
PlayGo: Towards a Comprehensive Tool for
Scenario Based Programming

David Harel1, Shahar Maoz2, Smadar Szekely1, and Daniel Barkan1

1Dept. of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
2Dept. of Computer Science 3, Software Engineering, RWTH Aachen University, Germany

ABSTRACT
We present PlayGo, a comprehensive tool for scenario-based
programming, built around the language of live sequence
charts and the play-in/play-out approach [7], which includes
a compiler into AspectJ code and means for debugging the
execution. PlayGo is intended to be a full IDE that ad-
dresses major parts of the vision of Liberating Program-
ming [3]. This paper presents the first version of PlayGo,
which already includes several of the intended capabilities.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Tech-
niques; D.1.7 [Programming Techniques]: Visual Pro-
gramming

General Terms
Design, Languages

Keywords
Live sequence charts, reactive systems, IDE, scenario-based
programming

1. INTRODUCTION
System design and programming is a complex and chal-

lenging task. Many languages, tools, and methodologies
have been developed over the years to make programmers
more successful in producing software and hardware systems
that meet their expectations. In a recent paper [3], the first-
listed author presented a concept/dream, that calls for lib-
erating programming from the need to explicitly construct
the program as a symbolic, textual, or graphical artifact;
from the need to specify requirements (the what) separately
from the actual executable program (the how), with the con-
sequential need to pit one against the other; and from the
need to structure behavior according to the system’s struc-
ture, necessarily having to provide each piece or object with
its full behavior.

In this paper we present the first version of PlayGo, which
will hopefully become a comprehensive IDE that will sup-
port this dream. The present version brings modest man-
ifestations of these ideas to life by implementing and inte-
grating the play-in/play-out approach proposed for scenario-

Copyright is held by the author/owner(s).
ASE’10, September 20–24, 2010, Antwerp, Belgium.
ACM 978-1-4503-0116-9/10/09.

based programming in [7], using the language of live se-
quence charts (LSC) [1, 6].

LSC is a visual language that extends classical message
sequence charts with modalities and modularity, thus en-
abling intuitive and incremental specification of reactive sys-
tems. Play-in is a user-friendly high-level way of entering the
scenario-based behavior and automatically generating the
specification formally in LSCs. The user specifies behavior
directly, by example, on a mock or real GUI of the system
under development. Play-out is a method for executing a
set of modal scenarios directly; the subtle issues around ex-
ecutability are related (among other things) to the fact that
the language can specify allowed, forbidden and mandatory
behavior and the fact that scenarios can be symbolic, with
the classes and methods having to be unified at runtime.
See [7].

PlayGo may be viewed as a vastly extended and broader
elaboration of the initial (and experimental) Play-Engine
tool developed in our group almost a decade ago to support
LSCs and play-in/out [7]. In contrast to the Play-Engine,
PlayGo, even in its initial version, adheres to the UML stan-
dard, and has an open architecture that enables extension
and integrations with other tools. Moreover, execution is
carried out by compilation and not by an interpreter.

Below we give an overview of PlayGo. Additional de-
tails, including screenshots and demos, are available from
http://www.wisdom.weizmann.ac.il/˜playgo/

2. OVERVIEW OF PLAYGO

2.1 Play-In
Play-in is the process of creating (specifying) a scenario

by directly manipulating objects in the GUI of the system
under development [7]. The GUI (which obviously will be
different for the different models specified, and whose con-
struction is not part of the current version of PlayGo) is
assumed to already exist, but it may also evolve as the sys-
tem specification evolves. The user enters events by actually
causing them to happen on the GUI; for example, by click-
ing buttons or entering text in display fields. Each such GUI
operation is immediately and automatically reflected in the
LSC, which is generated on the fly, and in the continuously
accumulating underlying model.

As part of the play-in process, instances and operations
can be added to the LSC. An instance can represent a con-
crete GUI object or can stand for a set of GUI objects that
participate in the scenario. A special type of instance rep-
resents the user, or the environment. Operations represent

359



method calls between the participating objects. In addition,
LSCs may contain conditions, assignments and structural
constructs (e.g., loops).

Technically, PlayGo enables play-in on top of a user-defined
GUI application, which in the current version is prepared
outside PlayGo and is fed into the tool before starting the
play-in process. Currently PlayGo supports GWT-based
web applications [14]. We plan to support additional tech-
nologies in the future. Additionally, the generated LSCs can
be manipulated in the graphical editor, by changing the val-
ues of properties, either from a special properties view or
programmatically, by using the LSC Generic Infrastructure
API provided as part of PlayGo.

2.2 Play-Out
Play-out is the method introduced in [7] for executing LSC

specifications. Every execution of an operation is considered
a step. Following a user action, the system executes a super-
step – a sequence consisting of the steps that follow the user
action, and which terminates either at a stable situation,
where the next event is a user action, or when the entire
execution terminates.

During play-out, the current state of each LSC is repre-
sented by a cut. Given the scenario-based nature of the spec-
ification, a cut may induce multiple events to be simultane-
ously enabled for execution. In this case, the play-out mech-
anism chooses which event to execute based on some strat-
egy. In the “näıve” play-out technique of [7], these choices
are made nondeterministically, and could lead to violations.
In the smarter play-out algorithms of [5, 9], the next step
is carefully computed, using model checking or planning, in
order to help avoid violations.

The current version of PlayGo implements näıve play-out
only. However, this is not done interpreter-like (as in the
Play-Engine), but by a variant of the S2A compiler of [11],
which transforms LSCs into AspectJ code. During compila-
tion, each LSC is statically analyzed and is translated into
a scenario aspect that simulates an automaton whose states
represent cuts and whose transitions are triggered by aspect
pointcuts. Scenario aspects are locally responsible for lis-
tening out for relevant events and advancing the cut state
accordingly. The compilation scheme generates a coordina-
tor, implemented as a separate aspect, which observes the
cut state changes of all active scenario aspects, chooses a
method and proceeds to execute it. S2A follows the “strat-
egy” design pattern to enable integration of various play-out
strategies.

PlayGo provides unique debugging capabilities specially
tailored for scenario-based execution, which include built-in
step and superstep modes. Breakpoints are defined at the
model level, visually, on the charts themselves. The debug-
ger uses cut state information collected from the generated
scenario aspects to display the LSC cuts. This model-level
debugging is integrated with the standard code level debug-
ging, allowing the user work interchangeably on both levels
of abstraction.

During execution, PlayGo can generate model-based traces
[10], which can be used as input for the Tracer tool of [12].

3. IMPLEMENTATION
PlayGo is implemented as a set of Eclipse plugins and is

packaged as an Eclipse product. The decision to choose
Eclipse as the core infrastructure of PlayGo stems from

Eclipse’s strong architecture and its adaptation of exist-
ing standards (such as UML). Eclipse architecture dictates
openness, standard ways to implement extensions and to in-
tegrate with other software modules defined as Eclipse plu-
gins. Furthermore, we believe that the Eclipse approach to
building IDEs, and the set of tools it provides, fit the vision
and principles underlying PlayGo.

PlayGo uses the Eclipse UML2Tools plugin [13] as its
UML library, and extends it with an infrastructure library
that provides an intuitive and generic mechanism for extend-
ing UML2 elements. This generic infrastructure hides the
complexity of UML profiles from the developer, and is used
in PlayGo for defining the UML-compliant variant of LSCs,
which is the source language for our compiler [6]. Most of
the work is done by interface declarations, so the code that
the developer is required to produce is minimal.

Play-in is implemented on top of a user-defined GWT-
based web application. Thus, the resulting target system
can be shared via the internet.

PlayGo is still experimental, and we are working on many
different topics to strengthen the vision of [3] and to broaden
the power and applicability of the tool. Examples include
a natural language interface for play-in [2], synthesis from
scenarios to state-machines [4], implementing a version of
smart play-out [5] and integrating our recent Java library for
scenarios, which would enable one to program the scenarios
directly in Java [8].

4. ACKNOWLEDGMENTS
We thank Guy Weiss for his contributions to the devel-

opment of PlayGo. This research was supported by an Ad-
vanced Research Grant from the European Research Council
(ERC), under the EU’s 7th Framework.

5. REFERENCES
[1] W. Damm and D. Harel. LSCs: Breathing life into message

sequence charts. J. on Formal Methods in System Design,
19(1):45–80, 2001.

[2] M. Gordon and D. Harel. Generating executable scenarios from
natural language. In CICLing, 2009.

[3] D. Harel. Can programming be liberated, period? IEEE
Computer, 41(1):28–37, 2008.

[4] D. Harel and H. Kugler. Synthesizing state-based object
systems from LSC specifications. Int. J. of Foundations of
Computer Science, 13(1):5–51, 2002.

[5] D. Harel, H. Kugler, R. Marelly, and A. Pnueli. Smart play-out
of behavioral requirements. In FMCAD, 2002.

[6] D. Harel and S. Maoz. Assert and negate revisited: Modal
semantics for UML sequence diagrams. Software and Systems
Modeling (SoSyM), 7(2):237–252, 2008.

[7] D. Harel and R. Marelly. Come , Let’s Play: Scenario-Based
Programming Using LSCs and the Play-Engine.
Springer-Verlag, 2003.

[8] D. Harel, A. Marron, and G. Weiss. Programming coordinated
scenarios in Java. In ECOOP, 2010.

[9] D. Harel and I. Segall. Planned and traversable play-out: A
flexible method for executing scenario-based programs. In
TACAS, 2007.

[10] S. Maoz. Model-based traces. In MoDELS 2008 Workshops,
2009.

[11] S. Maoz and D. Harel. From multi-modal scenarios to code:
Compiling LSCs into AspectJ. In ACM SIGSOFT FSE, 2006.

[12] S. Maoz and D. Harel. On tracing reactive systems. Software
and Systems Modeling (SoSyM), 2010.
DOI:10.1007/s10270-010-0151-2

[13] Eclipse UML2Tools.
http://www.eclipse.org/modeling/mdt/?project=uml2tools.

[14] Google Web Toolkit. http://code.google.com/webtoolkit/.

360


