
“Clustering by Composition”—Unsupervised
Discovery of Image Categories
Alon Faktor, Student Member, IEEE and Michal Irani,Member, IEEE

Abstract—We define a “good image cluster” as one in which images can be easily composed (like a puzzle) using pieces from each

other, while are difficult to compose from images outside the cluster. The larger and more statistically significant the pieces are, the

stronger the affinity between the images. This gives rise to unsupervised discovery of very challenging image categories. We further

show how multiple images can be composed from each other simultaneously and efficiently using a collaborative randomized search

algorithm. This collaborative process exploits the “wisdom of crowds of images”, to obtain a sparse yet meaningful set of image

affinities, and in time which is almost linear in the size of the image collection. “Clustering-by-Composition” yields state-of-the-art results

on current benchmark data sets. It further yields promising results on new challenging data sets, such as data sets with very few

images (where a ‘cluster model’ cannot be ‘learned’ by current methods), and a subset of the PASCAL VOC data set (with huge

variability in scale and appearance).

Index Terms—Image clustering, image affinities, category discovery, unsupervised object recognition

Ç

1 INTRODUCTION

AS the amount of visual information in the web grows,
there is an increasing need for methods to organize it

and search in it. In many cases, the images do not contain
any labels or annotations, so we can rely only on their visual
content. Moreover, these images may contain objects or
scenes of any possible category in the world. Thus, it would
be unrealistic to use supervised techniques to automatically
annotate each and every one of them. An alternative
approach is to use unsupervised techniques, such as mining
or clustering, to discover patterns and similarities within an
image collection.

Great progress has been made in previous years in unsu-
pervised mining and clustering of images which are instan-
ces of the same object (e.g., the Notre Dame church), but
taken from different viewing points with perhaps large scale
differences or occlusions. Example of suchworks are those of
[5], [14], [19], which are based on matching SIFT descriptors
around interest points across two images, followed by a geo-
metric verification phase. The reason for their success is
mainly due to the fact that these descriptors indeed have
good repeatedness across different instances of the same
object. However, when dealing with a more general data set
of images,where images contain objects of the same semantic
category, and not instances of the same object, SIFTs around
interest points typically do not performwell.

In this work, we deal with the problem of unsupervised
discovery of visual categories within an image collection.
The goal here is to group the images into meaningful

clusters of images which belong to the same semantic cate-
gory. Existing work on this problem can be broadly classi-
fied to two main families of approaches.

The first family of approaches is based on computing
pairwise affinities between images. An example for this is
the Pyramid Match Kernel of [7], which measures similar-
ity between images according to the subset of matching
local features which is discovered across the images.
Other examples of commonly used pairwise affinities can
be found in the comparison made by [20]. These affinities
are typically based on a global “Bag of Words” represen-
tation of the images.

The second family of approaches is based on unsuper-
vised model discovery. This approach iterates between find-
ing clusters of similar images and learning a model which is
common to each cluster. Such common cluster models can
be common segments [15], common contours [12], [13],
common distribution of descriptors [18], [20], representative
cluster descriptors [9], [11], etc. Many of these methods
require an initialization of the clusters and this is typically
done by using pairwise affinities (e.g., [11] uses the pairwise
affinities of [7]).

Let us consider the following image collection of Ballet
and Yoga images which appears in Fig. 2. Observing these
images, there seems to be no single (nor even few) com-
mon model(s) shared by all images of the same category.
The poses within each category vary significantly from
one image to another, there is a lot of foreground clutter
(different clothes, multiple people, occlusions, etc.), as
well as distracting backgrounds. Therefore, taking an
unsupervised model discovery approach in this case will
most probably not be beneficial. In the absence of an
emerging common cluster model, the performance of
unsupervised model discovery methods will be domi-
nated by their initial pairwise affinities. This stresses the
need for ‘good’ image affinities.

In this paper we suggest to perform clustering of image
collections by computing sophisticated images affinities

� The authors are with the Department of Computer Science and Applied
Math, Ziskind Building, and The Weizmann Institute of Science. Rehovot,
POB 26, Rehovot 76100, Israel.
E-mail: {alon.faktor, michal.irani}@weizmann.ac.il.

Manuscript received 26 Dec. 2012; revised 28 May 2013; accepted 11 Oct.
2013. Date of publication 15 Dec. 2013; date of current version 12 May 2014.
Recommended for acceptance by T. Tuytelaars.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TPAMI.2013.251

1092 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 36, NO. 6, JUNE 2014

0162-8828� 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

based on “Similarity by Composition” [3]. These kind of
affinities are able to handle image collections like the one
which appears in Fig. 2. Although the ballet poses differ
from each other, one ballet pose can be easily composed
from pieces of other ballet poses (Fig. 1). Our approach
detects statistically significant regions which co-occur
between a small subset of the images. Statistically signifi-
cant regions are regions which have a low chance of occur-
ring at random. The reoccurrence of such regions across
images induces strong and meaningful affinities, even if
they do not appear in many images (and thus cannot be
identified as a common model).

We define a “good image cluster” as one in which each
image can be easily composed using statistically significant
pieces from other images in the cluster, while is difficult to

compose from images outside the cluster. We refer to this as
“clustering by composition”. We further show howmultiple
images can be composed from each other simultaneously
and efficiently using a collaborative randomized search
algorithm. Each image ‘suggests’ to other images where to
search for similar regions within the image collection. This
collaborative process exploits the “wisdom of crowds of
images”, to obtain a sparse yet meaningful set of image
affinities, and in time which is almost linear in the size of
the image collection. “Clustering by composition” can be
applied to very few images, as well as to larger data sets,
and yields state-of-the-art results.

The rest of this paper is organized as follows: In Section 2
we provide a high-level overview of our approach, which is
then detailed in Sections 3, 4, and 5. Experimental results
can be found in Section 6.

2 OVERVIEW OF THE APPROACH

Our approach to unsupervised category discovery is based
on computing sophisticated affinities between images. We
consider two images to be similar if they can be easily com-
posed from meaningful pieces of each other—i.e., share
large non-trivial regions. These shared regions are detected
using an efficient randomized search algorithm, which is
further boosted by using collaborative search between the
different images within the collection. This collaborative
randomized search generates a sparse set of meaningful
affinities in time which is linear in size of the collection and
without having to compute all the pairwise affinities. The
three main components of our approach are overviewed
below.

1. Image affinities by composition: Our image affinities are
based on “Similarity by Composition” [3]. The notion of
composition is illustrated in Fig. 1. The Ballet image I0 is
composed of a few large (irregularly shaped) regions from
the ballet images I1 and I2. This induces strong affinities
between I0 and I1; I2. The larger and more statistically

Fig. 2. Clustering Results on our Ballet-Yoga data set. This data set contains 20 Ballet and 20 Yoga images (all shown here). Images assigned to the
wrong cluster are marked in red. We obtain mean purity of 92:5 percent (37 out of 40 images are correctly clustered). Note there seems to be no single
(nor even few) ‘common model(s)’ (e.g., common shapes or segments) shared by all images of the same category. Therefore, methods for unsuper-
vised ‘learning’ of a shared ‘cluster model’ will most likely fail (not only due to the large variability within each category, but also due to the small num-
ber of images per category).

Fig. 1. Compositions used for computing image affinities. The affinity
between images is high if they can be composed from each other like a
simple “puzzle” using large non-trivial regions. Note that these regions
are typically NOT ‘good image segments’ and therefore cannot be
extracted ahead of time by image segmentation. What makes them
‘good regions’ for the composition is the fact that they co-occur across
images, yet are statistically significant.

FAKTOR AND IRANI: “CLUSTERING BY COMPOSITION”—UNSUPERVISED DISCOVERY OF IMAGE CATEGORIES 1093

significant those regions are (i.e., have low chance of occur-
ring at random), the stronger the affinities. The ballet image
I0 could probably be composed of Yoga images as well.
However, while the composition of I0 from other ballet
images is very simple (a ‘toddler puzzle’ with few large
pieces), the composition of I0 from yoga images is more
complicated (a complex ‘adult puzzle’ with many tiny
pieces), resulting in low affinities. These affinities are quan-
tified in Section 3 in terms of the “number of bits saved” by
describing an image using the composition, as opposed to
generating it ‘from scratch’ at random. To obtain reliable
clustering, each image should have ‘good compositions’
from multiple images in its cluster, resulting in high affinity
to many images in the cluster. Fig. 1 illustrates two different
‘good compositions’ of I0.

Note that the regions employed in our composition are
not the standard image segments commonly used as
image regions (as in [8], [15]). They are not confined by
image edges, may be a part of a segment, or may contain
multiple segments. Such regions are not extracted ahead
of time via image segmentation, but are rather determined
by their co-occurrence in another image. In other words,
what makes them ‘good regions’ is NOT them being ‘good
segments’, but rather the fact that they co-occur across
images, yet, are statistically significant (non-trivial).

The regions are image-specific, and not cluster-specific. A
region may co-occur only once within an image collection.
However, since it has a low chance of occurring at random,
the fact that it was found in another image provides high
evidence to the affinity between those two images. Such an
infrequent region cannot be ‘discovered’ as a ‘common clus-
ter shape’ from the collection (as in [12], [13]). Employing
the co-occurrence of non-trivial large regions, allows to take
advantage of high-order statistics and geometry, even if
infrequent, and without the necessity to ‘model’ it. Our
approach can therefore handle also very small data sets
with very large diversity in appearance (as in Figs. 2 and 4).
These notions are explained in detail in Section 3.

2. Randomized detection of shared regions: When describing
our “affinity by composition”, we assumed the shared
regions are known, but in practice these shared regions have
to be automatically detected between the different images.
However, since the regions can be of arbitrary size and
shape, the region detection is in principle a hard problem
even between a pair of images (let alone in a large image col-
lection). Therefore, we propose a randomized search algo-
rithm which ensures that shared regions between two
images will be detected efficientlywith a high probability.

Our randomized search algorithm is inspired by
“PatchMatch” [1], [2], but searches for similar regions (as
opposed to similar patches or descriptors). We represent an
image by computing N patches (or descriptors) at some
dense image grid and consider a region in the image to be
an ensemble of patches (or descriptors) along with their rel-
ative positions within the region. We show that when ran-
domly sampling descriptors across a pair of images, and
propagating good matches between neighboring descrip-
tors, large shared regions can be detected in linear time
OðNÞ. In fact, the larger the region, the faster it will be
found, and with higher probability. We refer to this collabo-
ration between descriptors as exploiting the “wisdom of

crowds of pixels” for efficient detection of shared regions
between two images. Section 4 explains the randomized
region search and provides analysis of its complexity.
Examples of detected shared regions can be found in Figs. 7
and 10.

3. Efficient “collaborative” multi-image composition: Cluster-
ing a collection of M images, should in principle require
computing “affinity by composition” between all pairs of
images—i.e. a complexity of OðNM2Þ, where N is the num-
ber of densely sampled patches (or descriptors) in each
image. However, we show that when all the images in the
collection are composed simultaneously from each other,
they can collaborate to iteratively generate with very high
probability the most statistically significant compositions in
the image collection. Moreover this can be achieved in run-
time almost linear in the size of the collection (without hav-
ing to go over all the image pairs).

Images collaborate by ‘giving advice’ to each other where
to search in the collection according to their current matches.
For example, looking at Fig. 1, image I0 has strong affinity to
images I1; . . . ; I4. Therefore, in the next iteration, I0 can
‘encourage’ I1; . . . ; I4 to search for matching regions in each
other. Thus, e.g., I3 will be ‘encouraged’ to sample more in I1
in the next iteration. Note that the shared regions between I1
and I3 need not be the same as those they share with I0. For
example, the entire upper body of the standing man in I3 is
similar to that of the jumping lady in the center of I1.

More precisely, we suggest the following collaborative
randomized multi-image composition algorithm (see
Fig. 3). Our randomized search is applied to the entire col-
lection of images in an iterative fashion. At the first itera-
tion, each descriptor in each image, samples descriptors
uniformly from the image collection. After propagating
matches between neighboring descriptors, we obtain region
matches which are used to compute initial affinities
between images. Then in the next iterations, instead of using
a uniform sampling, each descriptor samples in a non-uni-
form way according to suggestions made by other images,
to which it had high affinities in the previous iteration.

This process produces within a few iterations a sparse set
of reliable affinities (corresponding to the most significant
compositions). Such sparsity is essential for good image
clustering, and is obtained here via ‘collective decisions’
made by all the images. The collaboration reduces the
computational complexity of the overall composition dra-
matically, to OðNMÞ. In other words, the average complex-
ity per image remains very small—practically linear in the
size of the image OðNÞ, regardless of the number of images M
in the collection! We refer to this as exploiting the “wisdom
of crowds of images” for efficient image clustering. These
ideas are described in detail in Section 5.

3 COMPUTING IMAGE AFFINITIES BY COMPOSITION

‘Similarity by Composition’ [3] defines a similarity measure
between a ‘Query image’ Q and a ‘Reference image’ Ref ,
according to the ‘ease’ of composing Q from pieces of Ref .
Computing this measure requires finding regions which
are shared by the two images. For now, we will assume
those regions are given to us, but later in Section 4 we will
show how to automatically detect them efficiently. Below

1094 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 36, NO. 6, JUNE 2014

we review the main concepts of the ‘Similarity by
Composition’ framework, as well as describe our own
method for computing it.

Estimating the likelihood of a shared region R: A region R is
represented as an ensemble of densely sampled descriptors fdig,
with their relative positions flig within R. Let pðRjRef; T Þ
denote the likelihood to find the region R � Q in another
image Ref at a location/transformation denoted by T . This
likelihood is estimated by the similarity between the
descriptors of R and the corresponding descriptors (accord-
ing to T) in Ref :

pðRjRef; T Þ ¼ 1

Z

Y

i

exp� DdiðRef; T Þj j2
2s2

; (1)

where DdiðRef; T Þ is the error between the descriptor

di 2 R � Q and its corresponding descriptor (via T) in Ref
and Z is a normalization factor. We use the following approxi-

mation of the likelihood of R, pðRjRefÞ according to its best

match in Ref :

pðRjRefÞ , max
T

pðRjRef; T ÞpðT Þ: (2)

(This forms a lower bound on the true likelihood).

In our current implementation, the descriptors fdig were
chosen to be two types of descriptors (estimated densely
in the image, every other pixel): HOG [6] and local self-
similarity (LSS) [16]. These two descriptors have comple-
mentary properties: the first captures local texture informa-
tion, whereas the second captures local shape information
while being invariant to texture (e.g., different clothing). We
assume for each region R a uniform prior pðT Þ on the trans-
formations T over all pure shifts. We further allow small
local non-rigid deformations of R (slight deviations from
the expected (relative) positions flig of fdig). Scale invari-
ance is introduced separately (see Section 5.2).

The ‘Statistical Significance’ of a region R: Recall that we
wish to detect large non-trivial recurring regions across
images. However, the larger the region, the smaller its likeli-
hood according to Eq. (2). In fact, tiny uniform regions have

the highest likelihood (since they have lots of good matches
in Ref). Therefore, it is not enough for a region to match
well, but should also have a low probability to occur at ran-
dom. This is obtained by:

Likelihood RatioðRÞ ¼ pðRjRefÞ
pðRjH0Þ : (3)

This is the likelihood ratio between the probability of generat-

ing R from Ref , versus the probability of generating R at

Fig. 3. The full scheme of our collaborative clustering algorithm. The algorithm starts with uniform random sampling across the entire collection. The
connections created between images induce affinities between images. At each iteration, the sampling density distribution of each image is re-
estimated according to ‘suggestions’ made by other images. Finally, the resulting affinities are fed to the N-Cut algorithm to obtain the desired clusters.

Fig. 4. Clustering Results on our Animal data set (horses, elks, chimps,
bears). Note how much variability there is within each class, yet how
much confusion there are across different classes—for example, the
background of the horse and elk is very similar to each other. Our algo-
rithm, however, obtains 100 percent purity.

FAKTOR AND IRANI: “CLUSTERING BY COMPOSITION”—UNSUPERVISED DISCOVERY OF IMAGE CATEGORIES 1095

random (from a “random process” H0). pðRjH0Þ measures the

statistical in significance of a region (high probability ¼ low

significance). If a region matches well, but is trivial, then its

likelihood ratio will be low (inducing a low affinity). On the

other hand, if a region is non-trivial, yet has a good match in

another image, its likelihood ratio will be high (inducing a

high affinity).

We next present an approach we developed for effi-
ciently estimating pðRjH0Þ, i.e. the chance of a region R to
be generated at random. Assuming descriptors di 2 R are
independent: pðRjH0Þ ¼

Q
i pðdijH0Þ. Given a set of images

(the images we wish to cluster, or a general set of natural
images), we define D to be the collection of all the descrip-
tors extracted from those images. We define pðdjH0Þ to be
the probability of randomly sampling the descriptor d
from the collection D (or its frequency in D). This can be
estimated using Parzen density estimation, but is too time
consuming. Instead, we quantize D into a small rough
‘codebook’ D̂ of a few hundred codewords (e.g., using k-
means or even just uniform sampling). Frequent descrip-
tors in D will be represented well in D̂ (have low quantiza-
tion error relative to their nearest codeword), whereas rare
descriptors will have high quantization error. This leads to
the following rough approximation, which suffices for our
purpose: pðdjH0Þ ¼ exp� jDdðH0Þj2

2s2
, where DdðH0Þ is the error

between d and its most similar codeword in D̂.
Fig. 5 displays DdðH0Þ / �logpðdjH0Þ for a few images of

the Ballet/Yoga, Animals and PASCAL data sets. Red
marks descriptors (HOG of size 15X15) with high error
DdðH0Þ, i.e., high statistical significance. Image regions R
containing many such descriptors have high statistical sig-
nificance (low pðRjH0Þ). Statistically significant regions in
Fig. 5a appear to coincide with body gestures that are
unique and informative to the separation between Ballet
and Yoga. Recurrence of such regions across images will
induce strong and reliable affinities for clustering. Observe
also that the long horizontal edges (between the ground
and sky in the Yoga image, or between the floor and wall in
the Ballet images) are not statistically significant, since they
are composed of short horizontal edges which occur abun-
dantly in many images. Similarly, statistically significant

regions in Figs. 5b and 5c coincide with parts of the ani-
mals/objects that are unique and informative for their sepa-
ration (e.g., the Monkey’s face and hands, the Elk’s horns,
the bicycle’s wheels, etc.). This is similar to the observation
of [4] that the most informative descriptors for classification
tend to have the highest quantization error.

Unlike the common use of codebooks (“bags of
descriptors”) in recognition, here the codebook is NOT used
for representing the images. On the contrary, a descriptor
which appears frequently in the codebook is “ignored” or
gets very low weight, since it is very frequently found in the
image collection and thus not informative.

The “Saving in Bits” obtained by a region R: According to
Shannon, the number of bits required to ‘code’ a random
variable x is �log pðxÞ. Taking the log of Eq. (3) and using
the quantized codebook D̂ yields (disregarding global con-
stants):

log
pðRjRefÞ
pðRjH0Þ ¼

X

i

DdiðH0Þj j2� DdiðRefÞj j:2 (4)

This is the number of bits saved by generating R from Ref, as
opposed to generating it ‘from scratch’ at random (using

H0)—“savings in bits”ðRjRefÞ. Therefore, if a region R is

composed of statistically significant descriptors (with high

DdiðH0Þ), and has a good match in Ref (low DdiðRefÞ), then
R will obtain very high ‘savings in bits’ (because the difference

between the two errors is large). In contrast, a large recurring

uniform region or a long edge will hardly yield any ‘savings in

bits’, since both errors DdiðH0Þ and DdiðRefÞ will be low,

resulting in a small difference.

So far we discussed a single region R. When the query
image Q is composed of multiple (non-overlapping) regions
R1; . . . ; Rr from Ref , we approximate the total ‘savings in
bits’ of Q given Ref , by summing up the ‘savings in bits’ of
the individual regions. This forms the affinity between Q
andRef :

affinity(Q, Ref) ¼ savingsðQjRefÞ ¼
Xr

i¼1

savingsðRijRefÞ:

(5)

Fig. 5. Statistical significance of descriptors. (a) Images from the Ballet-Yoga data set. (b) Images from the Animal data set. (c) Images from the
PASCAL data set. Red signifies descriptors (HOG of size 15X15) with the highest statistical significance (descriptors that rarely appear). Green—
lower significance; Grayscale—much lower. Note that only the center point of each descriptor is shown here. Statistically significant regions coincide
with body gestures (Ballet-Yoga) or object parts (Animals, PASCAL) which are unique and informative to the separation between the different clas-
ses in each data set.

1096 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 36, NO. 6, JUNE 2014

4 RANDOMIZED DETECTION OF SHARED REGIONS

We propose a randomized search algorithm for detecting
large unknown (irregularly shaped) regions which are
shared across images. We represent an image by comput-
ing patches (or descriptors) at some dense image grid and
consider a region in the image to be an ordered ensemble
of patches (or descriptors) along with their relative posi-
tions within the region. Inspired by “PatchMatch” [2], we
exploit the power of random sampling and the coherence
of neighboring pixels (descriptors) to quickly propagate
information. However, unlike PatchMatch, we search for
‘matching regions’, as opposed to matching patches/
descriptors.

Although efficient, the theoretical complexity of Patch-
Match is OðN log NÞ, where N is the number of densely
sampled patches or descriptors. This is because it spends
most of its time seeking good matches for the spurious
and isolated descriptors. However, in our application, we
wish to find only large matching regions across images
(and ignore the small spurious distracting ones). We show
that this can be done in linear time OðNÞ. In fact, the larger
the region, the faster it will be found (with fewer random
samples, and with higher probability). In other words,
and quite surprisingly: region-matching is ‘easier’ than
descriptor-matching! We refer to this as the “wisdom of
crowds of pixels”.

The Region Growing (Detection) Algorithm: Let R be a
shared region (of unknown shape, size, or position) between
images I1 and I2, each consisting of N densely computed
descriptors. Let R1 and R2 denote its instances in I1 and I2,
respectively. The goal is to find for each descriptor d1 2 R1

its matching descriptor d2 2 R2.
(i) Sampling: Each descriptor d 2 I1 randomly samples S

locations in I2, and chooses the best one. The complexity of
this step is OðSNÞ. The chance that one of the S samples of a
single descriptor dwill accidently fall on its correct match in
I2 is very small. However, the chance that at least one of the
samples of all the descriptors from R1 will accidently fall on
its correct match in R2 is very high if R is large enough (see
Claim 1 and Fig. 6a.). Therefore, once a descriptor from R1

finds a good match in R2, it propagates this information to
all the other descriptors in R1—as described in the next step.

(ii) Repeat several times:

a. Propagation: Each descriptor chooses between its best
match so far, and the match proposed by its spatial
neighbors (with appropriate shift)—whichever has
the lower matching error. For example, each descrip-
tor suggests to its neighbor on the right the location
which is just on the right from the location of its own
match. The propagation through the entire image is
achieved quickly via two image sweeps (once from
top down, and once from bottom up). The complex-
ity of this step is OðNÞ.

b. Local search: Each descriptor d 2 I1 randomly samples
h (typically a small number) locations in a small
neighborhood around its current best match so far,
and checks if one of the new locations improves its
best match. This allows the regions to grow in a non-
rigid fashion. The complexity of this step is OðNÞ.

Complexity: The overall runtime is OðSNÞ. In Claim 1, we

prove that for large enough regions, the required S is a small

constant, yielding a overall linear complexity, OðNÞ.
Next we provide a series of claims (Claims 1-4) which

quantify the number of random samples per descriptor S
required to detect shared regions R across images (pairs and
collections of images) at high probability. This is analyzed as
a function of the relative region size in the image jRj=N , the
desired detection probability p, and the number of images
M in the image collection. All proofs appear in Section 8.

4.1 Shared Regions between Two Images

For the purpose of theoretical analysis only, we assume that
all images consist of N densely sampled descriptors, and
that the transformation between shared regions is a pure
rigid shift (disregarding the local non-rigid search step in
the region growing algorithm).

Claim 1 (A single shared region between two images). Let
R be a region which is shared by two images, I1 and I2 of size
N . Then:
(a) Using S random samples per descriptor, guarantees to
detect the region R with probability p � ð1� e�S jRj=NÞ.
(b) To guarantee the detection of the region R with probability
p � ð1� dÞ, requires S ¼ N

jRj logð1dÞ samples per descriptor.

Proof. See Section 8. tu
Implication: Figs. 6a and 6b graphically illustrates the

terms in claim 1.a, b. For example, to detect a shared region
of relative size 10 percent with probability p � 98% requires
S ¼ 40. Thus, an complexity of Oð40NÞ – linear inN .

Claim 2 (Multiple shared regions between two images).
Let R1; . . . ; RL be L shared non overlapping regions between
two images I1 and I2. If jR1j þ jR2j þ � � � jRLj ¼ jRj, then it
is guaranteed to detect at least one of the regions Ri with the
same probability p � ð1� dÞ and using the same number of
random samples per descriptor S as in the case of a single
shared region of size jRj.

Proof. See Section 8. tu
Implication: Consider the case where at least 40 percent of

one image can be composed using several (smaller) pieces
of another image. Then according to Fig. 6b, when using
only S ¼ 10, we are guaranteed to detect at least one of the
shared regions with probability p � 98%. Moreover, as
shown in Fig. 6a, this region will most likely be one of the

Fig. 6. Illustration of Claim 1. Analytic graphs for (a) the probability detec-
tion p of a region R (for a given number of random samples S), (b) the
required number of random samples S required for the region detection
(for a given probability detection p). Those are analyzed as a function of
the relative size of the region R=N. For example, to detect a shared
region of relative size 10 percent with probability p � 98% requires
S ¼ 40 random samples.

FAKTOR AND IRANI: “CLUSTERING BY COMPOSITION”—UNSUPERVISED DISCOVERY OF IMAGE CATEGORIES 1097

largest regions in the composition, since small regions have
very low detection probability with S ¼ 10 (e.g., a region of
size 1 percent has only 10 percent chance of detection).

4.2 Shared Regions within an Image Collection

We now consider the case of detecting a shared region
between a query image and at least one other image in a
large collection of M images. For simplicity, let us first
examine the case where all the images in the collection are
“partially similar” to the query image. We say that two
images are “partial similar” if they share at least one large
region (say, at least 10 percent of the image size). The shared
regions Ri between the query image and each image Ii in
the collection may be possibly different (Ri 6¼ Rj).

Claim 3 (Shared regions within an image collection). Let I0
be a query image, and let I1 . . . ; IM be images of size N which
are “partially similar” to I0. Let R1; . . . ; RM be regions of size
jRij � aN such that Ri is shared by I0 and Ii (the regions Ri

may overlap in I0). Using S ¼ 1
a
logð1

d
Þ samples per descriptor

in I0, distributed randomly across I1; ::; IM , guarantees with
probability p � ð1� dÞ to detect at least one of the regions Ri.

Proof. See Section 8 . tu
Implication: The above claim entails that using the same

number of samples S per descriptor as in the case of two
images, but now scattered randomly across the entire image col-
lection, we are still guaranteed to detect at least one of the
shared regions with high probability. This is regardless of the
number of images M in the collection! For example, if the
regions are at least 10 percent of the image size (i.e.,
a ¼ 0:1), then S ¼ 40 random samples per descriptor in I0,
distributed randomly across I1; . . . ; IM , suffice to detect at
least one region Ri with probability 98 percent.

In practice, however, only a portion of the images in the
collection are “partially similar” to I0, and those are ‘buried’
among many other non-similar images. Let the number of
“partially similar” images be M

C , where 1
C is their portion in

the collection. It is easy to show that in this case we need to
use C times more samples, than in the case where all the
images in the collection were “partially similar”, in order to
find at least one shared region between I0 and one of the
“partially similar” images. For example, assuming there are
four clusters and assuming all images in the cluster are
“partially similar” (which is not always the case) then
C ¼ 4. Note that typically, the number of clusters is much
smaller than the number of images, i.e., C � M.

Our clustering algorithm (Section 5) applies this region
search process simultaneously to all images against each
other. Each descriptor in each image randomly samples a
total of S descriptors from the entire collection. We wish to
guarantee that in a single ‘simultaneous iteration’, almost all

the images in the collection will generate at least one strong
connection (large shared region) with at least one other
image in the collection.

Claim 4 (Multiple images versus Multiple images).
Assume: (i) Each image in the collection is “partially similar”
to at least M

C images. (ii) The shared regions are at least 10 per-
cent of the image size. (iii) We use S ¼ 40C random samples
per descriptor (sampled in the entire collection). Then at least
95 percent of the images in the collection are guaranteed to
generate at least one strong connection (find at least one large
shared region) with at least one other image in the collection
with extremely high probability. This probability rapidly
grows with the number of images, and is practically 100 per-
cent forM � 500.

Proof. See Section 8. tu
Implication: Claim 4 implies that after one iteration,

95 percent of the images will generate strong connections to
other images in the collection. Very few iterations thus suf-
fice to guarantee that all images have at least one such con-
nection. Figs. 7 and 10 show examples of such connecting
regions detected by our algorithm in the Ballet/Yoga data
set and the PASCAL data set.

5 THE COLLABORATIVE IMAGE CLUSTERING

ALGORITHM

So far, each image independently detected its own shared
regions within the collection, using only its ‘internal
wisdom’ (the “wisdom of crowds of pixels”). We next show
how collaboration between images can significantly
improve this process. Each image can further make
‘scholarly suggestions’ to other images where they should
sample and search within the collection. For example, look-
ing at Fig. 1, image I0 has strong affinity to images I1; . . . ; I4.
Therefore, in the next iteration, I0 can ‘encourage’ I1; . . . ; I4
to search for matching regions in each other. Thus, e.g., I3
will be ‘encouraged’ to sample more in I1 in the next itera-
tion. The guided sampling process via multi-image collabo-
ration significantly speeds up the process, reducing the
required number of random samples and iterations. Within
few iterations, strong connections are generated among
images belonging to the same cluster. We refer to this as the
“wisdom of crowds of images”.

In a nut-shell, our algorithm starts with uniform ran-
dom sampling across the entire collection. The connections
created between images (via detected shared regions)
induce affinities between images (see Section 3). At each
iteration, the sampling density distribution of each image
is re-estimated according to ‘suggestions’ made by other
images (guiding it where to sample in the next iteration).

Fig. 7. Examples of shared regions detected by our algorithm. Detected connecting regions across images are marked by the same color.

1098 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 36, NO. 6, JUNE 2014

This results in a “guided” random walk through the image
collection. Finally, the resulting affinities (from all itera-
tions) are fed to the N-Cut algorithm [17], to obtain the
desired clusters. A diagram describing our collaborative
image clustering algorithm is shown in Fig. 3.

Note that N-Cut algorithm (and other graph partitioning
algorithms) implicitly rely on two assumptions: (i) that
there are enough strong affinities within each cluster, and
(ii) that the affinity matrix is relatively sparse (with the
hope that there are not too many connections across clus-
ters). The sparsity assumption is important both for compu-
tational reasons, as well as to guarantee the quality of the
clustering. This is often obtained by sparsifying the affinity
matrix (e.g., by keeping only the top 10 log10M values in
each row [9]). The advantage of our algorithm is that it
implicitly achieves both conditions via the ‘scholarly’ multi-
image collaborative search. The ‘suggestions’ made by
images to each other quickly generate (within a few itera-
tions) strong intra-cluster connections, and very few inter-
cluster connections.

5.1 Algorithmic Details

Notations:

� Fi (i ¼ 1; . . . ;M) denotes the mapping between the
descriptors of image Ii to their matching descriptors
in the image collection. It contains for each descrip-
tor the index of the image of its match (different
descriptors can map to different images) and its spa-
tial displacement in that image. The induced map-
ping is constrained by the region growing algorithm
of Section 4 and therefore, it tends to be piece-wise
smooth in areas where matching regions were
detected and quite chaotic elsewhere.

� A denotes the affinity matrix of the image collection.
Our algorithm constructs this matrix using the infor-
mation obtained by composing images from each
other.

� B denotes the “Bit-Saving” matrix at each iteration.
The value Bij is the “Saving in Bits” contributed by
image Ij to the composition of image Ii, at a specific
iteration.

� P denotes the “sampling distribution” matrix at each
iteration. Pij is the prior probability of a descriptor in

image Ii to randomly sample descriptors in image Ij
when searching for a new candidate match. Pi (the
ith row of P) determines how image Ii will distribute
its samples across all other images in the collection in
the next iteration.

� U denotes the matrix corresponding to a uniform
sampling distribution across images. (i.e., all its
entries equal 1

M�1, except for zeros on the diagonal).
Explanations:

� Randomly sample according to distribution Pi: Each
descriptor in image Ii samples descriptors at S ran-
dom locations in the image collection. Each of the S
samples is sampled in 2 steps: (i) an image index
j ¼ 1; . . . ;M is sampled according to distribution Pi

(ii) a candidate location in Ij is sampled uniformly.
The candidate match, among the S samples, with the
best matching score is set to be the current best
match. We use S ¼ 40 random samples per descrip-
tor, which is the number suggested by our theoreti-
cal analysis in Section 4 for guaranteeing region
detection between images which share regions of
total size of at least 10 percent of the image size.

� Update row i of “Bit-Saving” matrix B using Fi: The
detected (“grown”) regions need not be explicitly
segmented in order to compute the “Savings-in-
bits”. Instead, for each image Ii, we first disregard
all the descriptors which are spuriously mapped by
Fi (i.e., descriptors that are mapped to different
images and/or to different image locations than their
surrounding descriptors). This is done as follows: for
each descriptor d, we count how many descriptors
di within its surrounding neighborhood of radius
5 grid points (with grid distance of two pixels
between adjacent descriptors), are mapped to the
same relative image location (up to small deviations
of three grid points). A descriptor with less than 15
consistently mapped local descriptors is considered
“spuriously mapped”.

Let xi denote all remaining descriptors in image Ii
(the descriptors mapped consistently with their sur-
rounding descriptors). These descriptors are part of
larger regions grown in Ii. Bij is estimated using the
individual pixel-wise “Savings-in-bits” induced by
the mapping Fi, summed over all the descriptors in
xi which are mapped to image Ij:

Bij ¼
X

k2x;FiðkÞ7!Ij

DdkðH0Þj j2� DdkðIjÞ
�� ��:2

DdkðIjÞ is the error between descriptor dk in Ii and its

match in Ij (induced by Fi).

� Update P (using the “wisdom of crowds of images”): For
the development of the update rule of P , let us con-
sider a Markov chain (a “Random Walk”) on the
graph whose nodes are the images in the collection.
We set the transition probability matrix between
nodes (images) B̂ to be equal to the “Bit-Savings”
matrix B, after normalizing each row to 1. B̂ij reflects
the relative contribution of each image to the current
composition of image Ii. If we start from state i

FAKTOR AND IRANI: “CLUSTERING BY COMPOSITION”—UNSUPERVISED DISCOVERY OF IMAGE CATEGORIES 1099

(image Ii) and go one step in the graph, we will get a
distribution equal to B̂i (the image own “wisdom”).
Similarly, if we go two steps we get a distribution B̂2

i

(the neighbors’ “wisdom”). Using these facts, we
update the sampling distributions in P as follows:

P ¼ 1

3
ðB̂þ B̂2 þ UÞ:

The first term, B̂, encourages each image to keep sam-

pling in those images where it already found initial

good regions. The second term, B̂2, contains the

‘scholarly’ suggestions that images make to each

other. For example, if image Ii found a good region in

image Ij (high B̂ij), and image Ij found a good region

in image Ik (high B̂jk), then B̂2
ik will be high, suggest-

ing that Ii should sample more densely in image Ik in

the next iteration. The third term, U , promotes

searching uniformly in the collection, to avoid getting

‘stuck’ in local minima.

5.2 Incorporating Scale Invariance

In order to handle scale invariance, we generate from each
image a cascade of multi-scale images, with relative scales
fð ffiffiffiffiffiffiffi

0:8
p Þlg5l¼0 �images of size f1, 0.8, 0.64, 0.51, 0.41, 0.33g rel-

ative to the original image size (in each dimension). The
region detection algorithm is applied to the entire multi-
scale collection of images, allowing region growing also
across different scales between images. The multi-scale cas-
cade of images originating from the same input image are
associated with the same entity in the affinity matrix A.

5.3 Complexity (Time and Memory)

All matrix computations and updates (maxðA;BÞ, B̂2,
update P , etc.) are efficient, both in terms of memory and
computation, since the matrix B is sparse. Its only non-zero
entries correspond to the image connections generated in
the current iteration.

We set the number of iterations in our algorithm to be
T ¼ 10 log10M, which is the recommended sparsity of the
affinity matrix by [9]. Note that our algorithm directly esti-
mates a good set of sparse affinities (as opposed to comput-
ing a full affinity matrix and then sparsifying it). T is
typically a small number (e.g., for M ¼ 1;000 images
T ¼ 30; for M ¼ 10;000 images T ¼ 40). The complexity of
each iteration is OðNMÞ (see Section 4). Therefore, the over-
all complexity of our clustering algorithm is
OðNMlog10ðMÞÞ—almost linear in the size of the image col-
lection (NM).

6 EXPERIMENTAL RESULTS

We tested our algorithm on various data sets, ranging from
benchmark evaluation data sets (Caltech, ETHZ), on which
we compared results to others, to more difficult data sets
(PASCAL), on which to-date no results were reported for
purely unsupervised category discovery. Finally, we also
show the power of our algorithm on tiny data sets. Tiny
data sets are challenging for unsupervised learning, since
there are very few images to ‘learn’ from.

In all the experiments, we set the number of iterations to
be T ¼ 10 log10 M, where M is the number of images we
wish to cluster. After performing the T iterations, we kept
the highest 10 log10 M values in each row of the affinity
matrix. We experimented with two types of densely-sam-
pled descriptors: 15X15 HOG descriptors [6] and 25X25
local self-similarity descriptors [16]. These were computed
densely—every two pixels—with high overlaps.

We also compared the performance of each of these
descriptors with a combination of the affinity matrices pro-
duced by the two descriptor types. The combination was
done simply by first normalizing the row of each matrix to 1
and then summing the matrices. Finally, we experimented
with restricting the spatial search range of each descriptor
to no more than 25 percent of the image size (around each
descriptor). This restriction enforces a weak prior on the
rough geometric arrangement within the image (similarly
to [4] and [10]).

6.1 Experiments on Benchmark Evaluation Data
Sets

We used existing benchmark data sets (Caltech, ETHZ-
shape) to compare results against [11], [12], [13] using their
experimental setting and measures. Results are reported in
Table 1. The four data sets generated by [11] consist of
difficult classes from Caltech-101 with non-rigid objects
and cluttery background (such as leopards and
hedgehogs), from four classes (189 images) up to 20 classes
(1,230 images). Example images are shown in Fig. 8. The
ETHZ-shape data sets consists of five classes: Applelogos,
Bottles, Giraffes, Mugs and Swans. For the ETHZ data set,
we followed the experimental setting of [12] (which crops
the images so that the objects are 25 percent of the image
size). For both Benchmarks, our algorithm obtains state-of-
the-art results (see Table 1). Note that for the case of 10 and
20 Caltech classes, our algorithm obtains more than 30 per-
cent relative improvement over current state-of-the-art.

Notice that restricting the spatial search range of descrip-
tors improves the results (see Table 1). Furthermore,

TABLE 1
Performance Evaluation on Benchmark Data Sets

Our results show significant improvement over state-of-the-art methods. For each data set (each row in the table), our result is compared against the
state-of-the-art method to-date on that data set. The last column shows the relative improvement obtained by our method.

1100 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 36, NO. 6, JUNE 2014

combining between the affinity matrices produced by the
HOG and the LSS descriptors induces a further improve-
ment compared to using each of the descriptors separately.

6.2 Experiments on a Subset of Pascal-VOC 2010
Data Set

The Pascal data set is a very challenging data set, due to
the large variability in object scale, appearance, and due
to the large amount of distracting background clutter.
Unsupervised category discovery is a much more difficult
and ill-posed problem than classification, therefore to-
date, no results were reported on PASCAL for purely unsu-
pervised category discovery. We make a first such attempt,
restricting ourselves at this point to four categories: Car,
Bicycle, Horse and Chair. We generated a subset of 100
images per category restricting ourselves to images
labeled “side view” and removing images which simulta-
neously contain objects from 2 or more of the above cate-
gories (otherwise the clustering problem is not well-
defined). The PASCAL-VOC subset used in our experi-
ments can be found in www.wisdom.weizmann.ac.il/~vision/
ClusterByComposition.html. Fig. 9 show a few example
images from the Car and Horse categories, demonstrating
how challenging this data set is (huge variability in scale,
lots of foreground and background clutter, etc.).

We tested our algorithm on this subset, clustering it to
four clusters, and obtained a mean purity of 68:5 percent. In
this case, restricting the search range did not yield better
results since the object locations are scattered across the
entire image. Fig. 11 shows example images which were
clustered correctly along with example images which were

mis-clustered. Notice that mis-clustered images can be con-
ceptually ‘confusing’, like a horse with a carriage (which is
confused for a car or bicycle due to the wheels). Fig. 10
show examples of shared regions detected by our algorithm
in this PASCAL subset.

To our best knowledge, nobody has run totally unsuper-
vised clustering on this data set before, so we had no one to
compare to. However, we ran a baseline experiment with
spatial pyramid match kernel (SPM) [10] and N-Cut and
our algorithm gave 20 percent relative improvement over
this baseline.

To understand the sources for confusion in our clustering
results, we computed a confusion matrix of the generated

Fig. 8. Example images from the Caltech Subsets. Images include non-
rigid objects (e.g., Leopards) and significant background clutter. Our
method provides a significant leap in results on these kinds of data sets
(see Table 1).

Fig. 9. Example images from: (a) PASCAL car category, (b) PASCAL
horse category. The objects in each category can be tiny or huge, have
non-rigidities and may have lots of clutter and occlusions.

Fig. 11. Clustering of PASCAL data set. Four categories (Car, Bicycle,
Horse, Chair), 100 images per category. Examples of correct/incorrect
clustering (mis-clustered images marked in red).

Fig. 10. Examples of shared regions detected by our algorithm for the
PASCAL data set. Each box contains a shared region. Note that the
regions do not necessarily appear in their true scale and may capture
only a small portion of the image which they came from (less than
10 percent).

FAKTOR AND IRANI: “CLUSTERING BY COMPOSITION”—UNSUPERVISED DISCOVERY OF IMAGE CATEGORIES 1101

clusters (see Fig. 12a). The different values in each row rep-
resent the distribution of images within that cluster. For
example, the car cluster contains 72 percent cars, 8 percent
bicycles, 17 percent horses and 3 percent chairs. The identity
of each cluster was determined by the category which
got the most images in the cluster. Ideally, we would like
the values on the diagonal to be 100 percent and the off-
diagonal values to be 0 percent.

As can be seen, the car and chair cluster have relatively
good purity. However, there seems to be strong confusion
between Horses and Bicycles. This is surprising since
horses and bicycles have quite different appearances.
However, the reason for this confusion is the very unique
yet almost identical pose of the human riding these two
types of objects (see examples in Fig. 12b). Such a similar
non-trivial pose of the rider induces strong affinities
between those images, resulting in confusion between
those two categories.

Precision-Recall of our affinity matrix: Finally, to measure
the quality of the affinity matrix generated by our unsuper-
vised algorithm, we conduct the following experiment. For
each image we compute its resulting average affinity to the
images within each of the classes (using the ground truth
labels of the other images). We define the following classifi-
cation confidence for each image Ii per class c :

scoreði; cÞ ¼ Sj2c;j 6¼iAði;jÞ
Sj6¼iAði;jÞ , where A denotes our affinity matrix.

Namely, scoreði; cÞ is the affinity of Ii to class c divided by
the total affinity of Ii to all other images. We then compute
precision-recall curves using the scores of each of the clas-
ses. For a given class and a given score threshold, the preci-
sion measures the percentage of class images among all the
images which passed the threshold, and the recall counts
the percentage of these class images with respect to the total
number of class images. We then compared our precision-
recall curves to that obtained using the affinities of the spa-
tial pyramid match kernel.

As can be seen in Fig. 13, the precision obtained by our
method grows dramatically as the recall decreases, obtain-
ing for all classes more than 90 percent precision at low
recall values (the highest ranked images). Our precision-
recall is consistently better than that of SPM for all classes,
with a very significant gap at the bicycle and horse classes.
The reason for the large gap at the horse and bicycle classes,
is that many horse and bicycle images have similar scenes

(e.g., forest or field). Therefore, since SPM captures mostly
the global geometric arrangement within each image, it got
confused by the two classes. We, on the other hand, are less
sensitive to such scene similarity.

Overall, we obtain an average precision (averaged over
all classes) of 79 percent for the top 75 percent ranked
images in each class, 93 percent average precision for the
top 50 percent ranked images and 96 percent average preci-
sion for the top 25 percent ranked images. SPM, on the other
hand, obtained an average precision of 61, 71 and 77 percent
for the top 75, 50 and 25 percent ranked images.

6.3 Experiments on Tiny Data Sets

Existing methods for unsupervised category discovery
require a large number of images per category (especially
for complex non-rigid objects), in order to ‘learn’ shared
‘cluster models’. To further show the power of our algo-
rithm, we generated two tiny data sets: the Ballet-Yoga data
set (Fig. 2) and the Animal data set (Fig. 4). These tiny data
sets are very challenging for unsupervised category discovery
methods, because of their large variability in appearance
versus their small number of images.

Our algorithm obtains excellent clustering results for
both data sets, even though each category contains different
poses, occlusions, foreground clutter (e.g., different clothes),
and confusing background clutter (e.g., in the animal data
set). The success of our algorithm can be understood from
Figs. 5 and 7: Fig. 5 shows that the descriptors with the high-
est statistical significance are indeed the most informative
ones in each category (e.g., the Monkey’s face and hands,
the Elk’s horns, etc.). Fig. 7 shows that meaningful shared
regions were detected between images of the same category.

6.4 Convergence of our Algorithm

In order to test the convergence of our algorithm, we per-
formed the following experiment on the Caltech-20 classes
benchmark. We ran our algorithm for 120 iterations and
after each iteration we applied N-cut on the affinity matrix
computed so far and computed the mean purity of the
resulting clusters. Before applying N-cut we always kept
the highest 10 log10 M values in each row of the affinity
matrix. Results are shown in Fig. 14.

Fig. 12. Typical confusions in the PASCAL data set. (a) Confusion matrix
of the clusters generated by our algorithm. (b) Illustration why horse and
bicycle images tend to be confused—they share an almost identical
pose of a human rider, which is a large and non trivial region (inducing
strong affinity between those images).

Fig. 13. Precision-Recall of our affinity matrix for the PASCAL data set.
We use our affinity matrix to generate precision-recall curves and com-
pare them to the curves obtained by the spatial pyramid match affinities.

1102 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 36, NO. 6, JUNE 2014

Note that after 10 log10 M � 31 iterations, our algo-
rithm has almost converged to its best performance—i.e.,
examining new connections in the collection will not
improve the performance. These results show that our
algorithm is indeed able to generate a sparse set of mean-
ingful affinities very efficiently, without having to com-
pute all the pairwise affinities. Moreover, we can see that
even after a single iteration, our algorithm is able to
obtain mean purity of almost 50 percent, meaning that
most images already found good connections in the col-
lection (this empirically verifies claim 4).

6.5 Analyzing Different Components of Our
Algorithm

To better understand the behavior of our algorithm we
conducted the following analysis:

1. Sparse guided sampling versus exhaustively computing
all pairwise “affinities by composition”: We compared our
results to those obtained by computing all the pairwise
“affinities by composition”, followed by sparsifying the
affinity matrix and then applying N-cuts (See Table 2).
For each pair of images, we used our region detection
algorithm (Section 4) with the same number of samples
that was used in each iteration of our sparse multi-image
composition algorithm (S ¼ 40). Table 2 shows how effi-
cient our sparse multi-image composition algorithm is in
reducing the time complexity as the number of images
increases. For example, in PASCAL we had 2,400 images
(400 images at six scales) and we used 15 iterations—
yielding a time saving by a factor of 2; 400=15 ¼ 160.
Moreover, our algorithm obtains slightly better results in
clustering performance. This shows that we do not lose
any significant information by not computing all the

pairwise affinities, and even gain a small improvement.
The reason for this is perhaps, as suggested in Section 5,
that we directly obtain a sparse set of meaningful affini-
ties, as opposed to ‘blindly’ sparsifying the affinity matrix
after computing the full matrix. The sparse guided sam-
pling does not get distracted by spurious feature matches,
whereas the dense (exhaustive) one does.

2. Guided sampling versus uniform sampling: We further
compared our results to those obtained by using a sparse
uniform sampling (instead of a sparse guided sampling). For
all data sets besides PASCAL, moving to uniform sampling
cause only a slight decrease in performance. The reason for
this is that our “affinities by composition” are discrimina-
tive enough between different classes. Therefore, even if we
sample at the wrong (non-class) images, our affinities will
compensate for this and give these images lower values as
compared to the values obtained when sampling at the class
images. However, on the PASCAL data set, our guided
sampling yielded an improvement over uniform sampling
(as can be seen in Fig. 15). The guided sampling obtains a
relative improvement of 6 percent as well as converges sig-
nificantly faster.

7 CONCLUSION

In this paper we suggest a new approach to image cluster-
ing—“Clustering-by-Composition”. Our approach is based
on composing an image, like a simple ‘puzzle’, from large
non-trivial pieces of other images. Similar images will be
‘easy’ to compose from each other and non-similar images
will be a lot ‘harder’ to compose from each other. We show
that using this approach we can capture complex visual
similarity between images. This enables us to discover clus-
ters of images which belong to very challenging image cate-
gories, that do not have any simple model that is common
to them (such as common shape, segments, etc.).

Our contributions are of three folds:

i. We define a “good” region which induces high affin-
ity between images as one that is rare (has a low
chance of occurring at random) yet shared with
another image.

Fig. 14. Testing the convergence of our algorithm. Our algorithm con-
verges to its best performance after T ¼ 10 log10 M � 31 iterations. This
implies that our algorithm indeed generates a sparse set of meaningful
affinities very efficiently, without having to compute all the pairwise
affinities.

TABLE 2
Sparse Guided Sampling versus Exhaustively Computing All

Pairwise “Affinities by Composition”

Fig. 15. Guided sampling versus uniform sampling for the PASCAL data
set. The guided sampling obtains a relative improvement of 6 percent
over uniform sampling, as well as converges significantly faster.

FAKTOR AND IRANI: “CLUSTERING BY COMPOSITION”—UNSUPERVISED DISCOVERY OF IMAGE CATEGORIES 1103

ii. We demonstrate how using the quantization error of
descriptors with a respect to a codebook, we can esti-
mate very efficiently how rare a region is. This is very
different from how people commonly use codebooks
(“bags of descriptors”) in recognition and classifica-
tion. Usually a codebook is used in order to represent
the image. Here we use the codebook to detect the
descriptors that are not represented well in the code-
book and those are themost informative for us.

iii. We suggest a randomized search process, with good
theoretical guarantees, which enables the efficient
detection of shared regions across images. We fur-
ther incorporate the “wisdom of crowds of images”
into this randomized search to obtain a collaborative
clustering algorithm. This algorithm generates a
sparse set of meaningful affinities at time which is
almost linear in the size of the collection, without
having to compute all the pairwise affinities. This
sparsity is essential for good clustering.

Finally, we obtain state-of-the-art results on benchmark
data sets and got very encouraging results on new challeng-
ing data sets. These include data sets with very few images
(where a ‘clustermodel’ cannot be ‘learned’ by currentmeth-
ods), and a subset of the challenging PASCALVOCdata set.

8 PROOFS OF CLAIMS

Below we provide the proofs for the claims of Section 4.

Proof of claim 1. Let R1 and R2 denote the instances of a
region R in I1 and I2. In order to detect the entire region
R, at least one descriptor d1 2 R1 has to randomly sample
its correct match d2 2 R2 (following which the entire
region will be ‘grown’ due to the propagation phase of
the Region Growing Algorithm described in Section 4).
So, the probability of detecting a region is equal to the
probability that at least one of the descriptors d1 2 R1

will randomly sample its correct match d2 2 R2.
The probability of a single descriptor d1 2 R1 to ran-

domly fall on its correct match d2 2 R2 is
1
N (where N is

the size of the image). Therefore, the probability that it

will NOT fall on d2 is ð1� 1
NÞ. The probability that

NONE of its S samples will fall on d2 is ð1� 1
NÞS . There-

fore, the probability that NONE of the descriptors in R1

will randomly fall on their correct match is q ,
ð1� 1

NÞSjR1j ¼ ð1� 1
NÞSjRj. Thus the probability of detect-

ing the shared region R is p , ð1� qÞ. (a) for N � 1 it

holds that ð1� 1
NÞN 	 e�1. Implying that q ¼ ð1�

1
NÞN

SjRj
N 	 e�

SjRj
N . So p ¼ ð1� qÞ � 1� e�

SjRj
N . (b) We need

to guarantee that p ¼ ð1� qÞ � 1� d, and ask what is
minimal number of samples S required. We know from

(a) that p ¼ ð1� qÞ � 1� e�
SjRj
N . So if we require

1� e�
SjRj
N � 1� d we will satisfy the condition. Switch-

ing sides we get: e�
SjRj
N 	 d . Applying log gives us:

� SjRj
N 	 logðdÞ. Rearranging the terms: S � N

jRj logð1dÞ. tu
Proof of claim 2.R1; . . . ; RL are non-overlapping regions, so

their probabilities of detection are statistically indepen-
dent of each other. The probability that all of the regions

are not detected is therefore equal to the product of the
probabilities of each region not being detected:
QL

i¼1ð1� 1
NÞSjRij. This is equal to ð1� 1

NÞS SL
i¼1jRi j ¼

ð1� 1
NÞSjRj ¼ q. So the probability of detecting at least on

region is equal to 1� q which is identical to the term
obtained in claim 1.a for the probability of detecting a
single shared region with size jRj. Similarly, we also get
the same term for the required number of samples S as
was obtained in claim 1.b. tu

Proof of claim 3. We will first develop a term for the prob-
ability of not detecting a specific region Riði ¼
1; . . . ;MÞ. The only change from claim 1.a is that the
search space is M times larger (since there are M other
images instead of only one). So this probability is equal

to ð1� 1
NMÞSjRi j. If there were no overlaps between the

regions, then the probability ~q that none of the regions
are detected (as was shown in claim 2) equals to the
product of the probabilities of each region not being

detected: ~q ¼ QM
i¼1ð1 � 1

NMÞSjRij ¼ ð1� 1
NMÞS

PM

i¼1
jRij le

ð1� 1
NMÞSMaN ¼ ðð1� 1

NMÞNMÞSa 	 e�Sa.

An overlap between the regions will not change this
term. This is due to the fact that on the one hand there
are fewer descriptors in the union of all the regions, but
on the other hand each descriptor has a higher probabil-
ity of finding a good match at random. It is easy to show
that these two terms cancel each other. Therefore, the
probability of detecting at least one of the regions is equal
to p ¼ ð1� ~qÞ � ð1� e�SaÞ. Finally, in order to guarantee
detection of at least one region with probability � ð1� dÞ
we need to use S � 1

a
logð1

d
Þ samples. tu

Proof of claim 4. According to claim 3, in order to guarantee
with probability p � 98% that an image I0 will detect at
least one region which is at least 10 percent of the size of
the image and is shared with another image, we are
required to use S ¼ 40 random samples per descriptors
(d ¼ 0:02 and a ¼ 0:1). This is the required number of
samples S when all the M images are “partially similar”
to I0. When only M

C of the images are “partially similar”
to I0, then S must be C times larger, i.e. S ¼ 40C (using
similar derivations to those in claim 3).

This, however, was for one specific image I0. When
applying this process simultaneously to all the M
images, we would like to check what percent of the
images will detect with very high probability at least one
shared region with another image. We will regard the
event of each image trying to detect a shared region as an
independent Bernoulli trial with success probability of
p ¼ 0:98 (the guaranteed probability of detecting a
shared region per trial). We have M images, thus M
Bernoulli trials, all with the same success probability p.
Therefore, The number of successes, i.e., the number of
images which detect a shared region, has a Binomial dis-
tribution BinðM; pÞ. Similarly, the number of failures has
also a Binomial distribution BinðM; 1� pÞ.

When M is several hundreds (100 	 M 	 1; 000) and
1� p ¼ 0:02 is quite small, the resulting product
Mð1� pÞ is of an intermediate size (between 2 and 20).
It is well known that in these cases, the binomial

1104 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 36, NO. 6, JUNE 2014

distribution BinðM; 1� pÞ can be approximated well
with a Poisson distribution with parameter
� ¼ ð1� pÞM ¼ 0:02M. In other words, the probability
that k images did not detect a shared region can be
approximated by e��ð�Þk

k! .
The probability that at least rM of the images detected

at least one shared region is equal to the probability that
all the images detected a region (k ¼ 0), or that all but
one detected a shared region (k ¼ 1), . . . or that all but
ð1� rÞM detected a shared region. Therefore, it can be

approximated by
Pð1�rÞM

k¼0
e��ð�Þk

k! . Fig. 16 shows this prob-

ability for r ¼ 95% as function of the number of images
M. We can see that the probability that at least 95 percent
of the images detected a shared region is very high and
goes to 1 as M increases (is practically 100 percent for
M � 500). tu

ACKNOWLEDGMENTS

The authors would like to thank S. Bagon, M. Zontak,
D. Glasner and O. Bartal for their helpful comments on the
paper. This work was funded in part by the Israeli Science
Foundation and the Israeli Ministry of Science.

REFERENCES

[1] C. Barnes, “Patchmatch: A Fast Randomized Matching Algorithm
with Application to Image and Video,” PhD thesis, Princeton
Univ., 2011.

[2] C. Barnes, E. Shechtman, A. Finkelstein, and D.B. Goldman,
“Patchmatch: A Randomized Correspondence Algorithm for
Structural Image Editing,” Proc. ACM SIGGRAPH, 2009.

[3] O. Boiman and M. Irani, “Similarity by Composition,” Proc.
Advances in Neural Information Processing Systems (NIPS), 2006.

[4] O. Boiman, E. Shechtman, and M. Irani, “In Defense of Nearest-
Neighbor Based Image Classification,” Proc. IEEE Conf. Computer
Vision and Pattern Recognition (CVPR), 2008.

[5] O. Chum, M. Perdoch, and J. Matas, “Geometric Minhashing:
Finding a (Thick) Needle in a Haystack,” Proc. IEEE Conf. Com-
puter Vision and Pattern Recognition (CVPR), 2009.

[6] N. Dalal and B. Triggs, “Histograms of Oriented Gradients for
Human Detection,” Proc. IEEE Conf. Computer Vision and Pattern
Recognition (CVPR), 2005.

[7] K. Grauman and T. Darrell, “Unsupervised Learning of Catego-
ries from Sets of Partially Matching Image Features,” Proc. IEEE
Conf. Computer Vision and Pattern Recognition (CVPR), 2006.

[8] C. Gu, J.J. Lim, P. Arbelaez, and J. Malik, “Recognition Using
Regions,” Proc. IEEE Conf. Computer Vision and Pattern Recognition
(CVPR), 2009.

[9] G. Kim, C. Faloutsos, and M Hebert, “Unsupervised Modeling of
Object Categories Using Link Analysis Techniques,” Proc. IEEE
Conf. Computer Vision and Pattern Recognition (CVPR), 2008.

[10] S. Lazebnik, C. Schmid, and J. Ponce, “Beyond Bags of Features:
Spatial Pyramid Matching for Recognizing Natural Scene Catego-
ries,” Proc. IEEE Conf. Computer Vision and Pattern Recognition
(CVPR), 2006.

[11] Y.J. Lee and K. Grauman, “Foreground Focus: Unsupervised
Learning from Partially Matching Images,” Int’l J. Computer
Vision, vol. 85, pp. 143-166, 2009.

[12] Y.J. Lee and K. Grauman, “Shape Discovery from Unlabeled
Image Collections,” Proc. IEEE Conf. Computer Vision and Pattern
Recognition (CVPR), 2009.

[13] N. Payet and S. Todorovic, “From a Set of Shapes to Object Dis-
covery,” Proc. 11th European Conf. Computer Vision (ECCV), pp. 57-
70, 2010.

[14] J. Philbin and A. Zisserman, “Object Mining Using a Matching
Graph on Very Large Image Collections,” Proc. Sixth Indian Conf.
Computer Vision, Graphics & Image Processing (ICVGIP), 2008.

[15] B.C. Russell, A.A. Efros, J. Sivic, W.T. Freeman, and A. Zisserman,
“Using Multiple Segmentations to Discover Objects and their
Extent in Image Collections,” Proc. IEEE Conf. Computer Vision and
Pattern Recognition (CVPR), 2006.

[16] E. Shechtman and M. Irani, “Matching Local Self-Similarities
Across Images and Videos,” Proc. IEEE Conf. Computer Vision and
Pattern Recognition (CVPR), 2007.

[17] J. Shi and J. Malik, “Normalized Cuts and Image Segmentation,”
IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 22, no. 8,
pp. 888-905, Aug. 2000.

[18] J. Sivic, B.C. Russell, A.A. Efros, A. Zisserman, and W.T. Freeman,
“Discovering Objects and Their Localization in Images,” Proc.
IEEE 10th Int’l Conf. Computer Vision (ICCV), 2005.

[19] J. Sivic and A. Zisserman, “Video Google: A Text Retrieval
Approach to Object Matching in Videos,” Proc. IEEE Ninth Int’l
Conf. Computer Vision (ICCV), 2003.

[20] T. Tuytelaars, C.H. Lampert, M.B. Blaschko, and W. Buntine,
“Unsupervised Object Discovery: A Comparison,” Int’l J. Com-
puter Vision, vol. 88, pp. 284-302, 2010.

Fig. 16. Illustration of Claim 4. Analytic graph for the probability that most
images (95 percent) will generate a strong connection (detect a shared
region) with another image. This is analyzed as a function of the number
of images in the collectionM. This probability goes to 1 asM increases.

FAKTOR AND IRANI: “CLUSTERING BY COMPOSITION”—UNSUPERVISED DISCOVERY OF IMAGE CATEGORIES 1105

Alon Faktor received the BSc degree in electri-
cal engineering and physics from the Israel Insti-
tute of Technology, Technion, in 2009 and the
MSc degree in mathematics and computer sci-
ence from the Weizmann Institute of Science in
2011. He is currently working toward the PhD
degree at the Weizmann Institute of Science. His
current research focuses on areas of computer
vision and video information analysis.

Michal Irani received the BSc degree in mathe-
matics and computer science in 1985 and the
MSc and PhD degrees in computer science in
1989 and 1994, respectively, all from the Hebrew
University of Jerusalem. From 1993 to 1996, she
was a member of the technical staff in the Vision
Technologies Laboratory at the David Sarnoff
Research Center in Princeton, New Jersey. She
joined the Department of Computer Science and
Applied Mathematics at the Weizmann Institute
of Science in 1997, was promoted to an associ-

ate professor in 2002, and to a full professor in 2007. Her research inter-
ests center around computer vision, image processing, and video
information analysis. Her prizes and honors include the David Sarnoff
Research Center Technical Achievement Award (1994), the Yigal Allon
Three-Year Fellowship for Outstanding Young Scientists (1998), and the
Morris L. Levinson Prize in Mathematics (2003). She also received the
best paper awards at the European Conference on Computer Vision
(ECCV) 2000 and 2002, the honorable mention for the Marr Prize at the
IEEE International Conference on Computer Vision (ICCV) 2001 and
2005, and a best poster award at the IEEE International Conference on
Computer Vision and Pattern Recognition (CVPR) 2004. She served as
an associate editor of the Transactions on Pattern Analysis and Machine
Intelligence in 1999-2003. She is a member of the IEEE.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

1106 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 36, NO. 6, JUNE 2014

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

