
International Journal of Computer Vision 74(1), 17–31, 2007

c© 2007 Springer Science + Business Media, LLC. Manufactured in the United States.

DOI: 10.1007/s11263-006-0009-9

Detecting Irregularities in Images and in Video∗

OREN BOIMAN AND MICHAL IRANI

Department of Computer Science and Applied Math, The Weizmann Institute of Science, 76100 Rehovot, Israel

Received March 7, 2006; Accepted November 14, 2006

First online version published in January, 2007

Abstract. We address the problem of detecting irregularities in visual data, e.g., detecting suspicious behaviors in
video sequences, or identifying salient patterns in images. The term “irregular” depends on the context in which the
“regular” or “valid” are defined. Yet, it is not realistic to expect explicit definition of all possible valid configurations for
a given context. We pose the problem of determining the validity of visual data as a process of constructing a puzzle:
We try to compose a new observed image region or a new video segment (“the query”) using chunks of data (“pieces of
puzzle”) extracted from previous visual examples (“the database”). Regions in the observed data which can be composed
using large contiguous chunks of data from the database are considered very likely, whereas regions in the observed
data which cannot be composed from the database (or can be composed, but only using small fragmented pieces) are
regarded as unlikely/suspicious. The problem is posed as an inference process in a probabilistic graphical model. We
show applications of this approach to identifying saliency in images and video, for detecting suspicious behaviors and
for automatic visual inspection for quality assurance.

Keywords: detecting suspicious behaviors, saliency, detecting irregularities, novelty detection, anomaly detection,
action recognition, automatic visual inspection

1. Introduction

Detection of irregular visual patterns in images and in
video sequences is useful for a variety of tasks. Detect-
ing suspicious behaviors or unusual objects is impor-
tant for surveillance and monitoring. Identifying spatial
saliency in images is useful for quality control and auto-
matic inspection. Behavioral saliency in video is useful
for drawing the viewer’s attention.

Previous approaches to recognition of suspicious
behaviors or activities can broadly be classified into two
classes of approaches: rule-based methods (e.g., Ivanov
and Bobick (1999)) and statistical methods without
predefined rules (e.g., Stauffer and Grimson (2000) and
Zhong et al. (2004)). The statistical methods are more
appealing, since they do not assume a predefined set
of rules for all valid configurations. Instead, they try
to automatically learn the notion of regularity from the
data, and thus infer about the suspicious. Nevertheless,
the representations employed in previous methods have
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been either very restrictive (e.g., trajectories of moving
objects (Stauffer and Grimson, 2000)), or else too global
(e.g., a single small descriptor vector for an entire
frame (Zhong et al., 2004)).

In this paper we formulate the problem of detecting
regularities and irregularities as the problem of compos-
ing (explaining) the new observed visual data (an image
or a video sequence, referred to below as “query”) using
spatio-temporal patches extracted from previous visual
examples (the “database”). Regions in the query which
can be composed using large contiguous chunks of data
from the example database are considered likely. The
larger those regions are, the greater the likelihood is. Re-
gions in the query which cannot be composed from the ex-
ample database (or can be composed, but only using small
fragmented pieces) are regarded as unlikely/suspicious.
Our approach can thus infer and generalize from just a
few examples, about the validity of a much larger context
of image patterns and behaviors, even if those particular
configurations have never been seen before. Local de-
scriptors are extracted from small image or video patches
(composed together to large ensembles of patches), thus
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allowing to quickly and efficiently infer about subtle but
important local changes in behavior (e.g., a man walking
vs. a man walking while pointing a gun). Moreover, our
approach is capable of simultaneously identifying a valid
behavior in one portion of the field of view, and a suspi-
cious behavior in a different portion the field of view, thus
highlighting only the detected suspicious regions within
the frame, and not the entire frame. Such examples are
shown in Section 6.

Inference from image patches or fragments has been
previously employed in the task of class-based object
recognition (e.g. Bart and Ullman (2004), Felzenszwalb
and Huttenlocher (2005) and Fergus et al.). A small num-
ber of informative fragments have been learned and pre-
selected for a small number of pre-defined classes of ob-
jects. However, class-based representations cannot cap-
ture the overwhelming number of possibilities of com-
posing unknown objects or behaviors in a scene, and are
therefore not suitable for our underlying task of detecting
irregularities.

Our approach can also be applied for detecting saliency
in images and in video sequences. For example, given a
single image with no prior information, we can measure
the “validity” of each image region (the “query”) rela-
tive to the remaining portions of the same image (the
“database” used for this particular query). An image re-
gion will be detected as salient if it cannot be explained by
anything similar in other portions of the image. Similarly,
given a single video sequence (with no prior knowledge
of what is a normal behavior), we can detect “salient be-
haviors” as behaviors which cannot be supported by any
other dynamic phenomena occurring at the same time in
the video.

Previous approaches for detecting image saliency
(e.g., Itti et al. (1998)) proposed measuring the degree
of dissimilarity between an image location and its im-
mediate surrounding region. Thus, for example, image
regions which exhibit large changes in contrast are de-
tected as salient image regions. Their definition of “visual
attention” is derived from the same reasoning. Neverthe-
less, we believe that the notion of saliency is not neces-
sarily determined by the immediate surrounding image
regions. For example, a single yellow spot on a black
paper may be salient. However, if there are many yel-
low spots spread all over the black paper, then a single
spot will no longer draw our attention, even though it
still induces a large change in contrast relative to its sur-
rounding vicinity. Our approach therefore suggests a new
and more intuitive interpretation of the term “saliency”,
which stems from the inner statistics of the entire image.
Our approach to spatial image saliency is more closely
related to that of Honda and Nayar (2001). However,
(Honda and Nayar, 2001) is restricted to repetitive struc-
tured image patterns and is highly dependent on the lo-
cal surrounding image properties, whereas our approach

is not. Examples of detected spatial saliency in images
and behavioral saliency in video sequences using our ap-
proach are shown in Section 6.

Our paper therefore offers four main contributions:

1. We propose an approach for inferring and generalizing
from just a few examples, about the validity of a much
larger context of image patterns and behaviors, even if
those particular configurations have never been seen
before.

2. We present a new graph-based Bayesian inference al-
gorithm which allows to efficiently detect large en-
sembles of patches (e.g., hundreds of patches), at
multiple spatio-temporal scales. It simultaneously im-
poses constraints on the relative geometric arrange-
ment of these patches in the ensemble as well as on
their descriptors.

3. We propose a new interpretation to the term “saliency”
and “visual attention” in images and in video se-
quences.

4. We present a single unified framework for treating
several different problems in Computer Vision, which
have been treated separately in the past. These include:
attention in images, attention in video, recognition of
suspicious behaviors, recognition of unusual objects,
automatic visual inspection (e.g., for quality assur-
ance), and more.

A shorter version of this paper appeared in ICCV 2005
(Boiman and Irani, 2005).

2. Inference by Composition

Given only a few examples, we (humans) have a notion
of what is regular/valid, and what is irregular/suspicious,
even when we see new configurations that we never saw
before. We do not require explicit definition of all possible
valid configurations for a given context. The notion of
“regularity”/“validity” is learned and generalized from
just a few examples of valid patterns (of behavior in video,
or of appearance in images), and all other configurations
are automatically inferred from those.

Figure 1illustrates the basic concept underlying this
idea in the paper. Given a new image (a query—Fig. 1(a)),
we check whether each image region can be explained
by a large enough contiguous region of support in the
database (see Figs. 1(b) and (c)). Although we have never
seen a man sitting with both arms raised, we can infer the
validity of this pose from the three database images of
Fig. 1(c).

Thus, regions in the new observed data/query (an im-
age or a video sequence) which can be explained by large
contiguous chunks of data from the database are con-
sidered very likely, whereas regions in the query which
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Figure 1. The basic concept—Inference by Composition. A region in the query image is considered likely if it has a large enough contiguous region

of support in the database. New valid image configurations can thus be inferred from the database, even though they have never been seen before.

Figure 2. Detecting a matching ensemble of patches.

cannot be explained by large enough database pieces are
considered unlikely or suspicious. When the visual query
is an image, then those chunks of data have only a spatial
extent. When the visual query is a video sequence, then
those chunks of data have both a spatial and a temporal
extent.

3. Ensembles of Patches

Human behaviors and natural spatial structures never re-
peat identically. For example, no two people walk in the
same manner. One may raise his arms higher than the
other, or may just walk faster. We therefore want to al-
low for small non-rigid deformations (in space and in
time) in our “pieces of puzzle” (chunks of data). This
is particularly true for large chunks of data. To account
for such local non-rigid deformations, large chunks are
broken down to an ensemble of lots of small patches at
multiple scales with their relative geometric positions.

This is illustrated in Fig. 1(d). In the inference process,
we search for a similar geometric configuration of patches
with similar properties (of behavior, or of appearance),
while allowing for small local misalignments in the rel-
ative geometric arrangement. This concept is illustrated
in Fig. 2. When the visual query is an image, then an
ensemble of patches is composed of spatial patches (see
Fig. 3(a)). When the visual query is a video sequence, then
the ensemble of patches is composed of spatio-temporal
patches (see Fig. 3(b)), which allows to capture informa-
tion about dynamic behaviors. In our current implemen-
tation, a single ensemble typically contains hundreds of
patches, simultaneously from multiple scales (multiple
spatial scales in the case of image patches, and multiple
space-time scales in the case of spatio-temporal patches).

While the idea of composing new data from exam-
ple patches was previously proven useful for a variety
of tasks (e.g., Efros and Leung (1999), Freeman et al.
(2000) and Wexler et al. (2004)), these methods did not
impose any geometric restriction on the example patches
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Figure 3. Ensembles of patches in images and video.

used for construction, i.e., their relative positions and dis-
tances in the database. This was not necessary for their
purpose. It is however crucial here, for the purpose of de-
tecting irregularities. Often, the only real cue of informa-
tion for distinguishing between a likely and an unlikely
phenomenon is the degree of fragmentation of its support
in the database. For example, the stretched arm of a man
holding a gun is similar to an instantaneous stretching of
the arm while walking, but its region of support is very
limited in time.

Capturing the geometric relations of patches was iden-
tified as being important for the task of class-based object
recognition (Bart and Ullman, 2004; Felzenszwalb and
Huttenlocher, 2005; Fergus et al.,; Leibe et al.) Those
approaches are not suitable for our objective for two rea-
sons: (i) Their geometric configurations are restricted to
a relatively small number of patches, thus cannot capture
subtle differences which are crucial for detection of irreg-
ularities. (ii) Those configurations were pre-learned for a
small number of pre-defined classes of objects, whereas
our framework is applicable to any type of visual data.
While the geometric constraints of Leibe et al. are more
flexible, thus allowing to recognize new object config-
urations from just a few examples, their method is still
limited to a set of predefined object classes with pre-
defined object centers. This is not suitable for detecting
irregularities, where there is no notion of object classes.

“Video Google” (Sivic and Zisserman, 2003) imposes
geometric constraints on large collections of non class-
based descriptors, and searches for them very efficiently.
However, those descriptors are spatial in nature and the
search is restricted to individual image frames, thus not
allowing to capture behaviors.

In order for the inference to be performed in reason-
able times, information about the small patches and their
relative arrangement must be efficiently stored in and ex-
tracted from the database. For each small patch extracted
from the examples, a descriptor vector is computed and
stored (see below), along with the absolute coordinates of
the patch (spatial or spatio-temporal coordinates). Thus,
the relative arrangement of all patches in the image/video
database is implicitly available. Later, our inference al-

gorithm takes an ensemble of patches from the visual
query and searches the database for a similar configura-
tion of patches (both in the descriptors and in their relative
geometric arrangement). To allow for fast search and re-
trieval, those patches are stored in a multi-scale data struc-
ture. Using a probabilistic graphical model (Section 4),
we present an efficient inference algorithm (Section 4.2)
for the ensemble search problem.

3.1. Patch Descriptors

Patch descriptors are generated for each query patch and
for each database patch. The descriptors capture local
information about appearance/behavior. Our current im-
plementation uses very simple descriptors, which could
easily be replaced by more sophisticated descriptors:

The Spatial Image Descriptor of a small (e.g., 7 × 7)
spatial patch is constructed as follows: The spatial gra-
dient magnitude is computed for each pixel in the patch.
These values are then stacked in a vector, which is nor-
malized to a unit length. Such descriptors are densely
extracted for each point in the image. This descriptor ex-
traction process is repeated in several spatial scales of
the spatial Gaussian pyramid of the image. Thus, a 7 × 7
patch extracted from a coarse scale has a larger spatial
support in the input image (i.e., in the fine scale). In some
applications an RGB/intensity-based descriptor may be
more appropriate than a gradient-based one. In general
our overall framework is not restricted to those particular
descriptors. Those could be easily replaced by more so-
phisticated spatial descriptors such as SIFT (Lowe, 2004)
etc.

The Spatio-Temporal Video Descriptor of a small (e.g.,
7×7×4) spatio-temporal video patch is constructed from
the absolute values of the temporal derivatives in all pixels
of the patch. These values are stacked in a vector and
normalized to a unit length. This descriptor extraction
process is repeated in several spatial and temporal scales
of a space-time video pyramid. Thus, a 7 × 7 × 4 patch
extracted from a coarse scale has a larger spatial and
larger temporal support in the input sequence.

Note that this descriptor is nearly invariant to a static
background, since the temporal derivative is always zero
in any static background. Therefore, using this spatio-
temporal descriptor, we can detect irregular actions in
a new query sequence, regardless of the background.
However, this simple descriptor is dependent on spatial
texture, which may pose a problem with people wear-
ing highly textured clothes. Our approach, however, is
not restricted to the particular choice of these simple
descriptors. Those descriptors could be easily replaced
by more sophisticated space-time descriptors (which are
action-sensitive and more invariant to appearance), such
as Shechtman and Irani (2005) or Laptev and Lindeberg
(2003).
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4. The Basic Algorithm

Given a new visual query (an image or a video sequence),
we would like to estimate the likelihood of each and ev-
ery point in it. This is done by checking the validity of
a large region (e.g., 50 × 50 region in an image, and
50 × 50 × 50 region in a video sequence) surrounding
every pixel. The large surrounding region is broken into
lots (hundreds) of small patches at multiple scales (spa-
tial or spatio-temporal), and is represented by a single
ensemble of patches corresponding to that particular im-
age/video point. Let q1, q2, . . . , qn denote the patches
in the ensemble (see Fig. 3(a)). Each patch qi is associ-
ated with two types of attributes: (i) its descriptor vector
di , and (ii) its location in absolute coordinates li . We
choose an arbitrary reference point c (e.g., the center of
the ensemble—see Fig. 3(a)), which serves as the “ori-
gin” of the local coordinate system (thus defining the
relative positions of the patches within the ensemble).

4.1. Statistical Formulation

Let an observed ensemble of patches within the query be
denoted by y. We would like to compute the joint likeli-
hood P(x, y) that the observed ensemble y in the query is
similar to some hidden ensemble x in the database (simi-
lar both in its descriptor values of the patches, as well as in
their relative positions). We can factor the joint likelihood
as: P(x, y) = P(y | x)P(x). Our modelling of P(y | x)
resembles the probabilistic modelling of the “star graph”
of Felzenszwalb and Huttenlocher (2005). However, in
the class-based setting of Felzenszwalb and Huttenlocher
(2005) what is computed is P(y; θ ), where θ is a pre-
learned set of parameters of a given patch-constellation
of an object-class. In our case, however, there is no notion
of objects, i.e., there is no prior parametric modelling of
the database ensemble x . Thus, θ is undefined, and P(x)
must be estimated non-parametrically directly from the
database of examples.

Let di
y denote the descriptor vector of the i-th observed

patch in y, and li
y denote its location (in absolute coor-

dinates). Similarly, di
x denotes the descriptor vector of

the i-th hidden (database) patch in x , and li
x denotes its

location. Let cy and cx denote the “origin” points of the
observed and hidden ensembles. The similarity between
any such pair of ensembles y and x is captured by the
following likelihood:

P(x, y)= P
(
cx , d1

x , . . . , l1
x , . . . , cy, d1

y , . . . , l1
y, . . .

)
(1)

In order to make the computation of the likelihood in
Eq. (1) tractable, we make some simplifying statistical
assumptions. Given a hidden database patch and its de-

scriptor di
x , the corresponding observed descriptor di

y is
assumed to be independent of the other patch descriptors.
(This is a standard Markovian assumption, e.g., Freeman
et al. (2000), which is obviously not valid in case of over-
lapping patches, but is a useful approximation). We model
the similarity between descriptors using a Gaussian dis-
tribution:

P
(
di

y

∣∣ di
x

) = α1 exp

(
−1

2

(
di

y − di
x

)T
S−1

D

(
di

y − di
x

))
(2)

where α1 is a constant, and SD is a constant covari-
ance matrix, which determines the allowable deviation in
the descriptor values. Other distributions can be plugged
in the model, corresponding to other descriptor similar-
ity functions. Given the relative location of the hidden
database patch (li

x − cx ), the relative location of the cor-
responding observed patch (li

y − cy) is assumed to be
independent of all other patch locations. This assump-
tion enables to compare the geometric arrangement of
two ensembles of patches with enough flexibility to ac-
commodate for small changes in viewing angle, scale,
pose and behavior. Thus:

P
(
li
y

∣∣ li
x , cx , cy

)= α2 · exp

(
− 1

2

((
li
y − cy

) − (
li
x − cx

))T

× S−1
L

((
li
y − cy

) − (
li
x − cx

)))
(3)

where α2 is a constant, and SL is a constant covariance
matrix, which captures the allowed deviations in the rel-
ative patch locations. (In this case the dependency in rel-
ative locations was modelled using a Gaussian, however
the model is not restricted to that).

So far we modelled the relations between attributes
across ensembles (descriptors: di

y, di
x , and relative loca-

tions: li
y − cy, li

x − cx ). We still need to model the rela-
tions within the hidden ensemble, namely, the relations
between a patch descriptor di

x to its location li
x . In the gen-

eral case, this relation is highly non-analytic, and hence
cannot be modelled parametrically (in contrast to class-
based approaches, e.g. Felzenszwalb and Huttenlocher
(2005) and Fergus et al. (2003)). Therefore, we model it
non-parametrically using examples from the database:

P (dx | lx ) =
{

1 (dx , lx ) ∈ Database

0 otherwise
(4)

where dx and lx are an arbitrary descriptor and location.
We assume a uniform prior distribution for cx and cy

(local origin points), i.e., no prior preference for the lo-
cation of the ensemble in the database or in the query.
The relation between all the above-mentioned variables
is depicted in the Bayesian network in Fig. 4.

Thus, for an observed ensemble y and a hidden
database ensemble x , we can factor the joint likelihood
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Figure 4. The probabilistic graphical model. The Bayesian depen-

dencies are illustrated using the arrows between variables. The depen-

dencies are illustrated only for one patch in the ensemble (the i-th
patch). Observed variables are marked in “orange”; Hidden variables

are marked in “blue”. cx and cy are the “origin” of the hidden and ob-

served ensembles, respectively. li
x and li

y are the locations (in absolute

coordinates) of the i-th patch in the hidden and observed ensembles;

di
x and di

y are the descriptor vectors of the i-th patch in each ensemble.

P(x, y) of Eq. (1) using Eqs. (2)–(4) as follows:

P
(
cx , d1

x , . . . , l1
x , . . . , cy, d1

y , . . . , l1
y

)
= α

∏
i

P
(
li
y | li

x , cx , cy
)
P

(
di

y | di
x

)
P

(
di

x | li
x

)
(5)

For any hidden ensemble assignment with non-zero like-
lihood, we define the composition cost as the minus log
likelihood function:

− log P
(
cx , d1

x , . . . , l1
x , . . . , cy, d1

y , . . . , l1
y

)
=

∑
i

− log P
(
li
y

∣∣ li
x , cx , cy

) +
∑

i

−log P
(
di

y

∣∣ di
x

)+α1

(6)

Where α1 = log(α) is a constant. The first term is the
overall cost of local geometric deformations in the en-
semble, while the second term is the overall cost of ap-
pearance/descriptor deformations in the ensemble.

In our formulation, the covariance matrices SD and SL

are constant. The reason for this is that our approach is
non-parametric and data-driven. Parametric approaches
to object recognition (such as Felzenszwalb and Hutten-
locher (2005), and Fergus et al.) allow for multiple learnt

covariance matrices, each associated with a different part
in the model. This is a good approach when the recogni-
tion task is restricted to a few known predefined classes,
each with its pre-defined parts and parameters. This, how-
ever, is not the setting in our case, where there is no prede-
fined notion of what we are looking for, yet, we want to be
able to detect subtle irregularities compared to the exam-
ples. Our model is therefore non-parametric and its gen-
eralization capabilities do not rely on parameter tuning,
but rather on the diversity of the examples in the database.
In that sense, our non-parametric modelling bears resem-
blance to the non-parametric treatment of Leibe et al.

In our implementation we have set the covariance ma-
trices SD and SL to simple scalar variance determined
empirically. This simple setting was satisfactory for our
experiments. Note that in this setting, the sole purpose of
these two parameters is to properly weight the costs of
geometric deformations and appearance/descriptor de-
formations. Moreover, note that these are the only pa-
rameters in the model, and therefore requires very little
parameter tuning.

4.2. Belief Propagation Inference

Given an observed ensemble, we seek a hidden database
ensemble ,which maximizes its MAP (maximum a-
posterior probability) assignment. This is done using the
above statistical model, which has a simple and exact
Belief Propagation algorithm (Yedidia et al., 2003). Ac-
cording to Eq. (5) the MAP assignment can be written
as:

max
X

P
(
cx , d1

x , . . . , l1
x , . . . , cy, d1

y , . . . , l1
y

)
= α

∏
i

max
li
x

P
(
li
y

∣∣ li
x , cx , cy

)
max

di
x

P
(
di

y

∣∣ di
x

)
P

(
di

x

∣∣ li
x

)
(7)

This expression can be phrased as a message passing
algorithm in the graph of Fig. 4. First we compute for
each patch the message mi

dl passed from node di
x to node

li
x regarding its belief in the location li

x :

mi
dl

(
li
x

) = max
di

x

P
(
di

y

∣∣ di
x

)
P

(
di

x

∣∣ li
x

)
(8)

Namely, for each observed patch, compute all the candi-
date database locations li

x with high descriptor similarity.
Next, for each of these candidate database locations, we
pass a message about the induced possible origin loca-
tions cx in the database:

mi
lc(cx ) = max

li
x

P
(
li
y

∣∣ li
x , cx , cy

)
mdl

(
li
x

)
(9)
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At this point, we have a candidate list of origins suggested
by each individual patch. To compute the likelihood of
an entire ensemble assignment, we multiply the beliefs
from all the individual patches in the ensemble:

mc (cx ) =
∏

i

mi
lc (cx ) (10)

The inference performed by this algorithm is a MAP in-
ference. Therefore, something that occurred once in the
examples database is equally likely as something that oc-
curred many times. This formulation is useful in many ap-
plications, however, there may be applications where we
would like the frequency of occurrence in the database to
affect the likelihood of an ensemble. A simple modifica-
tion of the above algorithm allows to compute likelihood
instead of MAP, by transforming the inference algorithm
from a max-product to a sum-product.

4.3. Estimating the Likelihood of a Query Point

For each point in the query, we try to compose a large
region around it. This is done by checking the validity of
a large region surrounding every point, using the above
inference process (by computing a query region likeli-
hood). This point participates in many query regions. We
define the likelihood of a query point as the maximal like-
lihood of a region containing that point. Therefore, a point
in the query will have a high likelihood, if there exists a
large region containing it, with a corresponding similar
database region. This way, we can compose queries with
partial occlusion of objects, since points which are near
the boundary are contained in a large region inside the
object. However, partial occlusions might create small
contiguous regions of objects, which cannot be com-
posed with high likelihood using our current inference
algorithm.

We would like the region that we compose around
every point to be as large as possible, because the larger
the region is, the higher the evidence that the point is not
irregular. However, there are cases in which a “regular”
observed ensemble cannot be fully composed by a single
database ensemble (e.g., due to partial occlusion). In
those cases (which are not very frequent), we reduce the
size of the observed region (e.g., by 25%) and repeat
the inference process without the discarded patches. We
penalize the overall ensemble likelihood score for each
patch we discard. In terms of Eq. (6) we add a constant
cost penalty for every patch we discard. The magnitude
of the penalty term, reflects the importance we attribute
to the composition region size.

Handling Ensembles of Different Sizes: In order to detect
irregular regions in an entire observation, we can simply
threshold the composition cost in Eq. (6). However, there

may be cases where the size of the observed ensemble
would be different (e.g., because of non-informative re-
gions, regions excluded from analysis, data boundaries,
etc.). In order to compare composition cost of ensem-
bles of different sizes, a normalization is required. We
use a normalization based on the statistical significance
of the composition cost. We define the null-hypothesis
H0 such that each observed ensemble was generated us-
ing the statistical model defined above. Therefore, the
statistical significance of a composition cost C0 can be
measured by the pvalue Pr (C > C0 | H0). Assuming
the null-hypothesis, and given the hidden ensemble, each
term in the composition cost in Eq. (6) is distributed χ2

and the overall cost is also distributed χ2. These distri-
butions can be used to compute the pvalue which “nor-
malizes” the composition cost for ensembles of different
sizes.

5. An Efficient Inference Algorithm

A naive implementation of the message passing algo-
rithm presented in Section 4.2 is very inefficient, since
independent descriptor queries are performed for each
patch in the observation ensemble, regardless of answers
to previous queries performed by other patches. This re-
sults in a complexity of O(Nk) where N is the number of
patches in the database (e.g., 100,000 patches for a one-
minute video database) and k is the number of patches
in the ensemble (e.g., 256). Moreover, we should scan
the entire query (the new image or new video sequence),
which results in a total complexity of O(Nkq), where q
is the number of patches in the query. The complexity
is prohibitive for real applications, because each of the
terms (N , k and q) is not negligible. In this section we
show how to significantly reduce the complexity without
sacrificing accuracy.

5.1. The Progressive Elimination Process

The patches in the observed ensemble are related by a
certain geometric arrangement. We can use this knowl-
edge for an efficient search by progressive elimination of
the search space in the database: We compute the mes-
sage mi

dl for a small number of patches (e.g., 1). The
resulting list of possible candidate origins induces a very
restricted search space for the next patch. The next patch,
in turn, eliminates additional origins from the already
short list of candidates, etc. This process is illustrated in
Fig. 5. In order to speed-up the progressive elimination,
we use truncated Gaussian distributions (truncated after
4σ ), in Eqs. (2) and (3). Therefore, these distribution give
a likelihood of zero to high patch deformations in terms
of geometry or appearance/descriptor. The search of the
first patch costs O(N ). We keep only the best c candi-
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Figure 5. The progressive elimination process. Step 1: Searching for the first patch (blue square) in the database yields several possible locations.

Each location induces probability for the location of the hidden ensemble center (blue circles). Step 2: We use the PDF of the hidden ensemble center

induced by the first (blue) patch in order to search for the second (red) patch only in non-zero likelihood regions (dotted red circles). (c) Step 3: Each

detected location of the red patch induces another PDF for the hidden ensemble center. Locations where one of the PDFs is zero are eliminated. We

proceed to process all the other patches in the ensemble in the same way.

date origins from the list proposed by the first patch (in
our implementation, c = 50). The second patch is now
restricted to the neighborhoods of c locations. The third
will be restricted to a much smaller number of neighbor-
hoods. Thus, in the worst case scenario, our complexity
is O(N + kc) ≈ O(N ). In contrast, the complexity of
the inference process in Felzenszwalb and Huttenlocher
(2005) and Leibe et al. is O(Nk), while the complexity of
the “constellation model” (Fergus et al.) is exponential in
the number of patches. The above proposed reduction in
complexity is extremely important for enabling video in-
ference with ensembles containing hundreds of patches.
Note that limiting the number of candidate origin points
to c candidates might be problematic: For instance, if
the first patch we choose is non-informative (i.e., single
edge), then choosing the best c candidates is arbitrary
and we might discard the globally optimal ensemble. In
practice, other components of our inference algorithm
(multi-scale strategy, predictive search, and scanning the
observation) eliminate this risk. Note that if we assume
truncated Gaussian distributions (or other finite support
distributions), and if searching for the first few patches
yields less than c candidate locations, then the progressive
elimination process guarantees an exact solution, because

we only discard candidates with zero likelihood. Note that
this entails that under such conditions we can offer an ex-
act inference which is equivalent to Belief Propagation
with reduced complexity. Moreover, we know during the
inference if the result is exact (optimal) or if it is only an
approximation.

5.2. Multi-Scale Search

To further speedup the elimination process, we use a
coarse-to-fine strategy (both in space and in time). We
choose the first searched patches from a coarse scale, for
two reasons: (i) There is a much smaller number of coarse
patches in the database than fine patches (thus decreas-
ing the effective N in the first most intensive step), and
(ii) coarse patches are more discriminative because they
capture information from large regions. This eliminates
candidate origins of database ensembles very quickly.
We proceed until we process all the coarse scale patches
in the observed ensemble. Then we project the candi-
date origin points to the next finer scale and continue to
process patches in the finer scale (both in space and in
time). We proceed in this multi-scale manner to process



Detecting Irregularities in Images and in Video 25

all the patches in the observed ensemble. The complexity
of the multi-scale search is O(N0 + kc), where N0 is the
number of patches in the coarsest scale of the space-time
pyramid.

5.3. Efficient Database Storage and Retrieval

A simple implementation of the database would be to use
an array of patch descriptors and search it linearly. How-
ever, time and space complexity can be improved sig-
nificantly for database retrieval and storage, respectively.
Storage space can be reduced significantly by keeping
approximations of the descriptor vectors. For instance,
all the descriptor vectors can be projected on a low di-
mensional linear space using standard techniques such
as PCA and ICA. In addition, vector quantization tech-
niques (such as Kmeans, or Jurie and Triggs (2005)) can
be used to cluster groups of descriptors. The result of
projection and quantization is that there are less descrip-
tor types to store, and each descriptor vector is shorter.
Another benefit is that database retrieval time is reduced.
Note that projection and quantization introduce errors in
the descriptor vectors. We can eliminate the error if each
‘compressed’ descriptor contains a link to the original
descriptor. In this case, storage space would not be re-
duced, but the retrieval time would be reduced. A closely
related approach to reduce database retrieval time is to use
better data structures for storing the descriptor vectors,
such as KD-trees and hash-tables for finding approximate
nearest neighbors. These data-structures enable fast range
queries (finding all elements in the database in a certain
range around a given element). The resulting time com-
plexity is O(Range(N0) + kc), where Range(N0) � N0

is the cost of a range query in the database data structure
with N0 elements (patches) in it.

5.4. Using Predictive Search

So far we assumed that the composition algorithm de-
scribed above is applied to all the points in the observa-
tion, independently of each other. This is usually wasteful
as neighboring observed ensembles tend to have neigh-
boring hidden ensembles in the database. We utilize this
fact to speed up the composition by predicting the values
of hidden ensemble variables in space and in time. By us-
ing all the previously composed ensembles in the vicinity
of the current ensemble (in space and in time), we predict
the location of the hidden ensemble center and the identity
of the hidden patches in the database, using knowledge
obtained for the overlapping observed patches. We use
the simplest prediction: Given a neighboring observed
ensemble (ỹ and its corresponding detected database en-
semble x̃) we predict some of the hidden variables in
hidden ensemble x corresponding to a new observed

ensemble y. We predict the hidden ensemble center cx

using:

cx = c̃x + cy − c̃y (11)

Moreover, for each observed patch (li
y, di

y), which par-
ticipated in the predicting ensemble (li

y, di
y) = (

˜l j
y ,

˜d j
y )

we predict the corresponding hidden variables (li
x , di

x )
= (

˜l j
x ,

˜d j
x ). The rest of the hidden variables, which are

not predicted, can be inferred very quickly using the pro-
gressive elimination process. Note that for neighboring
ensembles, most of the observed patches overlap, there-
fore the complexity of composing a new ensemble is very
low.

In cases where the prediction is bad and hence results
in a low quality composition (i.e., low likelihood of the
observed region), we discard the prediction results and
use the usual inference over the entire database. Thus, the
predictive search does not prevent detection elsewhere
in the database. However, in most cases the predictive
search is quite accurate and reduces the inference time
considerably. Assume that there is a ‘chain’ of valid pre-
dictions of length r . The cost of predicting an ensem-
ble in this chain is O(k). Therefore the total complexity
of such a chain is O(Range(N0) + kc + kr ) instead of
O(Range(N0)r + krc) without prediction. Besides sig-
nificantly reducing total inference time, prediction actu-
ally improves the accuracy of inference. This is because
regions where the composition was accurate, propagate
information to regions with less certainty (e.g., the leg of
a standing person has less certainty than the upper part
of the body).

6. Applications

The approach presented in this paper gives rise to a variety
of applications which involve detection of irregularities
in images and in videos:

6.1. Detecting Unusual Image Configurations

Given a database of example images, we can detect un-
usual things in a new observed image (such as objects
never seen before, new image patterns, etc.) An example
is shown in Fig. 6. Images of three different poses are
provided as a database (Fig. 6(a)). Images of other poses
are provided as queries (Fig. 6(b)). New valid poses (e.g.,
a man sitting on the chair with both arms up, a man sit-
ting on a chair with one arm up) are automatically in-
ferred from the database, even though they have never
been seen before. New pose parts which cannot be in-
ferred from the three database images are highlighted in
red as being “unfamiliar” (Fig. 6(c)). Figure 6(d) visu-
ally indicates the database image which provided most
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Figure 6. Detection of irregular image configurations. New valid poses are automatically inferred from the database (e.g., a man sitting on the chair

with both arms up, a man sitting on a chair with one arm up), even though they have never been seen before. New pose parts which cannot be inferred

from the three database images are highlighted in red as being “unfamiliar”.

evidence for each pixel in the query images (i.e., it tells
which database image contains the largest most proba-
ble region of support for that pixel. Note, however, that
these are not the regions of support themselves). Uni-
form patches (with negligible image gradients) are as-
sumed valid by default and discarded from the inference
process (for added speedup).

6.2. Spatial Saliency in a Single Image

Given a single image (i.e., no database), salient image
regions can be detected, i.e., image regions which stand
out as being different than the rest of the image. This is
achieved by measuring the likelihood of each image re-
gion (the “query”) relative to the remaining portions of
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Figure 7. Identifying salient regions in a single image (no database; no prior information). The Jack card was detected as salient. Note that even

though the diamond cards are different from each other, none of them is identified as salient.

the same image (the “database” used for inferring this
particular region). This process is repeated for each im-
age region. (This process can be performed efficiently
by adaptively adding and removing the appropriate de-
scriptors from the “database” when proceeding from the
analysis of one image region to the next). Such an ex-
ample is shown in Fig. 7. This approach can be applied
to problems in automatic visual inspection (inspection of
computer chips, goods, etc.).

6.3. Detecting Suspicious Behaviors

Given a small database of sequences showing a few
examples of valid behaviors, we can detect suspicious be-
haviors in a new long video sequence. This is despite the
fact that we have never seen all possible combinations of
valid behaviors in the past, and have no prior knowledge
of what kind of suspicious behaviors may occur in the
scene. These are automatically composed and inferred
from space-time regions in the database sequence.
An example is shown in Fig. 8, which shows a few
sample frames from a 2-minute-long video clip, along
with detected suspicious behaviors. For full videos see
www.wisdom.weizmann.ac.il/∼vision/Irr
egularities.html. The result of our algorithm
is a dense likelihood map. In our video examples,
a single threshold was selected for an entire video
sequence query. More sophisticated thresholding
methods (hysteresis, adaptive threshold, etc.) can be
used.

Note that because our space-time patch descriptors
were based on temporal derivatives (see Section 3.1), the
detection results are invariant to different static back-
grounds in the query and example database sequences.
(In fact, because we detect suspicious dynamic behav-
iors, we do not process the static regions, which reduces
run-time considerably.) An important property of our
approach is that we can incrementally and adaptively
update the database when new regular/valid examples

are provided, simply by appending their raw descriptors
and locations to the database. No “relearning” process
is needed. This is essential in the context of detecting
suspicious behaviors, should a detected suspicious
behavior be identified as a false alarm. In such cases, the
database can be updated by appending the new example,
and the process can continue.

6.4. Spatio-Temporal Saliency in Video

Using our approach we can identify salient behaviors
within a single video sequence, without any database or
prior information. For example, one person is running
amongst a cheering crowd. The behavior of this person
is obviously salient. In this case, saliency is measured
relative to all the other behaviors observed at the
same time. The “validity” of each space-time video
segment (the “query”) is measured relative to all the
other video segments within a small window in time
(the “database” for this particular video segment).
This process is repeated for each video segment. Such
an example is shown in Fig. 9. For full videos see
www.wisdom.weizmann.ac.il/∼vision/Irr
egularities.html. Video saliency can also be
measured relative to other temporal windows. E.g.,
when the saliency is measured relative to the entire
video, behaviors which occur only once will stand out.
Alternatively, when the saliency is measured relative
to the past (all previous frames), new behaviors which
have not previously occurred will be spotted. This
gives rise to a variety of applications, including video
synopsis.

6.5. Automatic Visual Inspection (Quality Assurance)

Our approach can be used for automatic visual inspec-
tion. Automatic visual inspection is widely used for qual-
ity assurance in the manufacture of goods, electronic
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Figure 8. Detection of suspicious behaviors. New valid behavior combinations are automatically inferred from the database (e.g., two men walking

together, a different person running, etc.), even though they have never been seen before. behaviors which cannot be inferred from the database clips

are highlighted in red as being “suspicious”. For full videos see www.wisdom.weizmann.ac.il/∼vision/Irregularities.html

Figure 9. Detecting salient behaviors in a video sequence (no database and no prior information). Saliency is measured relative to all the other

behaviors observed at the same time. In this example, all the people wave their arms, and one person behaves differently. For full videos see

www.wisdom.weizmann.ac.il/∼vision/Irregularities.html

printed boards, wafers, etc. One of the main problems in
automatic inspection is describing all the possible correct
patterns. In some cases, an exact reference for compar-
ison can be supplied. In those cases automatic inspec-
tion reduces to a simple problem of pattern matching
with change detection. However, there are many impor-
tant complex cases where it is meaningless or impossible
to provide a reference for comparison, (e.g., because of

the combinatorial complexity of the space of “good”
cases). We address such cases using our approach for
detecting irregularities. By supplying a few examples
of expected/normal patterns (for goods, printed boards,
wafers, photomasks, flat panel displays, ceramic tiles,
fabric, fruits, etc.) we can try to generalize from the ex-
amples and compose new observations that were never
seen before. Regions with low composition likelihood
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Figure 10. Detection of defects in grapefruit images. Using the single image (a) as a “database” of high quality grapefruits, we can detect defects in

different grapefruits at different arrangements in images (b),(c). In both image pairs the input image is to the left and the output image is to the right.

Detected defects are highlighted in “red”.

Figure 11. Detection of defects in wafer images (No database and no prior information). Wafers tend to exhibit repeating structures. This can be

utilized using our saliency approach to detect defects without any database. In each example, the left image is the input, the right image is the output.

Detected defects are highlighted in “red”.

will be considered as defects. One such example is shown
in Fig. 10 for fruit inspection.

Often, inspected products exhibit repeating patterns
(e.g., wafers, fabric, flat panel displays). In these cases we
can use our saliency approach to detect defects without
any prior examples. This is illustrated in Fig. 11 for wafer
inspection and in Fig. 12 for fabric inspection. For the
examples shown we have used patch descriptors based on
RGB or gray levels values accordingly. We have used a
Gaussian distribution for modelling descriptor similarity.
Our approach, however, is not restricted to this particular
choice of descriptors.

7. Conclusion

We address the problem of detecting irregularities in vi-
sual data (images or video). The term “irregular” depends
on the context in which the “regular” or “valid” are de-
fined. Yet, it is not realistic to expect explicit definition
of all possible valid configurations for a given context.
We pose the problem of determining the validity of vi-
sual data as a process of constructing a puzzle: We try
to compose a new observed image region or a new video
segment (“the query”) using chunks of data extracted
from previous visual examples (“the database”). Regions
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Figure 12. Detection of defects in fabric images (No database and no prior information). Fabric tend to exhibit nearly repeating textures and

patterns with small non-rigid deformations. This can be utilized using our saliency approach to detect defects without any database. Detected defects

are highlighted in “red”.

in the observed data which can be composed using large
contiguous chunks of data from the database are consid-
ered very likely, whereas regions in the observed data
which cannot be composed from the database (or can be
composed, but only using small fragmented pieces) are
regarded as unlikely/suspicious. We refer to this process
as “inference by composition”. It allows to generalize
from just a few examples as to what is regular and what
is not in a much larger context. The composition process
is implemented as an efficient inference algorithm in a
probabilistic graphical model, which accommodates for
small spatio-temporal deformations between the query
and the database.

“Inference by composition” can also be used to detect
saliency in visual data without any prior examples. For
this purpose we regard each image region as a “query”,
and try to compose it using the remainder parts of the im-
age (the “database”). This is repeated in turn for all image
regions. Salient regions will be detected as such which
cannot be “explained” (composed) using other parts of
the image. This leads to a new definition of the term
saliency in visual data. In the case of video data, those
regions are spatio-temporal, and the salient video regions
correspond to salient behaviors.

Our “inference by composition” approach is general
and can therefore address a wide range of problems in a
single unified framework. Its generality stems from the
fact that it does not resort to any pre-learned class-based
models. We demonstrated applications of this approach to
detecting suspicious behaviors, salient behaviors, promi-
nent image regions, defects in goods and products.

Our current algorithm has two main limitations: (i)
Although occlusions can be handled to some extent, it

cannot handle extreme occlusions (such as when only
small fragmented parts of the object are visible). (ii) The
time and memory complexity of our current inference
algorithm is linear in the size of the example database.
This is obviously problematic for very large databases.
These two problems are a topic of our future research.
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