
Towards an odor communication system

D. Harel a,*, L. Carmel a, D. Lancet b

a Department of Computer Science and Applied Mathematics, The Weizmann Institute of Science, Rehovot 76100, Israel
b Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot 76100, Israel

Received 25 September 2002; received in revised form 27 September 2002; accepted 12 November 2002

Computational Biology and Chemistry 27 (2003) 121�/133

www.elsevier.com/locate/cbac
Abstract

We propose a setup for an odor communication system. Its different parts are described, and ways to realize them are outlined.

Our scheme enables an output device*/the whiffer*/to release an imitation of an odorant read in by an input device*/the sniffer*/

upon command. The heart of the system is the novel algorithmic scheme that makes the scheme feasible. We are currently at work

researching and developing some of the components that constitute the algorithm, and we hope that the description of the overall

scheme in this paper will help to get other groups to join in this effort.
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1. Introduction

It is generally accepted that the sensory world of most

humans is built up mainly from visual and auditory

impressions, and that other senses, such as smell, have

smaller impact. Nevertheless, it seems that the sense of

smell is often underestimated, and its impact actually

may be overwhelming, directly influencing ancient,

primitive, brain paths; see Schmidt (1978). Interestingly,

humanity has already recognized this a long time ago,

perhaps subconsciously, with scents already playing a

significant role in ancient religious rituals. In our era,

fragrances and flavors have an even greater influence, as

exemplified by their intensive use in the blooming

industries of food and beverage, perfumes and cos-

metics, detergents, and many more. These many appli-

cations require some means of controlling the odor

world. A repertoire of methods in fragrance production

and synthesis has been developed, aiming at safe, cheap,

and reproducible odor fabrication techniques. Still, hard

labor is required for each individual odor fabrication

process, involving tedious, expensive, time consuming

research.

In the last few decades, there have been efforts to

integrate odors into the rapidly evolving world of

modern communication. Adding smells to a personal

computer, a video, a television set, or a mobile phone,

would give rise to a vast number of possible applica-

tions, in the fields of commerce, marketing, computer

games, and many others. However, available odor

technologies seem to be incapable of supporting such

applications, making it necessary to develop novel

technologies. Today, only simple odor manipulations

can be carried out. For example, scented cards are often

inserted as sales promoters in magazines, dispensing a

fragrance when scratched. Similar ‘scratch and sniff’

devices sometimes accompany movies or home televi-

sion. Some recent model of mobile phones contains

small capsules, emitting pre-determined scents when

certain people call. There have even been attempts to

introduce odors by means of air-conditioning systems in

movie theaters and in the workplace. Still, none of the

above comes close to the technological advances in

vision and audition. One of the most salient expressions

of this gap is in modern multimedia. Pictures and sound

are routinely transmitted and exhibited on television,

video or the personal computer. This has not happened

yet with odors.
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What is so difficult about odor communication?

Probably, a combination of technological barriers and

limited understanding of the relevant biology and

psychophysics. Some of the major problems seem to

be the following:

. The underlying physics is complex. Vision and

audition also involve complex physical phenomena,

but photons and sound waves are well-defined

physical objects that follow well-known equations

of a simple basic nature. Specifically, in both cases

sensory quality is related to well-known physics. On
the other hand, the smell of an odorant is determined

by the complex, and only partially understood,

interactions between the ligand molecule and the

olfactory receptor (OR) molecule.

. The biological detection system is high-dimensional.

The nose contains hundreds of different types of

ORs, each of them interacting in different ways with

different kinds of odorants. Thus, the dimensionality
of the sense of smell is at least two orders of

magnitude larger than that of vision, which can

make do with only three types of color receptors.

. Odor delivery technology is immature. While artifi-

cial generation of desired visual and auditory stimuli

is done in high speed and with high quality, smells

cannot be easily reproduced. Nowadays, the best that

can be done is to interactively release extracts that
were prepared in advance.

Much effort has been invested in trying to better

understand the sense of smell and its means of expres-

sion. Relating the smell of a molecule to its three-

dimensional structure (see e.g. the review in Chastrette

(1997)), as well as characterizing ligand�/receptor inter-

actions (see Araneda et al., 2000), are the subject of

intensive research. However, while much progress is

constantly reported, no theory adequately dealing with

olfaction is currently at hand.

In this paper, we focus on the problem of odor

communication, and tackle it from a novel perspective.

We provide a precise definition of an odor communica-

tion system, which would make it possible to release in a

distant location a faithful imitation of any desired odor

recorded elsewhere (even if that odor is not present at

the point of release). We describe both the technological

and the mathematical aspects of such a system. The

‘brains’ of our system is in an algorithmic process that

instructs an output device as to how best to imitate any

specific odor by accurately mixing and releasing its

available odors.

We believe that our system is the first to propose a

scheme for actually carrying out odor communication,

and it is likely to overcome the most disturbing aspects

of the major difficulties mentioned above. Constructing

the algorithm and filling its different blocks with content

requires intensive research, which our group is in the

midst of pursuing. The work combines an experimental

facet, which is needed to quantify odors, as well as a

theoretical facet, which is needed in order to devise the
algorithm.

The next section is devoted to presenting the overall

structure of the odor communication system, and to

describing its various components. Section 3 discusses

the various mathematical spaces of odors relevant to the

algorithm, and their underlying ideas. The algorithmic

scheme itself, with its mixing algorithm, is discussed in

more detail in Section 4. Some additional relevant issues
are dealt with in Section 5, while a summary and

discussion appear in Section 6.

2. An odor communication system

We would like to address the entire problem of

‘reading in’ an unknown odor, and ‘printing it out’ as

faithfully as possible. We believe that the most general

building blocks of such an odor communication system

are as depicted in Fig. 1. At a remote location (Fig. 1a),

we want to use an input device*/the sniffer */to take in
the odor and transform it into a digital fingerprint. At a

different location (Fig. 1b), the fingerprint will be

analyzed*/by the mix-to-mimic (MTM ) algorithm ,

which will instruct an output device*/the whiffer */to

emit a mixture of odorants that will mimic the input

odor well enough to fool a human into thinking that he/

she actually smells it. Prior to all of this, there is also a

considerable amount of preprocessing and preparation.
All of this will be discussed later on.

This setup is in direct analogy with other commu-

nication systems. For example, if we replace the sniffer

by a camera, and the whiffer by a printer, we get a visual

communication system, with the various color coding

(RGB, CMYK, etc.) being analogous to our mixing

technique.

2.1. The sniffer

In the most general sense, a sniffer is a physical device

that can record, or digitize, odorants. In other words, it
takes chemical data and turns it into numbers. Upon the

introduction of an odorant in its inlet, the sniffer

produces a numerical output, which becomes (usually

after some further manipulation) a representation, or a

fingerprint , of the odorant. To be useful in our odor

communication system, we shall further require from a

sniffer to be sufficiently discriminatory, in that it

produces unique fingerprints for all odorants. More-
over, we would like its fingerprints to exhibit some

correlations with the smell perception of their sources.

This is for now a vague requirement, and we shall return
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to it in Section 4.3, when we talk about mappings

between sniffer fingerprints and smell perception.
Ignoring this last requirement, many devices can pass

as candidate sniffers. Any instrument that quantifies a

certain property of chemicals in a unique and reprodu-

cible way suffices. In principle, an apparatus capable of

measuring the boiling point of an odorant could become

a sniffer. However, we can expect the correlation of

boiling points with odor perception to be rather

difficult. A more realistic example is the combination

of a gas chromatograph (GC) and a mass spectrometer

(MS). The GC/MS combination is very popular in

analytical chemistry, and is used to precisely identify

the compounds of a mixture. However, we doubt that it

would make a good sniffer, since we have no reason to

believe that the output it produces has anything to do

with smell perception. From a commercial point of view,

GC/MS suffers from additional disadvantages: it is

expensive, it is large and bulky, and it is complicated

to use, requiring carefully-trained operators. Moreover,

analyzing its results is time consuming, and often sample

preparation is tedious too.

In our opinion, the best candidates to serve as sniffers

are the instruments collectively grouped under the term

electronic noses (eNoses)*/for details see Gardner and

Bartlett (1999) or Nagel et al. (1998)*/which are used

for detecting vapor chemicals. These are analytic

devices, whose main component is an array of non-

specific chemical sensors, i.e. sensors that interact with a

broad range of chemicals with varying strengths. Con-

sequently, an incoming analyte stimulates many of the

sensors in the array, and elicits a characteristic response

pattern. These patterns are then further analyzed for the

benefit of the specific application. The fact that the

biological smelling system also relies on an array of non-

specific receptors (see Section 3.1), gives hope that we

may be able to find significant relationships between the

biological nose and its artificial counterpart. Indeed, we

shall supply strong evidence for the existence of such

relationships in Section 4.3, and they are expected to

become even tighter as sensor technology improves. This

is especially true in light of the promising work on

bioelectronic noses (see Gopel et al., 1998; Ziegler et al.,

1998), in which the usual chemical sensors are replaced

by biosensors that are supposed to work in essentially

the same way as the biological receptors in the nose.

From a commercial point of view, eNoses enjoy several

desired properties: they can be made small and cheap;

they are easy to use, fast to operate, and for most

applications they do not require any special sample

preparation.

The first eNoses were developed during the early

1980s (Persaud and Dodd, 1982), and since then many

different types have been designed, implementing a

variety of sensor technologies. Some are even commer-

cially available. Classification tasks, i.e. determining the

identity of incoming samples, are by far the most

popular applications of eNoses (for more on this, see

Carmel et al. (2002b)). For example, eNoses are used for

quality assessment of food products (Hahn et al., 2000;

Di Natale et al., 2001), for medical diagnostics (Lin et

al., 2001), for environmental control (Negri and Reich,

2001), and even in the automobile industry (Guadar-

rama et al., 2002).

In the electronic realm, as in the biological one, the

desire for sensitivity does not always go well with the

desire for non-specificity. Sensors (or receptors) that are

designed to respond to an assortment of stimuli are

normally characterized by low sensitivity. Indeed,

eNoses are typified by relatively high detection thresh-

olds, on the order of 1�/10 ppm. Although seemingly

problematic, this is not a true stumbling block for an

odor communication system. First, many odor sources

release higher concentrations than this in their immedi-

Fig. 1. The building blocks of an odor communication system.
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ate vicinity. Second, a preliminary step of concentration

enrichment can be always carried out if necessary.

From now on, when we talk about sniffers, we assume

that they are actually eNoses.

2.2. The whiffer

The whiffer is the part of the system that emits the

smell imitation to the surroundings. It must include a

palette of reservoirs containing the odorants it can mix

(hereinafter*/the palette odorants ), a technology to

accurately mix them, and means for releasing them to

the outside world in accurate quantities and with precise

timing. For use by mass consumers, the sniffer should

also have small physical dimensions and be of low cost.
This definition of a whiffer strongly relies on the

assumption that mixtures from within a set of odorants

can mimic, to a reasonable level, any desired smell. This

is reminiscent of the characteristics of RGB color mixing

in vision. The question of whether this assumption is

true for odors has a long history, and has never been

unequivocally decided. It is a delicate issue indeed, and

we will return to it in detail in Section 4.4. We should

point out, however, that the issue of adequate palette

odorants is not identical to the issue of true primary

odors; we actually have reasons to believe that a palette

of about 100 odorants would suffice for most applica-

tions.

The requirements from a whiffer seem simple, but it

turns out that numerous technological barriers must be

overcome in order to satisfy them. In fact, whiffers, as

we have defined them, are not commercially available.

The devices that are closest to being whiffers are the

olfactometers , which have been in use for many years

and are capable of accurately mixing gas samples and

releasing the mixture to the surroundings. They are most

often used together with human panelists for the

purpose of assessing odor emission levels. However, an

olfactometer is not a true whiffer, since it is designed

mainly for diluting carefully prepared gaseous samples.

We think of a whiffer as being more akin to a printer

(say, an ink-jet), with the palette of odorants being

analogous to the color cartridge. Actually, our group

was involved in a startup company, SenseIt Technolo-

gies, Ltd., which later became the R&D branch of

DigiScents Inc., whose goal was to add smells as equal-

rights members to the world of modern communication.

In this company, we developed a whiffer*/the iSmell†

personal scent synthesizer*/which contained a replace-

able cartridge of 60 palette odorants. Unfortunately, the

crash wave that befell so many high-tech companies in

early 2001 did not spare DigiScents, which had to stop

all its activities, sending the iSmell device into hiberna-

tion.

2.3. The mix-to-mimic algorithm

So far, we have discussed the two pieces of hardware.

The heart of the system, however, is in its mathematical
and algorithmic parts. The ultimate role of these is to

instruct the whiffer, based on the input odor detected by

the sniffer, as to how to mix the palette odorants so as to

produce the desired odor perception.

The algorithmic scheme we propose here consists of

several parts, and requires some carefully defined

notation. We now discuss the mathematical spaces of

odor relevant to the scheme, and in the subsequent
section*/the main section of the paper*/we present the

scheme itself, with its justification.

3. Odor spaces

For a proper formulation of the mixing algorithm and

the algorithmic processes around it, we should introduce

the notion of odor space , which will prove to be of a
fundamental importance.

We have already mentioned that a sniffer yields a

numerical representation of molecules. However, it is

not the only entity that does so. Our brain carries out a

similar operation when we sniff, producing a measurable

electrical neuronal activity pattern. We use the term odor

space for any end product of a process that represents

numerically the olfactory information stored in odor
ligands. Specifically, in this paper we are interested in

three kinds of odor spaces*/the sniffer space , the

sensory space , and the psychophysical space .

To start with, we use (o ; c ) to describe an odorant o

in concentration c . An odor space represents (o ; c ) by

the set of numbers d(o ; c ), which we call the odorant

vector , the length of this vector is the dimension of the

odor space.

3.1. The sensory space

The sense of smell is a primeval sense, originating in

early single-cell organisms. In principle, it functions by

taking a sample of the ambient environment and

analyzing its chemical contents. In air-breathing organ-

isms, volatile odorants enter the nasal cavity, where the
primary organ of smell, the olfactory epithelium, re-

sides. This pseudostratified neuroepithelium contains

10�/100 million bipolar sensory neurons, each having a

few dozen mucus-bathed hair-like cellular extensions

known as olfactory cilia. The ciliary membranes harbor

the OR proteins (Lancet and Ben-Arie, 1993), as well as

components responsible for the chemoelectric transduc-

tion process. ORs have all been identified as belonging
to the 7-transmembrane superfamily of G-protein

coupled receptors (Buck and Axel, 1991). The stereo-

specific binding of odorant molecules to the ORs
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initiates a cascade of biochemical events that result in

action potentials that reach higher brain centers.

The number of distinct types of ORs, r , called the

olfactory repertoire size , is believed to be around 1000 in
all mammals (see Carmel et al., 2001). Only recently, the

full sequence of more than 900 human OR genes has

been reported, based on genomic databases (Glusman et

al., 2001). Only about 300 of them are functional in

humans, and the rest are pseudogenes. However, in

other mammals the pseudogene fraction could be much

smaller.

The recognition of odorant molecules occurs in the
brain by a non-covalent binding process akin to that

encountered in many other receptor types, including

hormone and neurotransmitter receptors. However,

while for ‘standard’ receptors there is usually only one,

or very few, natural ligands, ORs are functionally

promiscuous. Therefore, when an odorant (o ; c) ap-

proaches the epithelium, it interacts with many receptor

types, and can be characterized by the vector

dB(o; c)�

R1(o; c)

R2(o; c)

n
Rr(o; c)

0
BB@

1
CCA

with Ri (o ; c ) being the response of the ith type of

receptor molecule to the odorant (o ; c ). We deliberately

do not specify the details of the response, which can be

the fraction of bound receptors, the concentration of
some second messenger, or some other relevant entity. It

is often, in fact, a dynamic function of time. We shall see

later that the exact definition of Ri(o ; c ) is irrelevant to

our algorithm. The r -dimensional odorant vector

dB(o ; c ) describes the way by which the biological

sensory machinery responds to the odorant, so that

terming this odor space the sensory space is appropriate.

An important observation is that all the 105�/106 OR
molecules in the same sensory cell are of the same type,

and thus r is also the number of distinct types of

olfactory sensory neurons.

The olfactory neurons send their axons to the

olfactory bulb (OB), passing in bundles through the

cribriform plate. Here, the first, and rather significant

stage of the higher processing takes place (see Mori et

al., 1999). It is widely believed that important aspects of
odor quality and strength (concentration) perception are

carried out in the OB, and studies have in fact shown

that the OB responds with odor-specific spatio-temporal

patterns (see Joerges et al., 1997). Successive stimula-

tions with the same odorant have been shown to lead to

reproducible patterns of activity. Patterns evoked by low

concentrations were topologically nearly identical to

those evoked by high concentrations, but with reduced
signal amplitude. Within the OB, the OR axons form

contacts with secondary neurons inside ellipsoidal

synaptic conglomerates, called glomeruli. A glomerulus

serves as a synaptic target for neurons expressing only a

single OR type. Consequently, it is not surprising that

the number of glomeruli, estimated to be between 1000

and 2000, is of the same order of magnitude as r . From
our point of view, the important conclusion is that the

OB is stimulated by approximately r distinct types of

nerve cells, which tells us that the entire olfactory

pathway is triggered by the vector dB(o ; c ).

3.2. The psychophysical space

Upon sniffing, three major tasks are performed by the

brain: a qualitative classification of the incoming
odorant, a quantitative estimation of its strength, and

a hedonic decision about its acceptability. The first two

are objective tasks (measuring molecule types and

concentrations), while the last one is more subjective

and will not be dealt with here.

Olfactory classification of a pure chemical or a

mixture is a rather elaborate task. Unlike vision,

audition and even gustation, olfaction is multidimen-
sional, and is believed to involve dozens, if not hundreds

of quality descriptors. Quantitative assessment of these

qualities poses real challenges to research in olfactory

psychophysics. Several experimental techniques have

been proposed, but none with sweeping success (Wise

et al., 2000). They all utilize panels of human assessors,

either trained experts or laymen.

One technique, odor profiling , is a direct approach
that uses human panels to break down an odor into its

qualities. Many olfactory laboratories have each con-

figured their own idiosyncratic odor vocabularies to

achieve odor descriptions that are as objective as

possible. Some vocabularies have been designed for

specific fields like winery (see Chapter 4 of Margalit,

1997; Noble et al., 1984, 1987), or perfumery, while

others have been designed for general purposes (see e.g.
the 146-descriptor vocabulary proposed by Dravnieks

(1985)). Methods have been developed to assign de-

scriptors to an odor, and to give relative weights of

dominance to the different descriptors. The entire

procedure is normally carried out by a human panel of

experts who are familiar with the technique, and who

are capable of distinguishing the different descriptors

with a high degree of accuracy. As appealing as this
might sound, it is quite difficult to obtain coherent

results with profiling, since exact verbal descriptions of

odor perception are too demanding. Human subjects

often find it difficult to describe odor quality verbally,

an observation supported by the fact that most natural

languages have a poor vocabulary for odors, and these

are sometimes described using words borrowed from

other sensory modalities (e.g. cool, green).
Alternatives to the profiling technique use panels to

accomplish simpler, thus perhaps more reliable, tasks,

such as various ways of sorting a group of odors,
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comparing pairs or triples of odors, pointing out

exceptions within groups of odors, etc. Some techniques

collect enough statistics from the panels to be able to

create a distance matrix that quantitatively expresses the
level of dissimilarity between pairs of odors. Various

kinds of multidimensional scaling (MDS) algorithms

can then be applied to the data, resulting in a vector

representation of the odors; see Schiffman et al. (1981).

Whatever quantitative quality assessment technique is

used, an odorant (o ; c ) is eventually represented by the

odorant vector dP(o ; c). We use the symbol l to denote

the dimensionality of the resulting odor space, which we
call the psychophysical space . If one uses odor profiling,

then l is normally in the range 20�/200, and the i th

element of dP(o ; c ) is the human panel’s opinion

regarding the weight of the ith descriptor. If one uses

MDS, l is typically much lower (B/10), and the elements

of dP(o ; c ) do not have precisely describable meaning.

We should emphasize that dP(o ; c ) is concentration

dependent, since the perception of an odorant might
change with concentration.

We might say that while (o ; c ) represents the chemical

o in concentration c , the odorant vector dP(o ; c )

represents the human perception of this odorant, or

simply its odor. From this perspective, the psychophy-

sical space is the one on which we should focus, since the

odor communication system is designed to directly work

within it.
There are profound inter-relations between the psy-

chophysical space and the sensory space. The brain itself

is the tool that maps the r-dimensional odorant vectors

dB(o ; c ) into their corresponding l-dimensional odorant

vectors dP(o ; c). Ignoring dynamical phenomena, such

as adaptation, this mapping is considered robust, in the

sense that identical inputs dB(o ; c), evoke approximately

the same outputs dP(o ; c). This suggests a way to ‘fool’
the human brain: if a certain odorant with a smell

dP(o ; c) elicits a neuronal response dB(o ; c ), then the

same smell would be perceived if we succeed in devel-

oping a mixture of palette odorants that elicits the same

neuronal response. The problem is that gathering data

on the behavior of the olfactory neurons is hard, and not

much information is currently available. Moreover, the

effect of mixtures on neuronal response has not yet been
completely unravelled, making the prediction of the

effect of mixture perception impossible. For this reason,

we would like to avoid the necessity of working with the

odorant vectors dB(o ; c), which leads to working with

sniffers and human panels, as we shall see.

3.3. The sniffer space

The sensors inside an eNose are made using diverse
technologies. Depending on the type of sensor, a certain

physical property is changed as a result of exposure to a

gaseous chemical. During the measurement process, a

signal is obtained by constantly recording the value of

the physical property. Since a typical signal is comprised

of a few hundred measured values, a process of feature

extraction is frequently required, which is the process of
finding a small set of parameters that somehow repre-

sent the entire signal. (For a recent way of dealing with

this issue, see Carmel et al. (2002a).)

The set of features extracted from all the signals in a

single measurement is called the feature vector , and if

there are m features the vector can be viewed as an

odorant vector in the m -dimensional sniffer space .

When exposed to mixtures of chemicals, eNoses
produce a feature vector that reflects the combined

effect of the mixture constituents. Yet, the feature

vectors of a mixture do not noticeably differ in any

aspect from those of pure chemicals, and in this sense

eNoses do not distinguish pure chemicals from mixtures.

Not only is this not a problem, but it is actually a highly

desirable property of the sniffer space, since, as we shall

see in Section 4.4, the same happens in the psychophy-
sical space.

As the brain maps the sensory space into the

psychophysical space, we can think of an analog

algorithm that maps odorant vectors in the sniffer space

to their corresponding odorant vectors in the psycho-

physical space. We shall call this the mapping algorithm ,

and denote it by the function f ; hence, dP(o ; c )�/

f (dS(o ; c )). Questions about whether such a mapping
exists, and how to find it if it does, are postponed to

Section 4.3. In the meantime, we simply state that the

mapping algorithm is one of the major cornerstones of

our overall algorithmic scheme.

4. The MTM algorithm

Now that we are equipped with notions of odor space,
we can redefine the algorithmic scheme in more accurate

terms. Let the whiffer contain n palette odorants, and let

ti stand for the ith of these. We use the generic term

pE
i �vi to denote an odorant vector that constitutes a

representation of palette odorant i in concentration vi in

some odor space E. For example, if E is the sniffer space

S, then pS
i �vi would be the m -dimensional odorant

vector dS(ti ; vi). If E is the psychophysical space P,
then pP

i �vi would be l-dimensional odorant vector

dP(ti ; vi ). In this way, pE
i can be viewed as an operator

that is applied to the concentration vi to yield some

representation of the i th palette odorant in concentra-

tion vi . Notice that we use the symbol vi , rather than c ,

to denote the concentration of the ith palette odorant;

this is to distinguish the palette odorants from other

odorants, for which we use c . We define the mixing

vector v�/(v1, . . ., vn )T to be the list of palette odorant

concentrations in a particular mixture. In accordance

with our earlier notations, we represent a palette mixture
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in the odor space E by PE �v; with v being the mixing

vector and PE being an as-of-yet unspecified operator.

Let (o ; c) be an arbitrary odorant. The role of the

mixing algorithm is to find a mixing vector v , such that
the perception of PE �v is as similar as possible to that of

(o ; c ). More formally, we would like dP(o ; c ) to be as

close as possible to PP �v; i.e. we are seeking

v�arg min
v

½½dP(o; c)�PP �v½½ (1)

with ½½ � ½½ some appropriately chosen norm. The general

scheme of the mixing algorithm discussed above is

described in Fig. 2. The sniffer provides the algorithm

with a measured odorant vector dS(o ; c ). The mapping

algorithm then transforms this vector into the odorant

vector dP(o ; c ) in the psychophysical space. Following

this, based on the specific palette that resides in the
whiffer, the algorithm calculates from Eq. (1) the mixing

vector v , and transmits it to the whiffer. The whiffer

then prepares the corresponding mixture and releases it.

We are now in a position to describe our algorithm. In

the interest of clarifying its dynamics, we have chosen to

describe its development in three stages, each adding a

further complication.

4.1. Fooling the sniffer

Let us consider first the problem of ‘fooling’ the
sniffer. We want to find a way of presenting an eNose S

with a palette mixture that mimics the original odor it

was given. Formally, let (o ; c ) be an odorant, repre-

sented by the m -dimensional odorant vector dS(o ; c).

We want to find a mixing vector v such that when given

PS �v the sniffer S will produce a fingerprint as similar as
possible to the one elicited by (o ; c ) itself. This is a

simplified version of the mixing problem. First, it does

not require any space-to-space mapping, since we are

working in a single space*/the sniffer space. Second,

fooling an eNose, whose fingerprints are relatively

controllable and are easily measured and studied, seems

on the face of it to be simpler than fooling the human

perception. Dealing this problem first will provide us
with insight regarding the solution of the more general

problem.

In analogy with Eq. (1), our task is to find a vector v

that satisfies

v�arg min ½½dS(o; c)�PS �v½½

Notice that unlike Eq. (1), here the odorant vectors

are taken to be in the sniffer space too.
Let us now discuss such a PS in a relatively simple

special case. An m -dimensional sniffer space for a sniffer

S is called linear if it has the following properties:

1) Linearity of response : For an odorant (o ; c), each of

the elements dS
j (o; c); 15/j 5/m , is proportional to

the odorant’s concentration. That is, dS
j (o; c)�

aj(o) �c; where a (o) is an odorant-dependent con-

stant. Denoting a(o)�(a1(o); a2(o); . . . ; am(o))T ;
we can write this property in the compact form

dS(o; c)�c �a(o) (2)

2) Additivity of mixtures : The odorant vector describ-

ing the mixture (o1; c1), (o2; c2), . . ., (ok ; ck ) is the

vector sum of the odorant vectors of the individual

elements,

dS(o; c)�c1 �a(o1)�c2 �a(o2)� . . .�ck �a(ok) (3)

For a linear sniffer, the operators pS
i are simply

multiplications by constant vectors, pS
i �vi�vi �a(ti):

Similarly, the operator PS is just a multiplication by a

matrix, PS �v�A �v; with Aij �ai(tj): If we take ½½ � ½½ to be

the standard Euclidean norm, then finding v is equiva-

lent to solving the well-known least-squares problem ,

v�arg min
v

½½A �v�dS(o; c)½½

Actually, v is constrained to be a non-negative vector,

so we have to solve a constrained version of the

problem; the so-called non-negative least-squares pro-

blem , which is also well-studied; see Bjorck (1996).

Thus, had the sniffer space been linear, the mixing

vector would have been easily calculated as the mini-
mizer of a constrained least-squares problem. But how

linear are real sniffer spaces? Well, within the kinds of

concentration values we are interested in, and with theFig. 2. The schematics of the mixing algorithm.
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sniffer we have been using, our experiments show that

the space is adequately linear.
We have been using the MosesII eNose (Mitrovics et

al., 1998), which is an accurate, laboratory-level, device.

The one in our laboratory consists of 16 sensors made of

two different technologies*/eight metal oxide (MOX)

sensors, and eight quartz crystal microbalance (QMB)

sensors (see Gardner and Bartlett, 1999). The linearity

of the sensors is nicely demonstrated in Fig. 3, where the

responses of a typical MOX sensor (a) and a typical

QMB sensor (b) are plotted as a function of odor

concentration. We computed the response of the sensors

from the time signal as the difference between the peak

and the baseline (see Carmel et al., 2002a for details).

Each dot represents a single measurement, and at least

four repetitions were measured in each concentration.

As can be seen, the concentration-dependency of the

responses is linear to a high extent.

Sometimes, especially with some of the MOX sensors,

we observed a certain deviation from linearity, mostly

for high odor concentrations. However; such non-

linearity does not bother us too much, for two reasons:

first, more advanced concentration-dependency models

can be used to linearize the response. Second, and

maybe more importantly, we do not expect or desire to

have to deal with high odor concentrations in real life

applications. For example, we do not want end users in

typical applications to have too much odor in their

immediate vicinity, for various reasons, which include

the need to be able to switch between odors very fast, the

overwhelming nature of excessive quantities of odor to

the user, as well as the inconvenience to the user’s

vicinity.

Hence, we have rather convincing evidence to the

effect that the first property of linearity for sniffer spaces

is adequately fulfilled for eNoses. We have recently

obtained initial encouraging indications that the second

property is fulfilled too. To this end, we have carried out

the following lab experiment: each of two chemicals is

measured in several concentrations. We then prepare a

1:1 mixture of the two, and measure it in several

concentrations, and we do the same for a 1:3 mixture.

The data thus collected is multidimensional, and we

project it onto two dimensions using principal compo-

nent analysis (see Everitt and Dunn, 1991). As a

characteristic example, Fig. 4 shows the results of this

for ethyl acetoacetate and 4-methyl anisole. The things

to notice are that both the pure chemicals and the

mixtures come out plotted as linear-looking progres-

sions in the principal components (PC) space, with

Fig. 3. Two examples of eNose sensor responses, illustrating their linearity: (a) a metal-oxide sensor response vs. amyl formate concentration; (b) a

quartz-miciobalance sensor response vs. toluene concentration. The dots are the measurements, and the solid line is an interpolation by piecewise

cubic spline interpolation. Molar fractions are measured in poly ethylene glycol 400 solution.

Fig. 4. Example of additivity of mixtures in an eNose space.
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larger concentrations located further from the origin,

and that the 1:1 mixture vector is approximately the

bisector of those of its constituents, and the 1:3 mixture

vector is approximately the bisector of the 1:1 mixture
vector and that of the 75% constituent. Thus we have

both kinds of linearity showing up in the figure.

We are heavily involved these days in carrying out a

detailed analysis of mixing experiments. We hope to be

able to provide weighty evidence that the eNose space is

adequately linear, so that finding the mixing vector can

indeed be carried out by solving a constrained least-

squares problem.

4.2. Fooling a different sniffer

Suppose now that we have two different sniffer

spaces, S2 and S2, with odorant vectors dS1 (o; c) and

dS2 (o; c) of dimensions m1 and m2, respectively. Can we

digitize an odorant (o ; c ) in the first sniffer and then

produce a mixture of palette odorants such that the

second sniffer will be fooled into thinking it to be (o ; c )?
This problem adds an additional element to the one

addressed above, because now we have to deal also with

finding a mapping from one sniffer space to the other.

To the best of our knowledge, no such mapping has ever

been proposed. We are in the process of developing

what we hope will be a satisfactory mapping between the

MosesII eNose (Mitrovics et al., 1998), with its eight

MOX sensors and eight QMB sensors, and the Cyra-
nose320 eNose (http://www.cyranosciences.com), with

32 conducting polymer sensors. We hope to be able to

exhibit a working mapping in the near future.

It is easy to think of specific simple examples where

such a mapping does not exist. For example, the data

provided by a single QMB sensor will probably not

suffice to predict the response of some MOX sensor.

Single sensor eNoes are, however, not realistic. We
claim that for reasonable sniffers, with an adequate

multitude of sensors, a good mapping can indeed be

found. When a sniffer consists of an array of diverse

sensors, it is likely to capture the physical information it

needs for characterizing a certain odorant. At least in

theory, this information is all that is needed in order to

predict the response of another sniffer with similar

information content. Put differently, finding the map-
ping g : S10/S2 is more likely to be possible when m1 is

large, and when the sensors are as diverse as possible. In

our ongoing research, S1 is the MosesII eNose, with its

16 different sensors made up of two completely different

technologies. We feel that this should suffice to enable

us to derive a good mapping function to the Cyra-

nose320 eNose.

Once this mapping is found, we would read in the
input odor in S1, yielding the m1-dimensional odorant

vector dS1 (o; c); and then compute the mapping into the

space S2, yielding the m2-dimensional odorant vector

dS2 (o; c): This vector would then be used, as in Section

4.1, to fool the second sniffer, S2.

4.3. Fooling the human brain

The human nose, with its hundreds of receptor types

and complex biological machinery, can be viewed simply

as a special case of a sniffer. Like any other sniffer, it

takes an odorant (o ; c) and represents it by an odorant

vector dP(o ; c). However, mapping vectors from an

artificial sniffer into the biological human ‘sniffer’ will

probably be far more challenging than mapping one

eNose into another.
The difficulty is in the fact that the two systems, the

biological and the artificial, are very different in the

detection mechanism. The ORs operate on very different

principles than chemical sensors. As mentioned in

Section 2.1, biosensors for eNoses are being developed

by several research groups. Once they are eventually

incorporated in eNoses, this difficulty can be expected to

be removed. Our point here is that even for ‘standard’
eNoses that use conventional chemical sensors, there is

evidence that the resulting fingerprints can be used to

infer psychophysical data. For example, Frank et al.

(2001) have shown that the MosesII eNose can be used

to quantitatively predict the decision of a human panel

regarding the amount of off-odor released from packa-

ging material. Similar work by Gutierrez-Osuna et al.

(2001), has demonstrated the possibility of using eNose
to replace sensory analysis in assessing the effectiveness

of biofilters.

An interesting question that arises in the spirit of

Section 4.1 involves the degree of linearity of the

psychophysical space. If we measure the psychophysical

response as the intensity of perception I (which is not

necessarily the optimal measure), then its concentration

dependency is well studied. Above a certain odorant-
dependent threshold, I grows with the odorant concen-

tration until it reaches some odorant-dependent satura-

tion value. Over a wide range of concentrations between

the threshold and the saturation values, the intensity

usually obeys a power law I (o ; c )�/kcn , with k and n

being odor-specific constants (see Schmidt, 1978). This

is definitely not linear, but it has also been observed that

n is usually close enough to 1 to allow for the linear
approximation I(o ; c ):/k ?c to hold in a reasonable

range of low concentrations. As explained earlier, real

world applications require only low concentrations, thus

this linear approximation might very well be adequate

for the kind of odor communication system we propose.

So far we have discussed the linearity of response. But

what about mixing additivity in the psychophysical

realm? Well, here thing are less clear. The way mixtures
are perceived is still an open question, and no general

rule has been suggested (see Frijters, 1987). It seems that

a simple additive rule, like Eq. (3) will hold in many
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cases. However, some strongly non-linear phenomena

have also been found, see examples in Grosch (2001).

We would like to point out that the question of

whether the psychophysical space is linear or not is
academically interesting, but irrelevant to the scheme we

propose. In our search for the mapping f , we do not

assume linearity of the psychophysical space.

4.4. Palette odorants

Our odor communication system is based on the belief

that there exists a set of palette odorants that can be

mixed so as to mimic (up to a certain tolerance) any
desired odor perception. Since to the best of our

knowledge such an odorant palette has never been

realized, the belief in its existence requires some

justification. We start with a somewhat philosophical

argument, and then provide some experimental observa-

tions to support it.

Relevant research indicates that we may assume that

if two different stimuli elicit identical response of the
ORs, the human perception thereof will be identical.

Thus, it is the response of the receptors that has to be

mimicked. An incoming stimulus elicits a spatio-tem-

poral response of the olfactory nerve cells in the

epithelium. This response is the combined result of

many factors (such as the type of the odorant, its

concentration, and its temporal behavior), and it reflects

the entire available information regarding the specific
stimulus. This information is encoded into the odorant

vector dB, which is considered to be the input for the

cerebral analysis process. Since this process ends up with

the ability to classify the odorant, to estimate its

concentration, and to describe it, all this information

must be somehow included in the response pattern,

yielding the conclusion that identical response patterns

will result in the same sensation regardless of the way
they were formed. It is now reasonable to assume that

any such set of responses can be viewed as a (possibly

non-linear) superposition of patterns, which, when

deciphered, can be reformulated as mixtures of suitably

chosen palette odorants. Thus, if we can prepare a

mixture of palette odorants, whose collective effect on

the olfactory nerve cells is similar to the effect of the

original odorant, the perception of the mixture will very
closely resemble the perception of that odorant.

The fundamental experimental observation that

should be considered here is the fact that a mixture is

usually perceived by humans as a new odor. This is

actually experienced by every individual on a daily basis,

with the distinct aroma of food products, beverages,

coffee, perfumes, etc. all being odorant mixtures com-

prising usually hundreds of different odorous volatile
chemicals. However, it has also been shown experimen-

tally on synthetic blends with only a few constituents

(see Jinks and Laing (2001), and references therein).

Furthermore, the number of glomeruli activated when

sniffing a mixture is similar to that activated when

sniffing pure chemicals (Stewart et al., 1979). Similarly,

the number of odor qualities perceived by a human
panel responding to a mixture is similar to that

perceived when responding to pure chemicals (Jinks

and Laing, 2001).

Thus, mixtures can indeed carry out the mimicry we

need. But how many compounds are needed for a

typical mixture? And how many ingredients are shared

by different mixtures? If, for example, a typical smell is

adequately described by 100 unique compounds on the
average, then it would drive the number of palette

odorants to be impractically large. Fortunately, this is

not the case. It is known that even the most complex

odors can be mimicked by mixtures of a relatively small

number of ingredients. This is nicely seen in the food

industry, where people are interested in generating

certain smell perceptions using simple artificial blends,

known as aroma models (for a review see Grosch
(2001)). Very complex aromas, such as those in wines,

coffee brews, tomato paste, boiled beef and the like, are

made of mixtures of many hundreds of chemicals. Yet,

certain techniques have been designed to extract those

compounds that have the strongest impact on the smell,

and only those are used in the aroma models. Typically,

the original smell is reproduced with 10�/30 compounds

at most. Moreover, as is exemplified in Grosch (2001),
even aroma models of very different odors (such as wine

and basil) may have common ingredients. At the risk of

being overly speculative, we claim that a general-

purpose palette of 100�/300 odorants will be perfectly

adequate for a broad range of applications.

We would like to end this discussion by emphasizing

the differences between the concept of palette odorants,

and the more familiar concept of primary odors. The
latter term is used to describe odor qualities, i.e. the

atomic descriptors of odors, whose discovery has turned

out to be a very difficult problem, still unresolved today.

The research on the subject seems to have been initiated

by Amoore et al. (1964), who originally proposed seven

primary odors. Since then, many followers have sug-

gested alternative lists (Dravnieks, 1985); but none has

been globally accepted. Even the attempts to isolate key
molecular structures, and to identify them with specific

perceptions have been only partially successful (see the

review of Chastrette (1997)), and the general problem

remains unsolved.

Thus, our palette odorants should not be erroneously

identified with the notion of primary odors*/i.e. a

palette odorant does not (necessarily) represent an

odor quality. In fact, the number and identity of the
odor qualities is not needed for our purposes. We think

of the palette odorants as a set of odorant vectors that

adequately (and hopefully efficiently) span the psycho-

physical odor space. As such, the set of palette odorants
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need not be unique, and there could be many satisfac-

tory sets from among which one could choose, based on

secondary factors, such as cost or palette size (more

about this in Section 5).

4.5. Summary of the MTM algorithm

We may summarize the main operations that should

be taken to devise, and then use, the mixing algorithm:

. Devising:

1) Prepare a (preferably large) database of odor-
ants, and pass them through an appropriate

human panel, obtaining the odorant vectors

dP(o ; c ) in the psychophysical space.

2) Measure the same odorants by a sniffer S,

obtaining the odorant vectors dS(o ; c).

3) Learn the mapping f between the sniffer and the

psychophysical spaces.

4) Choose a whiffer palette of size n .
5) Compute the operator PP for the palette

odorants. (This is best done by measuring the

palette odors directly by the human panel;

alternatively, they can be measured by the

sniffer S and then subjected to the mapping f .)

. Using:

1) Sample an input odorant (o ; c ) using the sniffer

S, thus obtaining dS(o ; c ).
2) Map the resulting fingerprint from the sniffer

space to the psychophysical space, dP(o ; c )�/

f(dS(o ; c )).

3) Find the non-negative mixing vector v as the

minimizer of

v�arg min
v

½½dP(o; c)�PP �v½½ (4)

4) Prepare and release a mixture of the palette

odorants according to the vector v .

5. Additional topics

5.1. Choosing the hardware

The algorithmic scheme outlined above can work with

any sniffer and any whiffer. Even an extremely poor

sniffer, that yields very little information, and a primi-

tive whiffer with a small number of palette odorants and

a coarse mixing ability, can be used; the MTM

algorithm will produce results and the whiffer will emit

the computed mixture*/the best possible under the

circumstances. The point is that the results will be
only as good as the hardware, and vice versa: better

hardware will cause our scheme to produce better

results.

The situation regarding sniffers is good. More and

more eNose types are developed, using continuously

improving sensor technologies. We hope that the ideas

presented in this paper will have a productive effect on
eNose manufacturers, since we envision a far broader

spectrum of applications thereof.

Whiffers seem to evolve much more slowly. But, as we

have shown in our design and construction of iSmell†,

the technology is available and the job can be done. We

are confident that building and marketing high-quality

commercial whiffing devices is possible. Indeed, it is

inevitable.

5.2. Choosing the palette

One major aspect of the whiffer can benefit from the

ideas presented here*/the construction of the palette.

The two key features of the palette are its size n and the

particular palette odorants it contains. A palette de-

signer should be concerned with determining both of

these.
In a typical application of our scheme, we expect n to

be given, being constrained by the limitations of the

technology used, by the desired accuracy and by cost.

Let us use the term tolerance , denoted d , to represent a

measure of the extent to which the perception of the

computed mixture PP �v deviates from that of the

original odorant, dP(o ; c). The exact formulation of

the tolerance depends on the specific structure of the
odor spaces involved.

In principle, a larger palette allows for a smaller

tolerance. However, large palettes are more expensive

and more difficult to build, hence a compromise

between palette size and tolerance must be made. If

there were no constraints on the palette, we could simply

choose n to be large enough for the palette to contain all

possible distinct aromas, which is at least in the order of
104, and very far from the ability of current whiffer

technology. To be realistic, we must assume that for the

near future n will be under 300.

As to choosing the palette odorants themselves, we

envision an algorithm which, given the desired size n

and a large collection of candidate odorants, computes

the ‘best’ n odorants for the palette. Such an algorithm

can indeed be constructed, based on ideas similar to the
ones reported upon here, and taking into account

accumulated information about the psychophysical

space (such as the density distribution of the various

odorants). It is not out of the question that such an

algorithm could also be used to tailor special palettes to

specific application areas, to desired tolerance, to

constraints on mixing ratios or quantities, etc.

Another interesting option in palette design is to
adopt a multi-tier approach. There might be advantages

in building the palette so that the palette odorants are

arranged in tiers. In this way, mixtures can be prepared
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by taking larger quantities from the higher levels

(catering for coarser descriptions), adding lower level

odorants to fine-tune the output*/as a kind of ‘salt-

and-pepper’ stage. Of course, the physical reservoirs for
the palette odorants inside the whiffer can then be of

different sizes, reflecting the differences in the typical

use-rates of the various levels.

5.3. Choosing a tolerance

What is a reasonable value for d? We cannot give a

number at this stage, but we can claim that for many

applications, reasonably good performance is expected

even with high tolerance (less accurate mixtures). As

human beings, we are mainly driven by visual and verbal

stimuli. Whenever these are in conflict with olfactory

impressions, the brain tends to ‘twist’ these impressions

so that they fit the visual or verbal input. This leads to
the phenomena known as olfactory illusions (see Herz

and von Clef, 2001), which can be as severe as causing

subjects to think they are actually smelling an odorless

liquid (Slosson, 1899). Consequently, for the average

consumer, poor mimicking ability can be compensated

by visual and verbal cues, at least to some extent. For

example, sniffing a garlic-like substance while watching

a TV pizza commercial, might suffice to convince many
viewers that they are actually smelling pizza.1

Of course, this entire discussion does not hold for

specialized markets that require low tolerance. For

example, a system designed for consumers to choose a

perfume can obviously not allow itself to make any

compromises regarding tolerance.

6. Summary and discussion

We have proposed a rather broad scheme for an odor

communication system. We are hard at work expanding,

refining and implementing its various parts. A notable

part of our current work is in gathering and analyzing
experimental data from eNoses and human panels. The

results so far are very promising, and we shall report

more fully on them in subsequent papers, beyond those

developments appearing in Carmel et al. (2002a,b).

To some extent, our scheme decreases the importance

of investigating structure�/odor relationships (for the

purpose of odor communication, that is). By investigat-

ing the psychophysical space via human panels, we use
‘records’ of the final mental/perception state following a

sniffing, without having to understand the details of the

machinery that led to this state.

The applications of odor communication are far-

reaching. and diverse, and include scented movies,

scented computer games, scented email attachments,

scented commercials, and electronic purchase of odor-
ous products (foods, perfumes, detergents, etc.). Some

of the applications do not require the entire setup, and

can do with only portions of the system. For example,

sniffers can be left out of the day to day usage in cases

where the output is known to be a member of a pre-

determined set of odors; a preprocessing stage can be

carried that will compute the required mixtures in

advance.
Finally, we would like to stress that this paper exhibits

ideas that still require much work in order to fully

materialize. We hope to succeed in interesting other

researchers in our vision, and would like to see broad

efforts in these directions.
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