Chapter

The Semantics of
Statecharts

In the two preceding chapters we described the language of
Statecharts and the associated textual expression language. The
meaning of the various notational constructs in these languages was
discussed on an intuitive level to help the reader grasp how they are
used to specify behavior. This chapter defines the semantics of
Statecharts more rigorously and addresses some of the delicate issues
that arise in working out such a definition. A fuller discussion of the
semantics can be found in Harel and Naamad (1996).

Later chapters of the book introduce additional features of our lan-
guages, and their behavioral meaning is defined in those places in a
way that is consistent with the general principles of the semantics
presented here.

6.1 Execution of the Model

A semantic definition of a language for specifying behavior must be
sufficiently detailed to give rise to a rigorous prescription of how the
model is executed, that is, how it reacts to the inputs arriving from the
environment to produce the outputs. Several times we mentioned that
a model is executed in steps, and in this chapter we explain what
exactly that means. We first present an intuitive view and then get
into a more detailed description.

6.1.1 External changes and system reactions

The input to a reactive system consists of a sequence of stimuli—
events and changes in the values of data elements—that are generat-
ed by the system’s environment. We call them external changes. The

91

92 Chapter Six

system senses these changes and may respond by moving from state to
state along a transition, by performing some actions, or both.

In general, a model can be viewed as a collection of reactions, which are
trigger/action pairs. When external changes occur, they may cause
some of these triggers to be enabled, which causes the corresponding
actions to be performed. We have seen two kinds of reaction so far:

® A reaction related to a transition. Its trigger labels the transition,
and there are three kinds of implied actions: the transfer from state
to state, the actions connected with the exit from and entrance to the
appropriate states, and the actions that appear on the transition
itself. (Recall that when we talk about transitions, we mean the log-
ical compound transitions; see Sec. 4.5.)

e A static reaction associated with being in a state.

At any given moment, only some of the reactions are relevant, depend-
ing on the current states of the system. Later we shall also see reac-
tions that are associated with activities by mini-specs. These become
relevant when their holding activities become active.

In Fig. 6.1, for example, two transition reactions are relevant in state
S1, triggered by £E[C1] and by E[not C1], respectively. The actions
that are performed if E occurs when the system is in state S1 and con-
dition C1 1is true, are: make_false(P1l), generate G, and
make_true (P2) . (Also, of course, S1 is exited and S2 is entered.)
Note that the exiting and entering reactions are linked with all respec-
tive exiting/entering transitions, as if they were part of their labels.
Also, note that because the reaction E/K is associated with S2 and the
event E “lives” only for an instance, the event K is not generated.
Similarly, F/L is active only in S2, and if the event F occurs when the
system is in S1, it will be lost and will have no effect.

We say that the system executes a step when it performs all relevant
reactions whose triggers are enabled. As a result of a reaction, the sys-

[c1]/G

entering/tr! (P2) ;;
E/K;;F/L

exiting/fs! (P1)

[not C1]/H

Figure 6.1 A transition reaction.

The Semantics of Statecharts 93

L4

s2
S11 s21
E/G G
y 4
l s12 l l s22 I
(@)
I s |
s1 82
S11 821
E ex(S11)
4 v
l s12 l 822
(b)
s .)
s1 £ I 2 I[C] (T
(©)

Figure 6.2 Chain reactions.

tem may change its states, generate events, and modify values of
internal data elements. In addition, these can cause derived events to
occur (e.g., changed (D) , if the data-item D changes value) and condi-
tions to change their value (e.g., in (S), if state S is entered). Any of
these resulting changes may, in turn, cause other triggers to be
enabled and, subsequently, other reactions to be executed in the next
step. This has the effect of a chain reaction, and some of the generated
events and value changes can become outputs of the system. A series
of steps representing the system’s responses to the sequence of exter-
nal stimuli and their subsequent internal changes is called an execu-
tion scenario, Or a run. :

Figure 6.2 illustrates three cases of chain reactions, each consisting
of two steps. All start with the system in S1 when the external event E
occurs. The first one, Fig. 6.2a, shows an event G generated by the reac-
tion E/G in one state component S1 and triggering another reaction

94 Chapter Six

(a state transition) immediately thereafter in the orthogonal compo-
nent S2 . In the second case, Fig. 6.2b, the subsequent step in the chain
takes place, triggered by the derived event ex (S11) indicating an exit
from S11. The third case, Fig. 6.2¢, is a little bit more intricate. The
reaction triggered by E causes the system to move to S2, and as a
result the transition labeled by [C] becomes relevant. Assuming that
the condition C is true during the entire scenario, the following step will
take the system to state S3. See also Figs. 4.14 and 4.15, which show
chain reactions in the EWS example.

In all three parts of Fig. 6.2, the reactions are performed sequen-
tially because each somehow entails the other. However, more than
one reaction can occur simultaneously, as in Fig. 6.3. Being in S11
and in S21 when E occurs results in taking the two transitions at the
same time.

Because multiple external changes can occur exactly at the same
time, multiple reactions may be enabled and performed in parallel
components at the same time, too, even when they depend on different
triggers. Moreover, static reactions, even when in the same state, are
not exclusive; that is, a number of them can be performed simultane-
ously. Nevertheless, there are situations when two enabled reactions
are exclusive and cannot both be taken in the same step. One example
involves two transitions exiting from the same state, a situation that
is dealt with in the last section of this chapter. Another example is an
enabled transition exiting a state and an enabled static reaction asso-
ciated with the same state. Here, the transition has priority, and it is
taken, whereas the static reaction is not.

The parallel nature of our models raises a problem regarding the
order in which the actions are performed. Consider Fig. 6.4, in which
the preceding example is enhanced with actions along the transi-
tions. When E occurs, both actions are to be performed in the same
step. The value of Y after carrying out the assignment Y:=X in this
step depends upon whether or not the assignment of 1 to X was per-
formed before. Our semantics resolves this dilemma by postponing

]
S1 S2 .}

s12 | S22 !

Figure 6.3 Multiple transitions taken simultaneously.

The Semantics of Statecharts 95

s1 82
si1i s21

E/X:=1 E/Y:=X

l s12 | S22

Figure 6.4 Multiple actions performed simultaneously.

the actual value updates until the end of the step, when they are car-
ried out “at once,” as we explain shortly. In this way, the evaluation
of expressions that are used in actions is based on the “old” values of
the variables.

It is important to realize that, by our semantics, different actions in
a step are not carried out in any particular order, even when they are
specified in a way that appears to prescribe such an order. For exam-
ple, this includes the three kinds of actions appearing in Fig. 6.1—those
associated with exiting a state, those appearing along transitions, and
those associated with entering a state. The exceptional behavior of
context variables, which are the ones that change their value immedi-
ately during the step (see Sec. 5.2.2), does not destroy the true
concurrency among different actions performed in the same step.
The scope of a context variable is the compound action it is in, and as
such, it influences only the sequential evaluations carried out inside
that action.

In summary, all calculations taking place in a step—both those that
evaluate the triggers and determine the reactions that will be taken
and those that affect the results of the actions—are based on what we
call the status of the system prior to the step execution. The status
includes the states the system is in, the values of variables at the
beginning of the step, the events that were generated in the preceding
step and since then, and some information about the past that we will
discuss later.

Thus an execution scenario consists of a sequence of statuses, start-
ing with the initial (default) one, separated by steps that transfer the
system from one status to another, in response to external stimuli, to
the actions generated in the preceding step, or both. See Fig. 6.5.

6.1.2 The details of status and step

In this section, we describe the contents of the system status and the
algorithm for executing a step. Note that this description does not

96 Chapter Six

step step step step step
O B O—pO 0 O

status status status status status
(initial)

Figure 6.5 An execution scenario.

cover the behavioral aspects related to activities, although where the
additional information is straightforward and does not complicate the
description, we include it. This additional information will be given in
Chaps. 7 and 8.

The status includes:

® Alist of states in which the system currently resides.

® A list of activities that are currently active.

® Current values of conditions and data-items.

= A list of regular and derived events that were generated internally
in the preceding step.

® A list of timeout events and their time for occurrence.

® A list of scheduled actions and their time for execution.

& Relevant information on the history of states.
The input to the algorithm for executing a step consists of:

8 The current system status.

B A set of external changes (events and changes in the values of con-
ditions and data-items) that occurred since the last step.

8 The current time (see the discussion of time in Sec. 6.2).
The step execution algorithm works in three main phases:

1. First phase:

® Calculate the events derived from the external changes and add
them to the list of events (e.g., if a false condition C is set to be
true, the event tr (C) is added to the list).

B Perform the scheduled actions whose scheduled time has been
exceeded, and calculate their derived events.

® Update the occurrence time of timeout events if their triggering
events have occurred.

® Generate the timeout events whose occurrence time has been
exceeded.

The first phase may modify the input status, and the new status is the
one used in the following phases.

The Semantics of Statecharts 97

2. Second phase:

® Evaluate the triggers of all relevant transition reactions to com-
pute the enabled transitions that will be taken in this step (see
following for how conflicts are dealt with).

® Prepare a list of all states that will be exited and entered. This
may involve the use of default entrances and history information.
Note that the lists may contain nonbasic states.

8 Evaluate the triggers of all relevant static reactions to compute
the ones that are enabled. Static reactions in states that are
exited in this step are not included here.

The second phase ends with a list of actions to be performed in the cur-
rent step. Actions specifying the exit from and entrance to states are
included.

3. Third phase:

Update the information on the history of states.

® Carry out all computations prescribed by the actions in the list
produced in the second phase but without event generation or the
value updates called for by the assignments to data-items and
conditions (except for context variables, which are assigned their
new values as the relevant actions are carried out).

B Add scheduled actions from the list produced in the second phase
to the list of scheduled actions.

® Carry out all updates called for by the actions on the list produced
in the second phase. This includes actually making the value
assignments to data-items and conditions, and updating the list
of events (i.e., removing all current events and adding the newly
generated ones).

2 Update the list of current states.

The second phase can end with no enabled reactions. If this occurs, we
say that the system has reached a stationary status, and the third
phase is not performed at all. In such cases, execution will remain sus-
pended until new external changes occur or time is advanced.

6.2 Handling Time

In reactive systems, as opposed to transformational systems, the
notion of sequentiality and its relationship with time is of central
importance. We now discuss this issue.

6.2.1 Sequentiality and time issues

We saw earlier that an execution scenario consists of steps triggered
by external changes and the advancement of time. We also saw that

98 Chapter Six

reactions triggered by such happenings may continue to generate a chain
of steps caused by internal changes. This raises the following questions:

® Can external changes interleave with internal chain reactions or
are the former sensed by the system only after all the internal
happenings end?

® When do external changes stop being accumulated to make place
for the execution of a step?

These questions deal only with the order in which things occur during
execution and do not get into detailed issues involving the quantitative
nature of elapsed time. They are relevant to all kinds of models. On
the other hand, quantitative issues cannot be ignored when the model
contains timeout events and scheduled actions, because time quantifi-
cation appears within them explicitly and the current time must be
used to determine whether these elements affect a particular step.
When such elements are present in a model, we may also ask who
causes time to progress during execution and how does this occur?

The time calculated in dealing with the explicit time expressions
appearing in timeout events and scheduled actions is measured in
terms of some abstract time unit common to an entire statechart.
Different statecharts can have different time units, in which case the
relation between them must be specified prior to model execution.
When the model runs in a real environment or participates in a simu-
lation in which concrete time units, such as seconds and minutes, are
meaningful, the relationship between the model’s time units and the
real clock must be provided.

6.2.2 Time schemes

We now propose two time schemes and show how each of them
addresses these questions. In both schemes we assume that time does
not advance during the step execution itself, which can be viewed as
taking zero time. The actual meaning of this assumption is that no
external changes occur throughout the step, and the time information
needed for any timeout events and scheduled actions in a step is com-
puted using a common clock value.

The synchronous time scheme assumes that the system executes a
single step every time unit. This time scheme is particularly fitting for
modeling electronic digital systems, in which the execution is syn-
chronized with clock signals and external changes can occur between
any two steps. The execution proceeds in cycles, in each of which time
is incremented by one time unit, all external changes that occurred
since the last step are collected, and a step is executed. When different
clocks are assumed for the various components of the model, time is
advanced to the nearest next clock value and only the relevant compo-
nents perform a step.

The Semantics of Statecharts 99

The asynchronous time scheme is more flexible regarding the
advancement of time, and it allows several steps to take place within
a single point in time. In general, external changes can occur at any
moment between steps, and several such changes can occur simulta-
neously. Actually, any implementation of this scheme can choose how
it deals with these possibilities. An execution pattern that fits many
real systems responds to external changes when they occur by execut-
ing the sequence of all steps these changes entail, as in a chain reac-
tion, until it reaches a stationary, stable status. Only then is the
system ready to react to further external changes. Such a series of
steps, initiated by external changes and proceeding until reaching a
stable status, is called a super-step, and when adopting this execution
pattern, time does not advance inside a super-step.

6.3 Nondeterministic Situations

This section discusses the nondeterministic situations that a model
might run into during execution.

6.3.1 Multiple enabled transitions

Consider the simple statechart of Fig. 6.6. When the system is in S1,
there are two relevant outgoing transitions. If E occurs and both C1
and C2 are true, the system does not know which transition to take,
and nondeterminism occurs.

Such a situation occurs when several transitions that cannot be
taken simultaneously are enabled, and no added criterion has been
given for selecting only one. Tools executing the model can make an
arbitrary decision in these situations or can ask the user to decide.

Now consider Fig. 6.7, which shows a portion of the main state-
chart of the EWS example. Assume that we are in the COMPARING
state, which is one of the substates of ON. If the event POWER_OFF
occurs at the same time as OUT_OF_RANGE, two conflicting transi-
tions will be enabled. However, in this case, a nondeterministic sit-
uation will not occur, because the higher-level transition (i.e., the
one from ON to OFF) has priority over the internal transition. The

[Cc1]

Figure 6.6 Potential nondeterminism.

100 Chapter Six

(o o BN

WAITING_FOR | COMPARING
COMMAND
el

POWER_ON OUT_OF RANGE

B

4

OFF POWER_OFF
SETTING_UP GENERATING_
\ - ALARM /

Figure 6.7 Priorities on transitions.

[1

s1 82

s1ll s21

E/X:=1 E/X:=2
\ 4

\ 4
I si2 l l 822 '

Figure 6.8 Write-write racing situation.

criterion for priority of transitions prefers the transition whose
source and target have a higher common ancestor state, if possible.
If the common ancestors of both transitions are identical, then non-
determinism indeed occurs.

6.3.2 Racing

We say that a racing situation occurs if during execution an element is
modified more than once or is both modified and used at a single point
in time. Situations like this usually indicate some problem in the
preparation of the model.

Figure 6.4 showed a case where data-item X is both assigned a value
and used in the same step. It is an example of what we call a read-
write racing situation. Figure 6.8, in contrast, presents a write-write
racing situation. According to the definition of a step presented earlier,
it is clear that multiple assignments to a data-item or a condition in a
single step are meaningless, because the values are updated only at
the end of the step. In a write-write racing situation, the element will
be assigned one of the values arbitrarily.

More information on racing situations can be found in Harel and
Naamad (1996).

