy to
check that A := F (N,N), B := F (N ⊗ E,N ⊗ E) are subalgebras of Hom(N,N) and
Hom(N ⊗E,N ⊗E) respectively. The algebra A acts on F (N,N ⊗E) from the right and
the algebra B acts on F (N,N ⊗E) from the left; these actions commute. We claim that
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F (N,N ⊗ E) is a free right A-module whose rank is equal to the dimension of E and,
moreover, EndA(F (N,N ⊗ E)) = B.

Indeed, consider the map ι : F (N,N) ⊗ E → Hom(N,N ⊗ E) given by ι(f ⊗ v)(n) =
f(n) ⊗ v for any f ∈ F (N,N), v ∈ E and the map ι′ : F (N,N ⊗ E) → Hom(N,N) ⊗ E
given by ψ 7→

∑
i pi ◦ ψ ⊗ ei where {ei} is a basis of E and pi : N ⊗ E → N are given by

pi(n⊗ej) := δi,jn⊗ej . One can easily sees that Im ι ⊆ F (N,N⊗E), Im ι′ ⊆ F (N,N)⊗E
and that ι′ ◦ ι = id, ι◦ ι′ = id. Thus F (N,N⊗E) ∼= F (N,N)⊗E is a free right A-module
whose rank is equal to the dimension of E. Similarly, the map ι′′ : A⊗EndC(E) → B given
by ι′′(f ⊗ φ)(n⊗ v) := f(n)⊗ φ(v) for any f ∈ A = F (N,N), n ∈ N, v ∈ E, φ ∈ EndC(E)
is bijective. For any f, f ′ ∈ A, v ∈ E, φ ∈ EndC(E) one has ι′′(f ⊗ φ)(ι(f ′ ⊗ v)) =
ι(ff ′ ⊗ φ(v)). This implies EndA(F (N,N ⊗E)) = B since the A-module F (N,N ⊗E) is
freely generated by the elements ι(1 ⊗ ei) (here 1 is the unit of A).

2.6. Let M be a Verma g-module. By Duflo’s theorem AnnM = U AnnZ(g0)M—see [D].
By [J1], 6.4 the natural map U/(AnnM) → F (M,M) is bijective.

Let M̃ be a strongly typical Verma g-module. Then Ann M̃ = Ũ AnnZ(g) M̃ and the

natural map Ũ/(Ann M̃) → F (M̃, M̃) is bijective (see [G2], 9.4,9.5).

2.7. For a g-module Ñ and a maximal ideal χ̃ ∈ Z(g) set

Ñχ̃ := {v ∈ Ñ | χ̃rv = 0, r >> 0}.

We say that a Ũ-module Ñ has a finite support suppZ(g) Ñ = {χ̃1, . . . , χ̃k} if for any

v ∈ Ñ there exist r1, . . . , rk ∈ N+ such that
∏

i χ̃
ri

i v = 0. In this case,

Ñ = ⊕iÑχ̃i

and each Ñχ̃i
is canonically isomorphic to the localization of the module Ñ at χ̃i. If Ñ

has a finite support and 0 → Ñ ′ → Ñ → Ñ ′′ → 0 is an exact sequence then, for any
χ̃′ ∈ MaxZ(g), the sequence 0 → Ñ ′

χ̃′
→ Ñχ̃′ → Ñ ′′

χ̃′
→ 0 is also exact.

We adopt the similar notation for Z(g0) and U-modules. For a graded g-module Ñ and
a maximal ideal χ of Z(g0) we set

Ñχ;i := Ñχ ∩ Ñi

for i = 0, 1.

2.7.1. Let χ̃ be a strongly typical central character, M̃ be such that χ̃M̃ = 0. Then

Ũ χ̃ ∩ Z(g0) = Ann M̃ ∩ Z(g0) =
∏

χ∈supp
Z(g0) M̃

χr(χ)

where r(χ) is the minimal r such that χrM̃χ = 0. In particular, if χ ∈ MaxZ(g0) is

such that M̃χ is a Verma g0-module then r(χ) = 1. Moreover, any g-module Ñ satisfying
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χ̃Ñ = 0 has a finite support in Z(g) (which is a subset of suppZ(g0) M̃) and one has

χÑχ = 0 if M̃χ is a Verma g0-module.

2.7.2. For a strongly typical χ̃ ∈ MaxZ(g) call χ ∈ MaxZ(g0) a perfect mate if

(i) For any Verma g-module M̃ annihilated by χ̃, the g0-module M̃χ is Verma.

(ii) For any non-trivial g-module Ñ annihilated by χ̃, the g0-module Ñχ is non-trivial.

In [G2], Sect.8 we describe a perfect mate for each strongly typical χ̃ ∈ MaxZ(g).

2.8. For a graded g0-module L denote by Indg
g0
L the vector space Ũ ⊗U L (here Ũ is

considered as a right U-module and a left Ũ-module through the multiplication) equipped

with the natural structure of a left graded Ũ -module. Denote by Coindg
g0
L the vector

space HomU(Ũ , L) (here Ũ is considered as a left U-module) equipped with the following

structure of a left graded Ũ-module: (uf)(u′) := f(u′u) for any f ∈ HomU(Ũ , L), u, u′ ∈

Ũ . For a graded g-module Ñ and a graded g0-module L one has the canonical bijections

Homg0(Ñ , L)
∼

−→ Homg(Ñ,Coindg
g0
L),

Homg0(L, Ñ)
∼

−→ Homg(Indg
g0
L, Ñ).

(1)

By [BF], Indg
g0
L ∼= Coindg

g0
L for any graded g0-module L.

The same formulae define non-graded versions of Indg
g0
L and Coindg

g0
L. The same

canonical bijections (1) take place.

3. Equivalence of Categories for a strongly typical central character

In this section we prove that the category of Ũ-modules Ñ satisfying Ñ = Ñχ̃ is
equivalent to the category of U-modules N satisfying N = Nχ provided χ̃ ∈ MaxZ(g)
is strongly typical and χ ∈ MaxZ(g0) is its perfect mate—see 2.7.2. The corresponding

quasi-inverse functors are given by Ñ 7→ Ñχ and by N 7→ (Indg
g0
N)χ̃. There are two

versions of this result: graded and non-graded. We consider first a non-graded version. A
graded version is easily deduced from the non-graded one.

3.1. Notation. Take a strongly typical χ̃ ∈ MaxZ(g) and let χ ∈ MaxZ(g0). Denote

by C̃r (r ∈ N+) the category of non-graded Ũ -modules Ñ satisfying χ̃rÑ = 0 and by C̃∞

the category of non-graded Ũ -modules Ñ satisfying Ñ = Ñχ̃. Similarly, let Cr be the
category of U-modules N satisfying χrN = 0 and C∞ be the category of U-modules N
satisfying N = Nχ̃. Evidently C̃r is a full subcategory of C̃r+1 and any module in C̃∞ is a

direct limit of modules belonging to C̃r for r → ∞.



8

3.1.1. Let M be a Verma g0-module such that χM = 0. We shall use the following
equality

Ann
Ũ
(Indg

g0
M) = Ũχ

which follows from the fact that Ũ is free over U .

Let us show that

suppZ(g) Indg
g0
N ⊆ suppZ(g) Indg

g0
M (2)

for any N ∈ C∞. Indeed, for any N ∈ C1

AnnZ(g)(Indg
g0
N) ⊇ Ũχ ∩ Z(g) = AnnZ(g)(Indg

g0
M)

that implies the inclusion (2) (for N ∈ C1). Any N ∈ Cr admits a finite filtration with
the factors belonging to C1 and so the inclusion (2) holds for such N . To deduce (2) for
any N ∈ C∞, observe that for any v ∈ Indg

g0
N there exists a finitely generated submodule

N ′ of N such that Indg
g0
N ′ contains v. Since N ′ is finitely generated, it lies in Cr for a

suitable r ∈ N
+. This implies the inclusion (2).

Hence for any N ∈ C∞

Indg
g0
N = ⊕χ̃′∈suppZ(g) Indg

g0
M(Indg

g0
N)χ̃′ (3)

Similarly, choose M̃ such that Ũ χ̃ = Ann M̃ . Then for any Ñ ∈ C̃∞

Ñ = ⊕
χ′∈suppZ(g0) M̃

Ñχ′ . (4)

3.1.2. Consider the map f : Ũ/(Ũχ) → F (M, Indg
g0
M) induced by the natural map

Ũ → F (M, Indg
g0
M) given by u 7→ (m 7→ u⊗m). We claim f is an isomorphism of left Ũ

and right U-modules. Since Ũ is free over U and AnnU M = Uχ, the map f is injective.
Kostant’s Separation Theorem (see [Ko]) states the existence of an ad g0-submodule H ′ of
S(g0) such that the multiplication map provides an isomorphism H ′ ⊗S(g0)

g0
∼

−→ S(g0).
Then

S(g) = Λg1 ⊗ S(g0) = (Λg1 ⊗H ′) ⊗ S(g0)
g0.

Using [BL], 5.4, it is easy to deduce the existence of an ad g0-submodule H of Ũ such

that the multiplication map provides the isomorphism H ⊗ Z(g0) → Ũ . Moreover, H ∼=
Λg1 ⊗ H ′ as an ad g0-module. By 2.6, H ′ ∼= F (M,M) as ad g0-modules. The following
chain of ad g0-isomorphisms

Ũ/(Ũχ) ∼= Λg1 ⊗H ′ ∼= Λg1 ⊗ F (M,M) ∼= F (M, Indg
g0
M)

implies the surjectivity of f .

The bijectivity of f gives the following useful formula

Indg
g0
N = F (M, Indg

g0
M) ⊗U N. (5)

for any N ∈ C1.
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3.2. Fix any χ ∈ MaxZ(g0), χ̃ ∈ MaxZ(g). Define the functors Ψ : C̃∞ → C∞ and

Φ : C∞ → C̃∞ by the formulae

Ψ(Ñ) = Ñχ, Φ(N) = (Indg
g0
N)χ̃.

3.2.1. Lemma. The functor Ψ is left and right adjoint to Φ.

Proof. Using (3), one obtains for any N ∈ C∞, Ñ ∈ C̃∞

Homg(Φ(N), Ñ) = Homg((Indg
g0
N)χ̃, Ñ) = Homg(Indg

g0
N, Ñ) = Homg0(N, Ñ)

= Homg0(N, Ñχ) = Homg0(N,Ψ(Ñ))

and also, using (4),

Homg(Ñ,Φ(N)) = Homg(Ñ , (Indg
g0
N)χ̃) = Homg(Ñ, Indg

g0
N)

∼
−→ Homg(Ñ,Coindg

g0
N)

= Homg0(Ñ, N) = Homg0(Ñχ, N) = Homg0(Ψ(Ñ), N)

where = stands for the natural isomorphisms and
∼

−→ is induced by an isomorphism
Indg

g0
N ∼= Coindg

g0
N (see 2.8).

3.3. Conventions. Fix a strongly typical χ̃ ∈ MaxZ(g) and a Verma g-module M̃ which

is projective in Õ and such that χ̃M̃ = 0. Take χ ∈ MaxZ(g0) such that

(a) M := M̃χ is a Verma g0-module

(b) M̃ = ŨM.
(6)

For instance, one can choose χ to be a perfect mate for χ̃ (see 2.7.2).

Till the end of this section χ̃, M̃ and χ chosen as above are assumed to be fixed.

3.3.1. Theorem. The functors

Ψ : C̃∞ → C∞ Ñ 7→ Ñχ,

Φ : C∞ → C̃∞ N 7→ (Indg
g0
N)χ̃

are mutually quasi-inverse. Moreover, their restrictions provide the equivalence of the

categories C̃r and Cr for any r ∈ N+.

Outline of the proof. We know by 3.2.1 that the functors Ψ,Φ are adjoint. In 3.4.1
we reduce the required assertion to the “case r = 1” that is to the statement that the
restriction Ψ1,Φ1 of the functors Ψ,Φ to the categories C̃1, C1 provide an equivalence of
the categories. Not that 3.4.1 does not use the condition (6).

Observe that the inclusion Ψ1(C̃1) ⊆ C1 immediately follows from 2.7.1, but it is not

clear apriori that Φ1(C1) ⊆ C̃1. To prove that Ψ1,Φ1 provide an equivalence of the

categories we show, using Proposition 3.4.3, that the functor Φ′ : N 7→ F (M, M̃) ⊗U N

provides an equivalence of the categories C1 → C̃1. It is easy to show that Ψ1 is the left
quasi-inverse to Φ′ and so it provides an equivalence of the categories C̃1 → C1. Using
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this fact, we show that Φ(M) ∼= M̃ and deduce that Φ1 is isomorphic to Φ′. This will
complete the proof.

3.4. Proof of Theorem 3.3.1.

3.4.1. Reduction to the case r = 1. The formula (3) implies that Φ(N) is isomorphic to
the localization of Indg

g0
N , considered as a Z(g)-module, at the maximal ideal χ̃ (that is

by the set Z(g) \ χ̃).

Similarly, the formula (4) implies that Ψ(Ñ) is isomorphic to the localization of Ñ ,
considered as a Z(g0)-module, at the maximal ideal χ.

Taking into account that the induction and the localization functors are exact and
commute with direct limits, one concludes that the assertion of Theorem 3.3.1 is equivalent
to the statement that the restrictions Ψ1,Φ1 of the functors Ψ,Φ to the categories C̃1, C1

provide an equivalence of the categories.

3.4.2. Case r = 1. It remains to show that the restriction Ψ1 of Ψ to the subcategory C̃1

and the restriction Φ1 of Φ to the subcategory C1 provide an equivalence of the categories
C̃1 and C1.

We start with the following technical proposition.

3.4.3. Lemma. Assume that Ñ is a g-module, N is a g0-direct summand of Ñ and

Ñ is a g-direct summand of Indg
g0
N . Then the F (Ñ, Ñ)-F (N,N) bimodule F (N, Ñ)

provides a Morita equivalence between the algebras F (N,N) and F (Ñ, Ñ).

Proof. Denote the algebra F (N,N) by A. For any g-module X endow the vector space
F (N,X) with the natural right A-module structure. Since N is a g0-direct summand

of Ñ , A as a right module over itself is a direct summand of F (N, Ñ). To obtain the

statement one has to check that F (N, Ñ) is a finitely generated projective right A-module

and that EndA(F (N, Ñ)) = F (Ñ, Ñ).

Denote Indg
g0
N by I. Recall that as a g0-module I = Λg1 ⊗N . By 2.5.1, F (N, I) is a

free A-module whose rank is equal to the dimension of Λg1. Since Ñ is a direct summand
of I, the A-module F (N, Ñ) is a direct summand of F (N, I). Hence F (N, Ñ) is a finitely

generated projective right A-module. One has EndA(F (N, Ñ)) = pEndA(F (N, I))p where

p ∈ EndA(F (N, I)) is the idempotent with the image F (N, Ñ) corresponding to the de-

composition F (N, I) = F (N, Ñ)⊕F (N,G). By 2.5.1, the left action of F (I, I) on F (N, I)

induces an isomorphism F (I, I)
∼

−→ EndA(F (N, I)). Thus the left action of F (Ñ, Ñ)

on F (N, Ñ) induces an isomorphism F (Ñ, Ñ)
∼

−→ EndA(F (N, Ñ)). The assertion fol-
lows.
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3.4.4. Retain the notation of 3.3. Consider a canonical map Indg
g0
M → M̃ . By the

property (b) of (6), this map is surjective. Recall M̃ is projective in Õ. Consequently,

M̃ is a g-direct summand of Indg
g0
M and so the pair (M̃,M) satisfies the assumptions

of Lemma 3.4.3. From 2.6 it follows that F (M̃, M̃) ∼= Ũχ̃ and F (M,M) ∼= Uχ as algebras.

Taking into account Lemma 3.4.3 one concludes that the functor Φ′ : C1 → C̃1 defined by

Φ′(N) := F (M, M̃) ⊗Uχ
N = F (M, M̃) ⊗U N

provides an equivalence of the categories.

3.4.5. One has

Ψ1 ◦ Φ′(N) = F (M, M̃χ) ⊗U N = F (M,M) ⊗U N = N

since F (M,M) ∼= Uχ. Hence Ψ1 is quasi-inverse to Φ′ and it provides an equivalence of

the categories C̃1 → C1.

Let us verify that the functors Φ1 and Φ′ are isomorphic. Formula (5) implies that

Φ1(N) = F (M, (Indg
g0
M)χ̃) ⊗U N = F (M,Φ1(M)) ⊗U N (7)

for any N ∈ C1. Thus to show that Φ1(N) ∼= Φ′(N) for all N ∈ C1 it is enough to verify
only that

(Indg
g0
M)χ̃

∼= M̃. (8)

As we have shown above, M̃ is a g-direct summand of Indg
g0
M . Thus it is enough to

check that

Homg(Ñ, Indg
g0
M) = 0

for all simple Ñ ∈ C̃1 such that Ñ 6∼= Soc M̃ and that

dim Homg(Soc M̃, Indg
g0
M) = 1.

Recall that Indg
g0
M ∼= Coindg

g0
M (see 2.8) and so

Homg(Ñ , Indg
g0
M) = Homg0(Ñ,M) = Homg0(Ñχ,M).

If Ñ ∈ C̃1 is simple, Ñχ = Ψ1(Ñ) ∈ C1 is also simple. Taking into account that the g0-socle

of M is a simple Verma g0-module, one concludes that Homg0(Ñχ,M) = 0 if Ñχ 6∼= SocM

and dim Homg0(Ñχ,M) = 1 otherwise. If Ψ1(Ñ) = Ñχ
∼= SocM then Ñ ∼= Soc M̃ since

Ψ1 : C̃1 → C1 provides an equivalence of the categories and Ψ1(M̃) = M . This proves (8).

Hence the functors Φ1 and Φ′ are isomorphic. This completes the proof of Theo-
rem 3.3.1.

3.5. Remarks.
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3.5.1. Recall that any Ñ ∈ C̃∞ is generated by Ñχ and so is a homomorphic image

of Indg
g0
Ñχ. Consequently, the restrictions of the functors Ψ,Φ provide an equivalence

between C̃∞ ∩ Õ and C∞ ∩O. The same is true for the categories of weight modules. Also,
one can easily see that the Verma modules of C̃∞ ∩ Õ correspond to the Verma modules
of C∞ ∩O.

3.5.2. Formula (8) which says that Φ(M) ∼= M̃ is crucial for the whole proof. If one had
an independent proof of this formula, one could deduce from it a straightforward proof
of Theorem 3.3.1.

3.6. Graded case. Denote by gr C̃∞ (resp., gr C̃r) the full category of Z2-graded Ũ-

modules Ñ satisfying Ñχ̃ = Ñ (resp., χ̃rÑ = 0). Consider U as a purely even superalgebra

and define similarly gr C∞, gr Cr. Denote by # the forgetful functors gr C̃∞ → C̃∞ and
gr C∞ → C∞.

3.6.1. Evidently any N ′ ∈ C∞ is isomorphic to N# for some N ∈ gr C∞— for instance,
one can consider N ′ as a purely even (odd) module. It turns out that the similar assertion

holds for C̃∞. Indeed, since χ̃ is strongly typical, it contains an element (T 2−c2) for some

non-zero c ∈ C. Denote by Ũ0 the even part of Ũ ; recall that T lies in the centre of Ũ0.
Any Ñ ∈ C̃∞ is a direct sum of the Ũ0-modules N+, N− where

N+ := {v ∈ M̃ | (T − c)rv = 0, ∀r >> 0}, N− := {v ∈ M̃ | (T + c)rv = 0, ∀r >> 0}.

One can define a Z2-grading on Ñ by putting Ñ0 := N+, Ñ1 := N−. In such a way, one
obtains a functor C̃∞ → gr C̃∞ which is left quasi-inverse to the functor #. This implies, in
particular, that for any irreducible graded Ũχ̃-module Ñ , its image Ñ# remains irreducible
(non-graded) module.

3.6.2. Theorem. The functors

Ψgr : gr C̃∞ → gr C∞, Ñ 7→ Ñχ,

Φgr : gr C∞ → gr C̃∞, N 7→ (Indg
g0
N)χ̃

are mutually quasi-inverse. Their restriction provides an equivalence of the categories

gr C̃r and gr Cr for any r ∈ N+.

Proof. Repeating the arguments of Lemma 3.2.1, one shows that the functor Ψgr is left
and right adjoint to the functor Φgr.

The functors Ψ,Φ are quasi-inverse and so the canonical homomorphism αN : N →
Ψ ◦ Φ(N) is an isomorphism for any N ∈ C∞. For any N ∈ gr C∞ denote by αN the
canonical homomorphism N → Ψgr◦Φgr(N). One has #◦Ψgr = Ψ◦# and #◦Φgr = Φ◦#.
Therefore #(αN ) = αN# . Since αN# is an isomorphism, αN is also an isomorphism.
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Similarly, the canonical homomorphism β
Ñ

: Φgr ◦Ψgr(Ñ) → Ñ is an isomorphism for any

Ñ ∈ gr C̃∞. Hence grΨ and gr Φ are quasi-inverse.

The equality Ψgr(gr C̃r) = gr Cr follows from the equality Ψ(gr C̃r) = Cr. This implies
the second claim.

4. An Example

Say that a Ũ-central character is weakly atypical if it is not strongly typical. In this
section we consider a “generic” weakly atypical central characters for g := osp(1, 2l). We

show that, for such a character m ∈ MaxZ(g), the category gr C̃∞ of graded g-modules Ñ

satisfying Ñm = Ñ is equivalent to the category C∞ of g0-modules N satisfying Nχ = N

for an appropriate χ. We see that in this case the category gr C̃∞ is “twice smaller” than
one could expect in the strongly typical case.

Throughout this section all g-modules are assumed to be graded.

4.1. The superalgebra osp(1, 2l) does not have isotropic roots: (β, β) 6= 0 for any β ∈ ∆1.

As a result, osp(1, 2l) has many features of the simple Lie algebras. For instance, Ũ is a
domain, its centre Z(g) is a polynomial algebra and all finite dimensional representations
are completely reducible. In [M1], Musson proved the existence of a harmonic space

H in Ũ : this is an ad g-submodule of Ũ such that the multiplication map provides the
isomorphism H ⊗Z(g)

∼
−→ Ũ .

If M̃ is strongly typical its annihilator is a centrally generated ideal.

Suppose that M̃ is not strongly typical; this means that m := AnnZ(g) M̃ contains T 2.
Then, by [GL1], 6.2,

Ann M̃ = Ũ(TZ(g) + m)

and χ̃ := (TZ(g) + m) is the maximal ideal of the “ghost centre” Z̃(g) = Z(g) + TZ(g).

The ideal Ũ χ̃ is primitive since a Verma module M̃(µ) is simple if µ ∈W (m) is minimal.

Moreover, by [GL1], 5.3, for any simple g0-module V one has

dim Homg0(V, Ũ/(Ann M̃)) =
1

2
dim Homg0(V,H) (9)

where H is the harmonic space mentioned above.

4.2. Retain the notation of 2.4.2. Recall that m ∈ MaxZ(g) is strongly typical iff the
elements λ ∈ W (m) do not belong to the hyperplanes

Sβ := {µ ∈ h∗| (µ+ ρ, β) = 0}
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for β ∈ ∆+
1 . In this section we consider m ∈ MaxZ(g) such that any λ ∈ W (m) belongs

to exactly one hyperplane Sβ that is

∃!β ∈ ∆+
1 : (λ+ ρ, β) = 0. (10)

In particular, m is not strongly typical and so T 2 ∈ m. Set

χ̃ := TZ(g) + m.

For any g-module Ñ the vector space

Ñχ̃ := {v ∈ Ñ | χ̃rv = 0, r >> 0}

is a g-submodule of Ñ . Let gr C̃r (resp., gr C̃∞) be the category of graded g-modules Ñ

satisfying χ̃rÑ = 0 (resp., Ñχ̃ = Ñ). Observe that C̃1 ⊆ C̃
′

1 ⊆ C̃2 where C̃
′

1 is the category

of graded g-modules Ñ satisfying mÑ = 0.

Fix a projective Verma module M̃ annihilated by χ̃. Fix χ ∈ MaxZ(g0) such that

(a) M := M̃χ;0 is a Verma g0-module

(b) M̃ = ŨM.
(11)

(the existence of χ satisfying (11) will be shown in 4.5). Let C∞ (resp., Cr) be the category
of g0-modules N satisfying Nχ = N (resp., χrN = 0).

4.3. Theorem. The functors

Ψ : gr C̃∞ → C∞ Ñ 7→ (Ñ0)χ,

Φ : C∞ → gr C̃∞ N 7→ (Indg
g0
N)χ̃

where the grading on Indg
g0
N = Ũ⊗UN is determined by assuming N to be even, are quasi-

inverse. Moreover their restrictions to gr C̃r and Cr respectively provide an equivalence of

these categories.

Proof. First steps of the proof are the same as those in the proof of Theorem 3.3.1.
Considering Indg

g0
N as the graded module with respect to the grading defined above one

obtains

Homg(Indg
g0
N, Ñ) = Homg0(N, Ñ0)

for any graded g-module Ñ . Repeating 3.2.1, one concludes that the functors Ψ,Φ are
adjoint. Repeating 3.4.1, one reduces the required assertion to “the case r = 1” that is to
the statement that the restrictions Ψ1,Φ1 of the functors Ψ,Φ to the categories gr C̃1, C1

provide an equivalence of the categories.

Evidently, M is a g0-direct summand of M̃ . The embedding M → M̃ gives rise to a
non-zero g-map Indg

g0
M → M̃ . Using M̃ = ŨM and the projectivity of M̃ , one concludes

that M̃ is a g-direct summand of Indg
g0
M . Denote by B the algebra F (M̃, M̃) and by



15

B-Mod the category of B-modules. Taking into account Lemma 3.4.3, one concludes that
the functor Φ′′ : C1 → B-Mod defined by

Φ′′(N) := F (M,M̃) ⊗U N

provides an equivalence of the categories.

The category gr C̃1 is the category of graded modules over the superalgebra A :=
Ũ/(Ũ χ̃). In Proposition 4.7 below we prove that B = A ⊕ Aθ where θ ∈ F (M̃, M̃)
is given by

θ(v) = (−1)d(v)v.

In particular, θ2 = 1 and θa = (−1)d(a)aθ for any a ∈ A. Define the functor Gr : B-

Mod → gr C̃1 as follows: for any X ∈ B-Mod the A-module structure on Gr(X) is given
by “the restriction of scalars” and the grading is given by

Gr(X)0 := {v ∈ X| θv = v}, Gr(X)1 := {v ∈ X| θv = −v}.

It is easy to see that Gr provides an equivalence of the categories B-Mod and gr C̃1. Hence
Φ′ := Gr ◦Φ′′ provides an equivalence of the categories C1 and gr C̃1.

The functor Φ′ : C1 → gr C̃1 is given by the formula N 7→ F (M,M̃) ⊗U N where the

grading on F (M,M̃) is defined by F (M, M̃)i := F (M, M̃i) (i = 0, 1).

The last step of the proof repeats 3.4.5. Indeed,

Ψ1 ◦ Φ′(N) = F (M, (M̃χ;0) ⊗U N = F (M,M) ⊗U N = N

since F (M,M) ∼= Uχ. Hence Ψ1 is quasi-inverse to Φ′ and it provides an equivalence of the

categories C̃1 → C1. Now, in order to verify that the functors Φ1 and Φ′ are isomorphic,
one can simply repeat 3.4.5 for the graded modules.

4.4. The restrictions of the functors Ψ,Φ provide an equivalence between C̃∞ ∩ Õ and
C∞ ∩O and between the corresponding categories of weight modules. The Verma modules
of C̃∞ ∩ Õ correspond to the Verma modules of C∞ ∩O.

4.4.1. The category gr C̃∞ has a canonical involution Π given by

(ΠÑ)0 = Ñ1, (ΠÑ)1 = Ñ0.

This leads to an interesting involution Π′ = Ψ ◦ Π ◦ Φ on the category C∞. One has

N = ((Indg
g0
N)χ̃)χ;0,

Π′(N) = ((Indg
g0
N)χ̃)χ;1

Theorem 4.3 implies that M ′ := M̃χ;1 = Ψ(Π(M̃)) is a Verma g0-module. For N ∈ C1

one has Φ(N) ∼= Φ′(N) and so

Π′(N) = F (M,M ′) ⊗U N.
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4.5. It remains to prove Proposition 4.7 and to find χ ∈ MaxZ(g0) satisfying (11). To
achieve these goals we proceed in a manner similar to [G2], Sect.8.

Call χ ∈ MaxZ(g0) a mate for χ̃ if for a Verma module M̃ annihilated by χ̃ the g0-

modules M̃χ;0, M̃χ;1 are Verma modules. Call χ ∈ MaxZ(g0) a perfect mate for χ̃ if it

is a mate and for a simple highest weight module Ṽ (λ) annihilated by χ̃ the g0-module

Ṽ (λ)χ;0 is non-zero.

In this subsection we construct a perfect mate χ for χ̃ satisfying (10).

4.5.1. The root system of g takes form

∆+
1 = {σi}1≤i≤l, ∆+

0 = {σi ± σj ; 2σi}1≤i<j≤l

and (σi, σj) = δi,j. The Weyl group W acts on {σi}
l
1 by the signed permutations.

Set

Γ : =

{
l∑

1

riσi| ri ∈ {0, 1}

}
,

Γ0 : =

{
l∑

1

riσi| ri ∈ {0, 1},
l∑

1

ri is even

}
,

Γ1 : =

{
l∑

1

riσi| ri ∈ {0, 1},
l∑

1

ri is odd

}
.

Define the action of the Weyl group W on Γ by setting

w∗γ = w(γ − ρ1) + ρ1.

Take an arbitrary λ ∈ h∗ and fix a Z2-grading on a Verma module M̃(λ) in such

a way that a highest weight vector becomes even. As a g0-module, M̃ = M̃0 ⊕ M̃1;
the module M̃(λ)i has a filtration such that the set of factors coincides with the set
{M(λ− γ) : γ ∈ Γi}— see [M1], 3.2.

It is easy to check that for any w ∈W, γ ∈ Γ

w.λ− w∗γ + ρ0 = w(λ− γ + ρ0). (12)

Therefore the g0-central characters of M(w.λ − w∗γ) and M(λ − γ) coincide. Thus the
multiset of g0-central characters of {M(w.λ− γ) : γ ∈ Γ} does not depend on the choice
of w ∈W . Recall that the set

W (χ̃) := {µ ∈ h∗|χ̃M̃(µ) = 0}

forms a single W.-orbit.
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4.5.2. Say that µ, µ′ ∈
∑

i Zσi have the same parity if (µ − µ′) ∈ Z∆+
0 . Suppose that

γ, γ′ ∈ Γ both lie either in Γ0 or in Γ1. This is equivalent to the condition that the
elements γ, γ′ have the same parity. For any w ∈ W one has w∗γ − w∗γ

′ = w(γ − γ′)
and so the elements w∗γ, w∗γ

′ also have the same parity. Hence both w∗γ, w∗γ
′ lie either

in Γ0 or in Γ1. This has the following consequence: the multiset of g0-central characters
of {M(w.λ − γ) : γ ∈ Γ0} coincides either with the multiset of g0-central characters
of {M(λ − γ) : γ ∈ Γ0} or with the multiset of g0-central characters of {M(λ − γ) :
γ ∈ Γ1}. In particular, if χ ∈ MaxZ(g0) is such that for some λ ∈ W (χ̃) one has

M̃(λ)χ = M(λ− γ0)⊕M(λ− γ1) for certain γi ∈ Γi(i = 0, 1) then for any λ′ ∈W (χ̃) the

g0-modules M̃(λ′)χ;i are Verma modules.

4.5.3. Define a lexicographic order on C by setting c1 > c2 if Re c1 > Re c2 or Re c1 =
Re c2 and Im c1 > Im c2.

The condition (10) implies the existence of λ ∈W (χ̃) such that

λ+ ρ =
l∑

1

kiσi, k1, . . . , kl−1 > kl = 0.

Set M̃ := M̃(λ) and
χ = AnnZ(g0)M(λ).

One has ρ1 = 1
2

∑l
1 σi and so

λ+ ρ0 =
l∑

1

(ki +
1

2
)σi.

One easily sees that
λ+ ρ0 − γ ∈W (λ+ ρ0)

only for γ = σl, 0. Therefore χM(λ − γ) = 0 iff γ = σl, 0. This implies M̃χ = M(λ) ⊕
M(λ− σl). By 4.5.2, χ is a mate for χ̃.

4.5.4. Let us show that χ is a perfect mate. Suppose this is not true. Then Ṽ (w.λ)χ;i = 0
for some w ∈W and i ∈ {0, 1}. The equality (12) implies that for any y ∈W

M̃(y.λ)χ = M(y.λ− y∗0) ⊕M(λ− y∗σl)

and so Ṽ (y.λ)χ is a homomorphic image of M(y.λ − y∗0) ⊕M(λ − y∗σl). The module

Ṽ (w.λ) is a homomorphic image of the module M̃(w.λ); denote the kernel of this homo-

morphism by Ñ . The module Ñ has finite length and the factors of its Jordan-Gölder
series have form Ṽ (µ) for some µ ∈ W.λ satisfying µ < w.λ. Since 0 = Ṽ (w.λ)χ;i =

(M̃(w.λ)/Ñ)χ;i , one concludes that the g0-module Ñχ;i = M̃(w.λ)χ;i has a finite filtration
whose factors are quotients of either M(y.λ − y∗0) or M(y.λ − y∗σl) for some y ∈ W

satisfying y.λ < w.λ. Hence the highest weight of M̃(w.λ)χ;i belongs to the set

X := {y.λ− y∗0, y.λ− y∗σl}y∈W s.t. y.λ<w.λ.



18

The module M̃(w.λ)χ;i is isomorphic either to M(w.λ − w∗0) or to M(w.λ − w∗σl).
Therefore either w.λ− w∗0 or w.λ− w∗σl belongs to the set X.

If w.λ − w∗0 = y.λ − y∗0 then, by (12), w(λ + ρ0) = y(λ + ρ0), that is w−1y ∈
StabW (λ+ ρ0). One has

StabW (λ+ ρ0) = StabW (
l∑

1

(kj +
1

2
)σj) ⊆ StabW (

l∑

1

kjσj) = StabW (λ+ ρ)

since k1, . . . , kl−1 > kl = 0. Thus w.λ − w∗0 = y.λ − y∗0 implies w.λ = y.λ. Hence
(w.λ− w∗0) 6∈ {y.λ− y∗0}y∈W,y.λ<w.λ.

If w.λ − w∗0 = y.λ− y∗σl then, by (12), w(λ + ρ0) = y(λ + ρ0 − σl) or, equivalently,
w(λ + ρ0) = ysβl

(λ + ρ0) where sβl
∈ W is the reflection with respect to the root βl.

Therefore w−1ysβl
∈ StabW (λ+ρ0). As we already saw StabW (λ+ρ0) ⊆ StabW (λ+ρ) and

so w−1ysβl
∈ StabW (λ+ ρ). Then w−1y ∈ StabW (λ+ ρ) since sβl

∈ StabW (λ+ ρ). Hence
w.λ−w∗0 = y.λ− y∗σl forces w−1y ∈ StabW (λ+ ρ). We conclude that (w.λ−w∗0) 6∈ X.

Similarly, if w.λ − w∗σl = y.λ − y∗0 then, by (12), w(λ + ρ0 − σl) = y(λ + ρ0). As
we have shown above, this implies w−1y ∈ StabW (λ + ρ). Hence (w.λ − w∗σl) 6∈ {y.λ−
y∗0}y∈W,y.λ<w.λ.

Finally, if w.λ−w∗σl = y.λ− y∗σl then, by (12), w−1y ∈ StabW (λ+ ρ0 − σl). One can
easily deduce from the equality

λ+ ρ0 − σl =
l−1∑

1

(kj +
1

2
)σj −

1

2
σl

that StabW (λ+ ρ0 − σl) ⊆ StabW (λ+ ρ). Thus (w.λ− w∗σl) 6∈ X as required.

Hence {w.λ− w∗0;w.λ− w∗σl} ∩X = ∅. This proves that Ṽ (w.λ)χ;i 6= 0 for i = 0, 1.

4.5.5. Corollary. The ideal χ ∈ MaxZ(g0) described in 4.5.3 is a perfect mate for

χ̃.

4.6. Suppose that χ ∈ MaxZ(g0) is a perfect mate for χ̃.

The ideal Ũ χ̃ is equal to the annihilator of a Verma module M̃ which has a finite
support in Z(g0). Therefore any g-module annihilated by Ũ χ̃ has a finite support in
Z(g0). Arguing as in [G2], 8.3.2, 8.3.3, one can deduce from the definition of perfect

mate that for a graded g-module Ñ annihilated by Ũ χ̃ one has Ñ = ŨÑχ;0. In particular,

Ñχ;0 6= 0 if Ñ 6= 0.

For a graded g-bimodule L set

χLχ;0 := {f ∈ L0| χ
rf = fχr = 0, ∀r >> 0}.

Arguing as in [G2], 8.4 one concludes χLχ;0 6= 0 provided L 6= 0 and χ̃L = Lχ̃ = 0.
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4.7. Proposition. Let M̃ be a Verma module annihilated by χ̃ and let A be the image

of Ũ in F (M̃, M̃) under the natural map. Then

F (M̃, M̃) = A⊕ Aθ

where θ ∈ F (M̃, M̃) is given by

θ(v) = (−1)d(v)v.

Proof. Suppose that M̃ is simple. By [G2], 11.1.5, for any simple g-module Ṽ one has

dim Homg(Ṽ , F (M̃, M̃)) = dim Homg(Ṽ , H) where H is a harmonic space —see 4.1. The

complete reducibility of both H and F (M̃, M̃) forces H ∼= F (M̃, M̃). The element θ is
ad g0-invariant and so A ∼= Aθ as ad g0-modules. In the light of (9), as ad g0-modules H ∼=
A⊕ A. Since the multiplicity of any finite dimensional g0-module in H is finite, in order
to prove the equality F (M̃, M̃) = A⊕Aθ it is enough to show that F (M̃, M̃) = A+Aθ.

Since θu = (−1)d(u)uθ for any u ∈ Ũ , (A + Aθ) is a graded Ũ -subbimodule of F (M̃, M̃).

Let χ ∈ Z(g0) be a perfect mate for χ̃. Then both M := M̃χ;0 and M ′ := M̃χ;1 are Verma

g0-modules. The restriction of endomorphisms of M̃ to M ⊕M ′ induces an isomorphism

χF (M̃, M̃)χ;0
∼

−→ F (M,M) ⊕ F (M ′,M ′).

Recall that the natural maps U/(Uχ) → F (M,M) and U/(Uχ) → F (M ′,M ′) are bijec-

tive; identify χF (M̃, M̃)χ;0 with U/(Uχ) ⊕ U/(Uχ) through these maps. Write

AnnZ(g0) M̃ = χ
s∏

1

χ
rj

j

where suppZ(g0) = {χ, χ1, . . . , χs} and r1, . . . , rs ∈ N+. Take a ∈
∏s

1 χ
rj

j such that a = 1

modulo χ. The image of Ua in F (M̃, M̃) lies in χF (M̃, M̃)χ;0. Since for any u ∈ U the
element ua acts on both M and M ′ by the multiplication by u, the image J of Ua in

χF (M̃, M̃)χ;0 is equal to the diagonal copy of U/(Uχ) inside U/(Uχ) ⊕ U/(Uχ):

J = {(u, u)| u ∈ U/(Uχ)}.

Then Jθ = {(u,−u)| u ∈ U/(Uχ)} and thus

J + Jθ = U/(Uχ) ⊕ U/(Uχ) =χ F (M̃, M̃)χ;0.

Hence

χF (M̃, M̃)χ;0 =χ (A + Aθ)χ;0.

By 4.6, this forces F (M̃, M̃) = A+ Aθ.

We have shown that F (M̃, M̃) = Im Ũ⊕θ Im Ũ provided M̃ is simple. Take an arbitrary

Verma module M̃ satisfying χ̃M̃ = 0. The module M̃ contains a simple Verma submodule
M̃ ′ since Ũ is a domain. Let E be an ad g-submodule of Ũ such that the restriction of
the natural map f ′ : Ũ → F (M̃ ′, M̃ ′) to E provides a bijection E → Im f ′. Then
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F (M̃ ′, M̃ ′) = f ′(E) ⊕ f ′(E)θ. The restriction of the natural map f : Ũ → F (M̃, M̃)

to E provides a bijection E → Im f since ker f = ker f ′ = Ũ χ̃. Suppose that f(u1) =

f(u2)θ for some u1, u2 ∈ E; then (u1 − u2)M̃0 = 0 and so f ′(u1) = f ′(u2)θ that implies

u1 = u2 = 0 since f ′(E) ∩ f ′(E)θ = 0. Therefore f(E) ∩ f(E)θ = 0. Thus F (M̃, M̃)
contains f(E) ⊕ f(E)θ. A Joseph’s reasoning based on the use of GK-dimension, shows

that the map F (M̃ ′, M̃ ′) → F (M̃ ′, M̃) is bijective and the map F (M̃, M̃) → F (M̃ ′, M̃)

is injective (both maps are induced by the embedding M̃ ′ to M̃)— see [J2], 8.3.9 or [G2],

9.2. In particular, F (M̃, M̃) is isomorphic to an ad g-submodule of F (M̃ ′, M̃ ′). On the

other hand, F (M̃, M̃) contains f(E)⊕ f(E)θ which is isomorphic, as an ad g0-module, to

F (M̃ ′, M̃ ′). Since the multiplicity of each finite dimensional g0-module in F (M̃ ′, M̃ ′) is

finite, one concludes that F (M̃, M̃) = f(E) ⊕ f(E)θ = Im f ⊕ θ Im f as required.
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