A Flexible, Scalable and Provably Tight Relaxation for Matching Problems

Nadav Dym*, Haggai Maron*, Yaron Lipman
Weizmann Institute of Science

*equal contributors
Matching
Representing Correspondences
Quadratic Matching

penalty for a pair of matches = $W_{qr,st}$
Quadratic Matching

\[W_{qr,st} = |d_{qs} - d_{rt}| \]
Quadratic Matching

$$\min_{X \in \Pi} \sum_{q,r,s,t} W_{qr,st} X_{qr} X_{st}$$
Quadratic Matching

$$\min_{X \in \Pi} \sum_{q,r,s,t} W_{qr,st} X_{qr} X_{st}$$

$$\min_{X \in \Pi} [X]^T W [X]$$
The Challenge

- Non-convex objective
- Non-convex domain
- NP-hard problem

\[
\min_{X} \quad [X]^T W [X] \\
\text{subject to} \quad X \in \Pi
\]
Doubly Stochastic Relaxation

\[
\min_x [X]^T W [X] \\
\text{subject to } X \in \Pi
\]

- Tractable for \(W \succeq 0 \)

\[X \in \text{conv}\Pi \]
Doubly Stochastic Relaxation

\[
\min_X \quad [X]^T W [X]
\]

subject to \(X \in \text{conv} \Pi \)
Spectral Relaxation

\[
\begin{align*}
\min_{X} & \quad [X]^T W [X] \\
\text{subject to} & \quad \|X\|_F^2 = n
\end{align*}
\]

- Eigenvector problem

[Leordeanu & Hebert 2005]
Spectral Relaxation

\[
\min_X \quad [X]^T W [X]
\]
subject to \[\|X\|_F^2 = n\]
SDP Relaxation

- Tight!
- Not scalable - $O(n^4)$ variables

[Zhao et al. 1998, Kezurer et al. 2015]
Question:
Can we find a tight relaxation without compromising scalability?

[Kezurer et al. 2015]
Our approach

• Construct a parametric family of equivalent problems

• Choose optimal parameter value for relaxation

• Place in relaxation hierarchy
Equivalent formulations

$$[X]^T W [X] - a \left(\| X \|_F^2 - n \right)$$

$$X \in \Pi_n$$
Relaxation

\[
[X]^T W [X] - a \left(\|X\|_F^2 - n \right) \geq E(X, \alpha)
\]

\(X \in \text{conv}(\Pi_n)\)
Goal: Find convex relaxation that generates maximal lower bound
Optimal parameter value

Lemma

For $X \in \text{conv}(\Pi_n)$, $b > a$ we have $E(X, b) > E(X, a)$

⇒ Take maximal a s.t. problem is convex
Optimal parameter value

Solution (1)

Take $a = \lambda_{min}(W)$

\Rightarrow Hessian is $W - \lambda_{min}I \Rightarrow$ convex

Can we do better?

[Fogel et al. 2013, 2015]
Optimal parameter value

Solution (2)

Take $a = \overline{\lambda}_{min} = \lambda_{min}(\mathcal{W}|_{aff(\Pi_n)})$

\Rightarrow convex on $aff(\Pi_n)$
Recap

• We have found an optimal relaxation in the family we proposed. We call it $\text{DS}++$:

$$\min_x [X]^TW[X] - \frac{\lambda_{\min}}{\lambda_{\max}} (\|X\|_F^2 - n)$$

subject to

$$x \in \text{conv}(\Pi_n)$$

• Is it a good relaxation?
 • We show it is
 • Method: compare all relaxations by “embedding” them in a high dim space
Relaxation hierarchy

- Establish a partial order on relaxations

- In our case: partial order == relaxation domain inclusion

- Need to move to a common domain!

[Kezurer et al. 2015]
Relaxation hierarchy

- New variable \((X, Y)\)
- \(Y\) represents quadratic monomials in \(X\)
Relaxation hierarchy

• The **doubly stochastic relaxation** as SDP:

 \[
 \min_{X,Y} \quad \text{tr}(WY) \\
 \text{subject to} \quad Y \succeq [X][X]^T \\
 A[X] = b, \quad [X] \geq 0
 \]

 Similar to \(\text{tr}(WY) = \text{tr}(W[X][X]^T) = [X]^T W[X] \)

 SDP constraint

 Equivalent to \(X \in \text{conv}\Pi_n \)
Relaxation hierarchy

- The **spectral relaxation** as SDP:

$$\begin{align*}
\min_{X,Y} & \quad \text{tr}(WY) \\
\text{subject to} & \quad Y \succeq [X][X]^T \\
& \quad \text{tr}Y = n
\end{align*}$$
Relaxation hierarchy

Theorem

DS++ is equivalent to the following:

\[
\min_{X,Y} \quad \text{tr}(WY)
\]

subject to

\[
Y \succeq [X][X]^T
\]

\[
Ax = b
\]

\[
[X] \succeq 0
\]

\[
\text{tr}Y = n
\]

\[
AY = bx^T
\]

doubly stochastic constraint

Spectral constraint

Additional n^3 constraints!
Corollary (1)

DS++ is more accurate than both the DS and Spectral relaxations!

Corollary (2)

DS++ is less accurate than [Kezurer 15’]
SDP relaxation in n^4 variables

\[
\begin{align*}
\min_{X,Y} & \quad \text{tr}(WY) \\
\text{subject to} & \quad Y \succeq [X][X]^T \\
& \quad Ax = b \\
& \quad [X] \geq 0 \\
& \quad \text{tr}Y = n \\
& \quad AY = bx^T
\end{align*}
\]

Fast!

quadratic program in n^2 variables

\[
\begin{align*}
\min_{X} & \quad [X]^T W [X] \\
& \quad - \lambda_{\min} (\|X\|_F^2 - n) \\
\text{subject to} & \quad x \in \text{conv}(\Pi_n)
\end{align*}
\]
Projection
Natural projection

- **Problem:** what if X^* is not a permutation matrix?
Natural projection

• **Problem:** what if X^* is not a permutation matrix?
• **Common solution:** L_2 projection – does not take functional into account
Natural projection

• Our solution:
 • Solve convex relaxation $E(X, a)$ for optimal $a_0 = \lambda_{\text{min}}$.
 • gradually deform objective from convex to concave by increasing a

Concave objective – guaranteed to get a permutation!
• We use [Solomon et al. 2016] for optimization

[Ogier and Beyer 1990; Zaslavskiy et al. 2009].
Natural projection

\[E(X, a_0) \quad \ldots \quad E(X, a_n) \]
Applications
Applications: shape matching
Applications: shape matching

Inter-Model

Intra-Model

% Correspondences

Error

Error

DS++

[Chen et al. 2015]
Applications: shape matching
Applications: image arrangement

Image metric space

Euclidean grid
Applications: image ordering
Applications: image ordering

Icebergs

Oil rafts

Classrooms

Temples
Applications: image ordering

Before

after
Conclusion

• More accurate relaxation at the same complexity
• Natural projection method
• Works on all convex and concave energies

Limitations / future work

• Best relaxation in n^2 variables?
• Partial matching
• Optimization with Frank-Wolfe scheme
The End

• Code is available online:
 http://www.wisdom.weizmann.ac.il/~haggaim/

• Support
 • ERC Starting Grant (SurfComp)
 • Israel Science Foundation
 • I-CORE

• Thanks for listening!