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Abstract

We propose an algorithm for use with multisensor systems that is capable of the following: (a) identify an analyte independently of its

concentration; (b) estimate the concentration of the analyte, even if the system was not previously exposed to this concentration; (c) tell when

an analyte is of a chemical type not previously presented to the system. The algorithm, based upon recent work of Hopfield, uses the

multiplicity of sensors explicitly, and is intuitive and easy to implement. We have tested it against real data, and it exhibits high quality

performance.
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1. Introduction

An electronic nose (eNose) is an analytic device used for

detecting vapor chemicals [1]. It functions using an array of

broadly tuned chemical sensors, i.e. sensors that interact

with a broad range of chemicals with varying strengths.

Consequently, an incoming analyte stimulates many of the

sensors in the array, and elicits a characteristic response

pattern. These patterns are then further analyzed for the

benefit of the specific application.

Classification tasks, designed to determine the identity of

incoming analytes, are by far the most popular form of

analysis. Classification is usually achieved by one of the well

established classical algorithms known from the field of

pattern recognition, such as the k-nearest-neighbors, the

shortest Mahalanobis distance, the linear and quadratic

discriminant analysis, and the multilayer perceptron [2].

There are many applications of such algorithms, e.g. for

quality assessment of food products [3,4], for medical

diagnostics [5], and even in the automobile industry [6].

A classification algorithm designed for a specific problem

has to go through a preliminary training phase, in which it

studies the patterns typical to the problem. During this

phase, the algorithm is fed with samples whose classification

is known in advance. When this phase is finished, the

algorithm can be used to identify samples whose classifica-

tion is not known. Obviously, the algorithm can only identify

the classes that were presented to it during the training

phase. In some cases, it can also reject samples, thus

determining that they do not belong to any of the classes

it has ‘seen’.

This methodology is good as far as it goes. Its main

weakness is in lacking prediction ability. It cannot infer

anything positive regarding information that was not present

during the training phase. We demonstrate this by an exam-

ple. Suppose that during the training phase we used samples

of chemicals a and b in concentrations 100 and 70 ppm,

respectively. Introducing chemical a in concentration

100 ppm to the classification algorithm should not lead to

any special difficulties. However, introducing chemical a in

concentration 70 ppm, or chemical b in concentration

120 ppm, would often reduce the performance of the algo-

rithm. Changing the concentration influences the patterns,

and classification algorithms exhibit increased misclassifi-

cation rates.

The susceptibility of the patterns to concentration poses

unique challenges in the usage of eNoses. An ideal classi-

fication algorithm should cope with this by having the

following two properties:

1. It should identify chemicals independently of their

concentration. This is especially important in applications
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where we do not have full control over the environmental

conditions during the measurement.

2. It should be able to estimate the concentration of the

analyte. This is required in applications where the

concentration has some meaning. For example, if we use

an eNose to alert us to a certain chemical becoming too

concentrated in the surroundings.

The need to deal with the concentration dependency of

eNoses has been long recognized. One possible approach to

dealing with this problem is to treat different concentrations

of the same chemical as if they were different chemicals. For

example, if chemical a is expected to be found within the

concentration range 70–130 ppm, we may train the algo-

rithm on, say, the three concentrations 80, 100 and 120 ppm,

and then classify new samples to one of these three classes.

A nice example of such a study can be found in [7]. The

advantage of this approach is that it leaves us in the well-

studied framework of regular classification theory. However,

its use is limited to cases where the number of chemicals to

be classified is small, and when a crude estimation of their

concentrations suffices. If finer predictions are required, this

approach would turn the number of classes to be trained

upon impractically large. A better approach would be to

design an algorithm that has concentration prediction cap-

abilities. A few attempts in this direction have been reported,

usually using various kinds of relatively complex artificial

neural networks; see, e.g. [8–10].

In this paper, we propose an algorithm that is able to

identify chemicals independently of their concentration, as

well as to quantify their concentration, even if the particular

concentration in question was not present during the training

phase. The algorithm is distinct for its intuitive approach,

and utilizes in a very straightforward way the special proper-

ties of a multisensor system. Besides its concentration

prediction capabilities, the algorithm is equipped with a

reject option, and is thus able to tell when a sample is not one

of the chemicals upon which it was trained. The algorithm is

inspired by the work of Hopfield [11], see next section, who

proposed a similar one to explain how olfactory data ana-

lysis is carried out in the brain.

2. The algorithm

Hopfield [11] proposed an algorithm in an attempt to

explain how the brain deals with olfactory processing tasks

such as identifying chemicals, separating signal from back-

ground, and determining the components of a mixture. The

mammalian olfactory system, including that of human,

consists of 300–1000 different types of olfactory receptors

[12,13]. The Hopfield algorithm explicitly uses this multi-

plicity of receptors, by separately querying each of the

receptors, and making decisions based on all the answers

received. Hopfield assumed the simplest kind of chemical

interaction between an olfactory receptor and an odor

ligand, and so he was able to obtain a simple description

of the concentration-dependency of each individual olfac-

tory receptor. This response function was invertible, and

Hopfield formulated a closed-form expression for the

concentration as a function of the response. Finding the

odor-specific parameters of this closed-form expression is

equivalent, á la Hopfield, to the learning process carried out

in the brain upon sniffing.

We apply similar ideas to eNoses, where the sensors serve

as the analogs of the biological receptors. However, unlike

Hopfield, we do not try to find an analytic expression for the

concentration-dependency of the sensors, but rather measure

these experimentally and invert them by interpolation. Hop-

field had demonstrated his ideas by simulating the olfactory

system, which comprises hundreds of receptors. We show

that in eNose systems, despite the fact that the number of

sensors (typically 10–30) is significantly smaller, the same

principles can be used to construct a powerful and reliable

algorithm.

Assume our eNose consists of m different sensors, and

suppose that it can be exposed to any of n different analytes,

where the concentration of the ith analyte ci can be anywhere

in the range cmin
i � ci � cmax

i (where cmin
i and cmax

i are odor-

specific predetermined constants). We shall hereinafter call

these n analytes candidates. Upon the introduction of a new

sample, our algorithm is able to do the following:

(1) If the sample is one of the n candidates, the algorithm

identifies it and estimates its concentration.

(2) If the sample is not one of the n candidates, the

algorithm rejects it (i.e. it is able to determine that the

sample is from a substance it is unfamiliar with).

2.1. The training phase

Each of the n candidates should be presented to the eNose

in several different concentrations, and the responses are

recorded. The data is then used to construct the n � m

functions

rij ¼ fijðcjÞ; (1)

where rij is the response of the ith sensor to the jth candidate

in concentration cj, for i ¼ 1; . . . ;m, j ¼ 1; . . . ; n, and

cmin
j � cj � cmax

j . Our algorithm requires fijðcjÞ to be mono-

tonic in the range cmin
j � cj � cmax

j , so that it has a well-

defined inverse. Otherwise, there are no constraints on its

shape.

These functions can be evaluated using diverse techni-

ques. If the response is believed to be linear with respect to

the concentration, a linear regression can be used. If some

other analytic shape of the response is speculated, a standard

curve-fitting process can be carried out. Otherwise, inter-

polation algorithms can be applied, such as linear interpola-

tion, or piecewise cubic spline interpolation. In Section 4, we

show some examples of functions fijðcjÞ that were obtained

using piecewise cubic spline interpolation.
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2.2. Classification at work

Being invertible, the functions fijðcjÞ turn each of the

sensors into a kind of concentration sensor. That is, if a

sample of candidate j is measured and elicits a response ri in

sensor i, then this sensor estimates the concentration of the

sample by

cij ¼ f�1
ij ðriÞ: (2)

If we have m different sensors, we get m different estima-

tions of the concentration, c1j; c2j; . . . ; cmj, and we may

supply an overall estimate by taking the average,

�cj ¼
1

m
ðc1j þ c2j þ � � � þ cmjÞ: (3)

The crucial point here is that if the sample is indeed the jth

candidate, the series of estimates c1j; c2j; . . . ; cmj will be all

close to each other, but if the sample is not the jth candidate,

the sensors would produce an array of totally different

estimates. We can, therefore, use the variance

sj ¼
1

m � 1
½ðc1j � �cjÞ2 þ ðc2j � �cjÞ2 þ � � � þ ðcmj � �cjÞ2
;

(4)

to decide the identity of the sample—if sj is small enough

(say lower than some threshold s0), then the sample is

indeed the jth candidate. But, if it is large, the sample must

be different.

The resulting algorithm is described schematically in

Fig. 1, in its simplest form. We have made the algorithm

more robust by adding to it two more components:

(1) Let rmax
ij ¼ fijðcmax

j Þ be the maximal possible response

of sensor i when exposed to candidate j whose

concentration is known to be less than cmax
j . If a

sample elicits a response Ri > rmax
ij , we set

cij ¼ INVALID, meaning that the estimate cij cannot

be reliably obtained.

(2) The functions fijðcjÞ are all very close in values for low

concentrations, since they all should be approximately

zero when the concentration tends to zero. Hence,

when Ri is small enough, sj will be small for any j, and

the reliability of the algorithm would be inadequate.

This is just an expression of the well-known fact that

each sensor has a detection threshold, below which it

cannot be reliably used. It is, therefore, important to set

cmin
j above the detection threshold of the sensors. In

analogy with the previous item, we define

rmin
ij ¼ fijðcmin

j Þ to be the minimal possible response of

sensor i when exposed to candidate j whose concentra-

tion is known to be higher than cmin
j . If a sample elicits

a response Ri < rmin
ij , we set cij ¼ INVALID, meaning

that the estimate cij cannot be reliably obtained.

When calculating the numbers cij, we also count how many

INVALIDs are obtained for each candidate. If for candidate j

we have counted too many of these (typically, more than 2),

we decide that the sample cannot be this candidate.

3. Experimental

The algorithm was tested against data we have collected

using a MOSESII eNose [14] with two sensor modules: an

eight-sensor quartz-microbalance (QMB) module, and an

eight-sensor metal-oxide (MOX) module. Our eNose, there-

fore, consists of m ¼ 16 sensors. The samples were put in

20 ml vials in an HP7694 headspace sampler, which heated

them to 40 �C and injected the headspace content into the

electronic nose in a flow of 25 ml/min. There, the sample

was first introduced into the QMB chamber, whence it

followed to the 300 8C heated MOX chamber. The injection

lasts for 20 s (transient signals), and is followed by a 15 min

purging stage using synthetic air.

In a single measurement, a sensor produces a signal over

time. Hereinafter, we define the response of a sensor in the

traditional way of taking the difference between the max-

imum of the signal and its baseline, although there are more

sophisticated approaches to capturing the information in

such signals; see, e.g. [15].

We collected two different datasets:

� The training dataset was constructed from n ¼ 10 candi-

dates, each measured in six different concentrations.1 The

candidates and their concentrations were chosen so that

they all have comparable ranges of response. The choice

of 10 candidates seems to be rather representative, since

typical eNose applications, reported upon in the literature,

Fig. 1. Schematic flow of the algorithm. Here, n is the number of

candidates, and s0 is a predetermined threshold value.

1 Except for 2,3-butanedione, which was measured only in four

concentrations, and butyl butyrate, which was measured in five

concentrations.
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are usually required to distinguish between only a small

number of stimuli types. Each sample was diluted in poly

ethylen glycol 400 (PEG-400), and the concentrations

were measured in molar fractions (i.e. the ratio between

the number of moles of the sample and the total number of

moles in the solution). The candidates and their measured

concentrations are listed in Table 1. A candidate in a

certain concentration was measured in batches of at least

four successive measurements. In total, this dataset con-

sists of 269 measurements.

� The validation dataset was used to test the performance of

the algorithm. It consisted of three different types of

measurements:

(a) Six candidates were chosen at random and measured

at concentrations (chosen again at random) from

within those that were used during the training phase.

(b) Seven candidates were chosen at random and

measured at concentrations not present during the

training phase.

(c) Four non-candidate chemicals were measured at

seven different concentrations.

The list of measured chemicals and their concentrations is

shown in Table 2. Every chemical in every one of the

concentration was measured twice. In total, this dataset

consists of 40 measurements.

4. Results

4.1. The training phase

In this phase, we construct the functions fijðcjÞ using the

data collected in the training dataset. Each candidate j was

measured in six different concentrations that we denote by

c1
j ; . . . ; c6

j . The corresponding responses of the ith sensor,

denoted r1
ij; . . . ; r

6
ij, are calculated as the average of the

repetitions. The six values ðc1
j ; r

1
ijÞ; . . . ; ðc6

j ; r6
ijÞ are the data

from which we have to evaluate fijðcjÞ. This we did by using

the piecewise cubic spline interpolation of Matlab1,

although other kinds of interpolation can be used. Two

examples of what these functions look like are shown in

Fig. 2. In some cases, the concentration dependency of the

response is very close to linear, as illustrated in Fig. 3. In

such cases, fijðcjÞ can be approximated well by linear

regression on the data.

4.2. Validation against the training dataset

An initial examination of the algorithm would be to test it

against the same dataset that was used to construct it—the

training dataset. Here, we took the threshold value to be

s0 ¼ 0:03 molar fraction, and obtained the following

results:

� All the samples were classified correctly (i.e. 100%

correct classification).

Table 1

The candidates and their concentrations; molar fractions are measured in PEG-400 solution

Candidate Concentrations measured (molar fraction)

1-Methylpyrrole 0.0908 0.1665 0.2306 0.2855 0.3331 0.3747

1-Propanol 0.1055 0.1909 0.2614 0.3206 0.3710 0.4144

2,3-Butanedione 0.0918 0.1316 0.1681 0.2016 – –

2,6-Dimethylpyridine 0.0711 0.1328 0.1867 0.2344 0.2768 0.3147

2-Methyl-2-pentenal 0.0721 0.1345 0.1890 0.2371 0.2797 0.3179

4-Methylanisole 0.0657 0.1233 0.1742 0.2195 0.2601 0.2967

Amyl formate 0.0632 0.0919 0.1189 0.1443 0.1683 0.1910

Butyl butyrate – 0.0983 0.1406 0.1791 0.2142 0.2465

Isoamyl formate 0.0633 0.0920 0.1190 0.1445 0.1685 0.1912

Toluene 0.0770 0.1112 0.1430 0.1726 0.2002 0.2260

Table 2

The chemicals measured in the validation set and their concentrations;

molar fractions are measured in PEG-400 solution

Group Candidate Concentration

(molar fraction)

(a) 1-Methylpyrrole 0.1665

(a) 2,3-Butanedione 0.2016

(a) 2,6-Dimethylpyridine 0.0711

(a) 4-Methylanisole 0.2195

(a) Amyl formate 0.0919

(a) Butyl butyrate 0.1406

(b) 1-Methylpyrrole 0.1998

(b) 1-Propanol 0.1503

(b) 2,6-Dimethylpyridine 0.2113

(b) 2-Methyl-2-pentenal 0.2590

(b) 4-Methylanisole 0.0954

(b) Amyl formate 0.0778

(b) Isoamyl formate 0.1319

(c) Hexyl alcohol 0.1244

(c) Isoamyl propionate 0.0967

(c) Isoamyl propionate 0.1764

(c) Heptyl alcohol 0.1116

(c) Heptyl alcohol 0.2389

(c) cis-3-Hexenyl acetate 0.1009

(c) cis-3-Hexenyl acetate 0.2519
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� The concentrations were predicted with extremely high

precision, the average relative error being 1.4%.

4.3. Validation against the validation dataset

Applying the algorithm to the validation dataset, which is,

of course, a far more difficult task, we still saw a very high

level of performance. In total, 95% of the samples were

correctly classified, with an average relative error of 10% in

prediction the concentration (again, we used s0 ¼ 0:03).

Here, is a more detailed discussion of the performance

with respect to the three aforementioned groups of measure-

ments:

(a) The samples were candidates at concentrations iden-

tical to those presented during the training phase. All

samples were classified correctly, giving 100% accu-

rate classification. Concentrations were predicted with

a precision of 7.8% average relative error. Naturally,

the concentration predictions are slightly inferior with

respect to those obtained for the training dataset. This is

perfectly reasonable, considering that eNose measure-

ments are reproducible up to small drifts in time. When

the same sample is measured at two different times,

small changes in the patterns are usually observed.

Nevertheless, our results show that the repeatability is

good enough to allow for a robust algorithm.

(b) The samples were candidates at concentrations not

present during the training phase. Again, 100% of the

samples were correctly classified (which is inarguably

the most exciting result we have obtained). Concentra-

tions were predicted with a precision of 11.8% average

relative error.

(c) The samples were chemicals not present at all during the

training phase. Taking a rejection as the correct classi-

fication, two measurements were misclassified, giving an

83.3% rate of correct classification. The two samples of

isoamyl propionate at a concentration of 0.18 molar

fraction were erroneously classified as butyl butyrate.

5. Summary and discussion

We have presented an algorithm, inspired by the work of

Hopfield on olfaction, that identifies chemicals presented to

an eNose, regardless of their concentration. Moreover, the

Fig. 2. Two examples of the functions fijðcjÞ. The dots are the measurements, and the solid line is the model built by piecewise cubic spline interpolation. The

left-hand figure depicts the response of one MOX sensor as a function of 1-methylpyrrole concentration, and the right-hand figure depicts the response of one

QMB sensor as a function of 4-methylanisole concentration. Linearity is not important, as long as the curve is monotonic. Molar fractions are measured in

PEG-400 solution.

Fig. 3. Two examples where the functions fijðcjÞ are close to linear. The dots are the measurements, and the solid line is the model built by piecewise cubic

spline interpolation. The left-hand figure depicts the response of one MOX sensor as a function of amyl formate concentration, and the right-hand figure

depicts the response of one QMB sensor as a function of toluene concentration. Molar fractions are measured in PEG-400 solution.
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algorithm can estimate with good precision the concentra-

tion of the sample, and it can detect situations where the

sample is a chemical that has never been presented to the

system before. The algorithm is very intuitive and easy to

implement, and exhibited good performance when applied

to real data.

The algorithm is not limited to eNose systems; it can, in

fact, be applied to any multisensor system in which the

sensors respond monotonically to the stimuli. Our experi-

ments demonstrate that 16 sensors are enough for obtaining

good results. As the number of sensors in the system grows,

performance is expected to be improved. The robustness of

the algorithm is also expected to improve with the increase

in the number of sensors. Actually, one can think of the

response of each sensor as a random variable, from which we

can estimate the concentration. As is the situation in statis-

tical inferences, the estimator (concentration) will be more

accurate as the number of samples (sensors) increases.

One of the attractive features of the algorithm is its

simplicity. Algorithmically speaking, it is clean and simple,

having essentially a single free parameter, s0. We anticipate,

however, that the performance can be further increased if

additional parameters are introduced. We may use a candi-

date-specific s0, that is, candidate j will be rejected if

sj > sj
0, j ¼ 1; . . . ; n, with sj

0 predetermined constants. In

this way, differences in the ‘‘natural’’ variance of different

chemicals may be incorporated. A further generalization of

this idea calls for using a candidate-specific concentration-

dependent s0. Thus, a candidate j will be rejected if

sj > sj
0ð�cjÞ, j ¼ 1; . . . ; n, with sj

0ð�cjÞ predetermined func-

tions. These functions might be constructed during the

training phase similarly to the fij’s.

We would like to point out that our algorithm seems to be

robust with respect to noises. Since inference is done from

each sensor individually, white noises are expected to be

‘‘averaged out’’.

6. Conclusions

The suggested algorithm was demonstrated to have excel-

lent performance when applied to our datasets. This should

serve to convince other researches to see whether it could be

useful for related problems.

The spectrum of applicability of this algorithm appears to

be very broad. It can be used whenever there is a need to

distinguish between different types of stimuli in an uncon-

trolled environment, or whenever there is a need to deter-

mine concentrations, as long as the sensing mechanism is

multidimensional.

References

[1] J.W. Gardner, P.N. Bartlett, Electronic Noses, Principles and

Applications, Oxford University Press, New York, USA, 1999.

[2] A. Webb, Statistical Pattern Recognition, Arnold, London, Great

Britain, 1999.

[3] S. Hahn, M. Frank, U. Weimar, Rancidity investigation on olive oil: a

comparison of multiple headspace analysis using an electronic nose

and GC/MS, in: Proceedings of the 7th International Symposium on

Olfaction and Electronic Nose, ISOEN 2000, pp. 49–50, July 2000.

[4] C. Di Natale, A. Macagnano, E. Martinelli, R. Paolesse, E. Proietti,

A. D’Amico, The evaluation of quality of post-harvest oranges and

apples by means of an electronic nose, Sens. Actuators B 78 (2001)

26–31.

[5] Y.-J. Lin, H.-R. Guo, Y.-H. Chang, M.-T. Kao, H.-H. Wang, R.-I.

Hong, Application of the electronic nose for uremia diagnosis, Sens.

Actuators B 76 (2001) 177–180.

[6] A. Guadarrama, M.L. Rodriguez-Mendez, J.A. de Saja, Conducting

polymer-based array for the discrimination of odours from trim

plastic materials used in automobiles, Anal. Chim. Acta 455 (2002)

41–47.

[7] S.J. Qin, Z.J. Wu, A new approach to analyzing gas mixtures, Sens.

Actuators B 80 (2001) 85–88.

[8] B.-S. Joo, N.-J. Choi, Y.-S. Lee, J.-W. Lim, B.-H. Kang, D.-D. Lee,

Pattern recognition of gas sensor array using characteristics of

impedance, Sens. Actuators B 77 (2001) 209–214.

[9] R.M. Negri, S. Reich, Identification of pollutant gases and its

concentrations with a multisensor array, Sens. Actuators B 75 (2001)

172–178.

[10] J. White, T.A. Dickinson, D.R. Walt, J.S. Kauer, An olfactory

neuronal network for vapor recognition in an artificial nose, Biol.

Cybern. 78 (1998) 245–251.

[11] J.J. Hopfield, Odor space and olfactory processing: collective

algorithms and neural implementation, Proc. Natl. Acad. Sci. USA

96 (1999) 12506–12511.

[12] L. Carmel, D. Harel, D. Lancet, Estimating the size of the olfactory

repertoire, Bull. Math. Biol. 63 (2001) 1063–1078.

[13] D. Lancet, N. Ben-Arie, Olfactory receptors, Curr. Biol. 3 (1993)

668–674.

[14] J. Mitrovics, H. Ulmer, U. Weimar, W. Gopel, Modular sensor

systems for gas sensing and odor monitoring: the MOSES concept,

Acc. Chem. Res. 31 (1998) 307–315.

[15] L. Carmel, S. Levy, D. Lancet, D. Harel, A new feature extraction

technique for electronic noses, in: Proceedings of the 9th Interna-

tional Meeting on Chemical Sensors (ICS2002), Boston, USA, 7–10

July 2002 93 (2003) 67–76.

Biographies

L. Carmel received his BSc in physics at Tel-Aviv University, Israel, in

1991, and his MSc degree in physics at the Technion—Israel Institute of

Technology, in 1998. He is currently completing his PhD studies in the

Department of Computer Science and Applied Mathematics at the

Weizmann Institute of Science, Israel. His research deals with materializ-

ing odor digitization, transmission and reproduction, and it involves many

kind of mathematics (e.g. multivariate data analysis, statistical pattern

recognition), biology (e.g. the sense of smell, receptor repertoires), and

chemistry (e.g. electronic noses, chemical sensors).

N. Sever received her BSc degree in Plant Sciences at the Hebrew

University of Jerusalem, Israel, in 2000. She is currently completing her

MSc studies in the Department of Field Crops, Vegetables and Genetics at

the Hebrew University. Her research deals with molecular biology and

genetic engineering in medicago truncatula. She also works in the

electronic nose laboratory of the Weizmann Institute of Science.

D. Lancet is the Ralph and Lois Silver Professor of Human Genomics at

the Department of Molecular Genetics of the Weizmann Institute of

Science, Rehovot, Israel. He has been Head of the Crown Human

82 L. Carmel et al. / Sensors and Actuators B 93 (2003) 77–83



Genome Center at Weizmann since 1998. Prof. Lancet received his BSc

degree in chemistry at the Hebrew University of Jerusalem in 1970 and

his PhD degree in chemical immunology at the Weizmann Institute in

1978. He headed Weizmann’s Department of Membrane Research and

Biophysics (1995–1997). Lancet pioneered genome research in Israel,

and currently operates Israel’s National Laboratory for Genome

Infrastructure. His research interests include the genetic basis of the

sense of smell and of inherited diseases, formalisms of molecular

recognition and computer models for the origins of life. As part of an

extensive involvement in the bioinformatics scene, his team has

developed GeneCards, a world-known compendium of human genes,

and GeneNote-a whole-genome DNA array register. He received, among

others, the First Takasago Award of the American Association for

Chemoreception Sciences (1986), and the R.H. Wright Award in

Olfactory Research (1998). Lancet is a member of the European

Molecular Biology Organization since 1996.

D. Harel is the William Sussman professor of mathematics at The

Weizmann Institute of Science in Israel, and has been Dean of the Faculty

of Mathematics and Computer Science there since 1998. He is also co-

founder of I-Logix, Inc., Andover, MA. He received his BSc from Bar-Ilan

University in 1974, his MSc from Tel-Aviv University in 1976, and his

PhD from MIT in 1978. He has worked in several areas of theoretical

computer science, including computability, finite model theory and logics

of programs, and in recent years has become involved in other areas,

including software and systems engineering, visual languages, graph

layout, modeling and analysis of biological systems, and smell commu-

nication. He is the inventor of statecharts, and co-inventor of live sequence

charts (LSCs), and was part of the team that designed the Statemate and

Rhapsody tools. He has received a number of awards, including ACM’s

Karlstrom Outstanding Educator Award in 1992. His latest books are

‘‘Dynamic Logic’’ (with Kozen and Tiuryn), MIT Press, 2000, and

‘‘Computers Ltd.: What They Really Can’t Do’’, Oxford, 2000.

L. Carmel et al. / Sensors and Actuators B 93 (2003) 77–83 83


	An eNose algorithm for identifying chemicals and determining their concentration
	Introduction
	The algorithm
	The training phase
	Classification at work

	Experimental
	Results
	The training phase
	Validation against the training dataset
	Validation against the validation dataset

	Summary and discussion
	Conclusions
	References


