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Abstract.
Dynamic analysis of video sequences often relies on the segmentation of the

sequence into regions of consistent motions. Approaching this problem requires
a definition of which motions are regarded as consistent. Common approaches to
motion segmentation usually group together points or image regions that have the
same motion between successive frames (where the same motion can be 2D, 3D,

or non-rigid). In this paper we define a new type of motion consistency, which is
based on temporal consistency of behaviors across multiple frames in the video
sequence. Our definition of consistent “temporal behavior” is expressed in terms of
multi-frame linear subspace constraints. This definition applies to 2D, 3D, and some
non-rigid motions without requiring prior model selection. We further show that our
definition of motion consistency extends to data with directional uncertainty, thus
leading to a dense segmentation of the entire image. Such segmentation is obtained
by applying the new motion consistency constraints directly to covariance-weighted
image brightness measurements. This is done without requiring prior correspondence
estimation nor feature tracking.
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1. Introduction

Common approaches to motion-based segmentation usually track sparse
feature points and group together those which have the same 3D mo-
tion, e.g., (Torr, 1998; Torr and Zisserman, 1998; Costeira and Kanade,
1995; Gear, 1998; Ichimura, 2000; Boult and Brown, 1991). Approaches
which provide dense segmentation were usually limited to handling 2D
motions, e.g.,(Wang and Adelson, 1993; Ayer and Sawhney, 1995; Irani
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2 Zelnik-Machline-Irani

et al., 1992). In this work we suggest an approach for dense multi-body
segmentation which provides a unified treatment of 2D motions, 3D
motions and some non-rigid motions.
We define a new type of motion consistency which is based on tempo-

ral constraints: a set of points are grouped together as a single object
when they have a consistent “behavior” over time. Our definition of
consistent “temporal behavior” is expressed in terms of the multi-frame
linear subspace constraints used in (Irani, 2002) for flow estimation of
a single object. These subspace constraints allow grouping together
points moving with different motions, as long as their motions change
over time in the same pattern.
Moreover, using subspace constraints allows introducing directional

uncertainty information, as was shown in (Anandan and Irani, 2002)
for the single object case. Applying these new multi-body subspace
constraints directly to covariance-weighted image brightness quantities
gives rise to a segmentation of the entire image (every pixel) into mul-
tiple objects. This does not require prior correspondence estimation or
feature tracking, nor does it require prior model selection (e.g., 2D, 3D,
or non-rigid).

1.1. Background on Factorization Methods

Let I1, . . . , IF denote a sequence of F frames with N pixels in each
frame. Let (uf

i , v
f
i ) denote the displacement of pixel (xi, yi) in frame If

(i = 1, . . . , N , f = 1, . . . , F ). Let U and V denote two F ×N matrices
constructed from the displacements of all the image points across all
frames:

U =



u1

1 · · · u1
N

...
uF

1 · · · uF
N




F×N

V =



v1
1 · · · v1

N
...

vF
1 · · · vF

N




F×N

(1)

Each row in these matrices corresponds to a single frame, and each
column corresponds to a single point.
Stacking the matrices U and V of Eq. (1) vertically results in a

2F ×N matrix
[

U
V

]
where each column is associated with the displace-

ments of a single point across all images/frames. Previous work on
subspace-based multi-body segmentation/factorization (e.g., (Costeira
and Kanade, 1995; Gear, 1998; Ichimura, 2000; Boult and Brown, 1991))

decomposed the space spanned by the columns of
[

U
V

]
into linearly

independent sub-spaces. This was done by permuting and grouping
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Multi-body Factorization With Uncertainty 3

the columns of
[

U
V

]
into sub-matrices of lower ranks, such that the

sub-spaces associated with the different sub-matrices are linearly inde-
pendent. All columns of a single such sub-matrix (sub-space) of

[
U
V

]
correspond to all the points of a single independently moving object.
Such a decomposition was often obtained (e.g., (Costeira and Kanade,

1995; Gear, 1998)) by a factorization of the matrix
[

U
V

]
into a product

of two matrices:
[

U
V

]
= M2F×(r1+···+rK)S(r1+···+rK)×N , where M is the

matrix of motions of all objects and S is a block diagonal “shape”
matrix with blocks of ranks rk. Each block corresponds to the shape of a
single object and rk is the rank of that object (i.e., the dimensions of its
corresponding sub-space). The permutation and grouping of columns of[

U
V

]
to obtain the desired separation into independently moving objects

was obtained by seeking a block-diagonal structure for the matrix S.
While the multi-body factorization approaches assumed rigid motions
of objects, in (Brand, 2001) and (Bregler et al., 2000) it was shown that
the motion of some non-rigid objects also resides in low-dimensional
linear sub-spaces.
In all the above mentioned cases, the sub-space constraints were

applied to the matrix
[

U
V

]
. In (Boult and Brown, 1991) and (Irani,

2002) this matrix is referred to as the “trajectory matrix”, because each
column in this matrix contains the displacements of a single point across
all frames in the sequence, i.e., its trajectory. Irani further investigated
(Irani, 2002) the meaning of stacking the matrices U and V horizontally.
This gives rise to a F × 2N matrix [U, V ], where each row contains
the flow field (i.e., displacements of all points) between a single pair
of frames (typically between a reference frame and one of the other
frames), and is therefore referred to here as the “flow-field matrix”
(coined the “displacement-field matrix” in (Irani, 2002)).
In (Irani, 2002) and later in (Anandan and Irani, 2002) it was shown

that when using the flow-field matrix [U, V ], directional uncertainty can
be added to the factorization process. This approach was extended
by (Torresani et al., 2001) and (Brand, 2001) to non-rigid objects.
However, all the above mentioned methods assumed that all columns
of the flow-field matrix [U, V ] belong to a single (rigid or non-rigid)
object/scene.
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1.2. What’s new in this paper?

In this paper we extend the notion of factorization with uncertainty to
multiple (rigid or non-rigid) moving objects1. In particular, we show
that:

1. Applying the subspace constraints (factorization) to the flow-field

matrix [U, V ] (instead of the trajectory matrix
[

U
V

]
) gives rise to

a new and interesting definition of motion consistency, which is
different from the traditional motion consistency resulting from[

U
V

]
.

2. Applying the multi-body segmentation algorithm of (Costeira and
Kanade, 1995; Gear, 1998) to the flow-field matrix [U, V ] (instead

of the trajectory matrix
[

U
V

]
) gives rise to multi-body factorization

with directional uncertainty.

3. We show how this gives rise to applying multi-body factorization
directly to brightness quantities without prior correspondence esti-
mation. This leads to dense segmentation of the entire image region
(pixel by pixel).

The next three sections are dedicated to presenting these three con-
tributions: Section 2 explores the meaning of motion consistency which
results from factorizing the flow-field matrix [U, V ]. Section 3 shows how
directional uncertainty can be folded into the factorization of [U, V ]

(as opposed to
[

U
V

]
which does not support directional uncertainty).

Section 4 explains how the resulting covariance-weighted factorization
can be translated into a direct intensity-based multi-body factorization.
This gives rise to dense segmentation with no prior correspondence
estimation.

2. Revisiting Motion Consistency

As explained in Section 1.1 clustering the columns of the trajectory
matrix

[
U
V

]
(as was done by (Costeira and Kanade, 1995; Gear, 1998;

Ichimura, 2000; Boult and Brown, 1991)) captures the dependency be-
tween trajectories of different points. In this section we investigate the
meaning of clustering the columns of the flow-field matrix [U, V ], and
compare the two approaches.
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Given two objects and the matrices U1, V1, U2, V2 of their multi-
point multi-frame displacements, we examine when these objects will
be grouped together as having consistent motions and when they will
be separated, using subspace constraints on either

[
U
V

]
or [U, V ]. We

start by providing a general rank-rule for understanding subspace based
segmentation. This rank-rule and its accompanying observations apply
to both approaches, and serves as the basis to the analysis of the
similarities and differences between the two approaches, which will be
given next.
Observations on Subspace Based Segmentations: Let W1, W2

be either the trajectory sub-matrices corresponding to the two objects
{W1 =

[
U1
V1

]
and W2 =

[
U2
V2

]
} or the flow-field sub-matrices of the two

objects {W1 = [U1, V1] and W2 = [U2, V2]}. Let π1, π2 be the linear
subspaces spanned by the columns of W1 and W2, respectively, and let
r1 = rank(W1) and r2 = rank(W2). The two subspaces π1 and π2 can
lie in three different configurations:

Linear Independence: When π1 and π2 are two disjoint linear
subspaces (i.e., π1 ∩ π2 = {0}), then rank([W1,W2]) = r1 + r2.

Equality and Inclusion: When one subspace is a subset of (or
equal to) the other (w.l.o.g., π2 ⊆ π1), thenW2 =W1A, and rank([W1,W2]) =
max(r1, r2).

Partial Linear Dependence: When π1 and π2 partially intersect

(i.e., {0}⊂�=π1 ∩ π2
⊂
�=π1 ∪ π2), then max(r1, r2) < rank([W1,W2]) <

r1 + r2.
To separate between objects, Costeira and Kanade (Costeira and

Kanade, 1995) have estimated the SVD of [W1,W2], i.e., [W1,W2] =
AΣBT (where A and B are unitary matrices) and showed that the

“shape interaction matrix” Q = BBT =
[
ST

1 Λ
−1
1 S1 0
0 ST

2 Λ
−1
2 S2

]
has a

block diagonal structure. The algorithm they suggested (as well as those
suggested in (Ichimura, 2000; Boult and Brown, 1991; Kanatani, 2001))
relied on the block diagonal structure of Q. However, by simple alge-
braic manipulations we can show thatQ = BBT = [W1,W2]T [W1,W2] =[
W T

1 W1 W T
1 W2

W T
2 W1 W T

2 W2

]
. This implies that Q has a block diagonal structure

only when the matricesW1 andW2 are linearly independent. WhenW1

and W2 are partially dependent, then the off-diagonal blocks W T
1 W2

andW T
2 W1 are non-zero. Hence, algorithms like (Costeira and Kanade,

1995; Ichimura, 2000; Boult and Brown, 1991; Kanatani, 2001), which
rely on the block diagonal structure of Q, will fail to separate between
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such objects. Gear (Gear, 1998) suggested an algorithm which relies
on the block-diagonal structure of the reduced-row-echelon form of
[W1|W2]. However, here too, the reduced-row-echelon form will have
a block-diagonal structure only when W1 and W2 are linearly inde-
pendent. Gear further suggested (Gear, 1998) a modification to his
algorithm which can overcome partial dependencies between W1 and
W2 in some cases.
We thus conjure the following segmentation rank-rule. In both seg-

mentation approaches (i.e., the existing subspace-based segmentation

approaches of
[

U
V

]
or our segmentation of [U, V ]) the two objects are

grouped together or alternatively separated into two objects according
to the following (implicit) rank rule 2. Let r = rank([W1,W2], then:
Rank-Rule:

case I case II case III
r = r1 + r2 max(r1, r2) < r < r1 + r2 r = max(r1, r2)

⇓ ⇓ ⇓
Two separate objects
(in all algorithms) Algorithm dependent

Single object
(in all algorithms)

We make the following observations regarding the Rank-Rule:

1. In some cases the rank of the flow-field matrix W = [U, V ] may

be higher than the rank of the trajectory matrix
[

U
V

]
, and lower in

other cases (Irani, 2002). However, the decision whether two objects
will be grouped together or separated into two objects depends
solely on the relative value of the ranks of the sub-matrices W1 and
W2 and the rank of the combined matrix [W1,W2]. The decision
does not depend on the absolute values of these ranks.

2. It can be shown (see Appendix A) that, if two objects are grouped
together, by case III of the Rank-Rule, in a trajectory based seg-
mentation

[
U
V

]
, they will also be grouped together by case III

of the Rank-Rule, in a flow-field based segmentation [U, V ], but
not vice versa! This has interesting implications on multi-body
segmentation.

3. Subspace constraints apply to various 2D and 3D motion models
(Irani, 2002), and some non-rigid motions (Brand, 2001; Bregler et
al., 2000). The decision whether to group two objects together or
whether to separate them is based only on the ranks. This does not
require prior selection of a motion model or a scene geometry.
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(a) (b) (c) (d)

Figure 1. (a)-(c) The 3 frames of a sequence showing a circle enlarging. (d) An
overlay image of the three frames and flow vectors for some sample points.

[
U
V

]
Segmentation Vs. [U, V ] Segmentation: The rank of a matrix

is determined by the dimensionality of the linear space spanned by its
columns. This is also equal to the dimension of the space spanned
by the rows of the matrix (although these spaces are different, their
dimensions are the same). To understand the physical meaning of each
of the segmentation approaches, we analyze the dependence between
columns of the trajectory matrix

[
U
V

]
, and the dependence between

rows of the flow-field matrix [U, V ]. The suggested analysis offers an
understanding of the information content of each of these matrices and
is independent of the specific segmentation algorithm used.
Figure 1 explains the notions of linear dependency of trajectories and

linear dependency of flow-fields of a single object. The three frame se-
quence shows a circle which expands from frame to frame (the radius in-
creases by a between the first and the second frames and by another b in
the third frame). It is clear that the trajectory of the top point (marked
by a blue square in Fig. 1.d) and the trajectory of the rightmost point
(marked by a red triangle in Fig. 1.d) are linearly independent. The top
point has a trajectory vector [a, b, 0, 0]T whereas the rightmost point has
a trajectory vector [0, 0, a, b]T . The trajectory of any other point on the
circle can be expressed as a linear combination of these two trajectories.
For example take the point marked by a green circle in Fig. 1.d: its
trajectory vector is: cos(α)[a, b, 0, 0]T + sin(α)[0, 0, a, b]T . Thus we can

write:
[

U
V

]
2F×N

=



a 0
b 0
0 a
0 b




4×2

C2×2. The trajectory matrix
[

U
V

]
there-

fore has rank 2 in this sequence. We next examine the space spanned by
the flow-fields of this sequence. Observing the flow-fields in the first pair
of frames and in the second pair of frames, it can be seen that they are
linearly dependent: [u2

1, . . . , u
2
N |v2

1, . . . , v
2
N ] =

b
a [u

1
1, . . . , u

1
N |v1

1, . . . , v
1
N ].

A similar relation will hold for any additional pair of frames in the
expanding circle (with different coefficients depending on the rate of
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growth). Therefore, [U |V ]F×2N = CF×1[u1
1, . . . , u

1
N |v1

1, . . . , v
1
N ]. This

implies that the flow-field matrix [U |V ] has rank 1.
In other words, for a single object there exist a set of basis trajectory

vectors and a set of basis flow-fields such that the two matrices can be
factored into [

U

V

]
= B︸︷︷︸

Traj Basis
(columns)

C︸︷︷︸
Traj Coeff

and
[U, V ] = C︸︷︷︸

Flow Coeff

B︸︷︷︸
Flow basis

(rows)

In the case of multiple objects, as was observed in (Boult and Brown,

1991), segmenting according to the trajectory matrix
[

U
V

]
, will group

together all the points whose trajectory vectors are spanned by the
same basis (i.e., B1 = B2, or when B1 and B2 are linearly dependent).
Thus, for example, two objects moving with the same 3D motion will
be grouped together as one.
Understanding the meaning of grouping points together in the flow-

field matrix is less intuitive: Although the subspace constraints are
on the rows of [U, V ], the grouping of points is still done at the level
of columns (every point has a pair of columns in [U, V ]). When two
objects are grouped together their flow-field vectors at corresponding
frames are concatenated into longer flow-field vectors. Two objects will
be grouped together into a single object if they have the same coeffi-
cients in the linear combination of their individual basis flow-fields (i.e.,
C1 = C2, or when C1 and C2 are linearly dependent). Note that the
two objects can have completely different basis flow-fields, but they will
be regarded as one as long as the way in which their flow-field change
over time is the same (which is what the coefficients capture). This is
what we refer to in this paper as “consistent temporal behavior”. For
example, this allows grouping together points with different motions,
as long as the patterns in which their motions change over time is the
same.

Examples of
[

U
V

]
Segmentation Vs. [U, V ] Segmentation: An

illustration of the difference between what can be achieved with a multi-
point trajectory-based segmentation and a multi-frame flow-field based
segmentation can be seen in Figure 2. Fig. 2.a shows a jumping-jack
stick figure. All the points on the left arm move together as a rigid
body and have linearly dependent trajectories (marked in dark-green
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arrows in Fig. 2.b). The points on the right arm also move rigidly
(marked in light-green arrows in Fig. 2.b), but in a different motion
than that of the left arm. Hence, the trajectory matrix of the combined
points of both arms will have a higher rank than any of the trajectory
matrices of each individual arm. Therefore, according to the rank rule
of Eq. (2), these will not be grouped together in

[
U
V

]
segmentation.

Similarly, adding the points on the left leg (marked in dark-red arrows

in Fig. 2.b) to the trajectory matrix
[

U
V

]
will further increase the rank,

and so will adding the points on the right leg (marked in light-red
arrows in Fig. 2.b). A segmentation according to the trajectory matrix
will therefore segment the four limbs into four separate moving objects.
Yet, the flow-field matrix [U, V ], which contains all the points on all the
limbs, will have the same rank as the flow-field matrix of any single limb.
Even though the flow-fields induced by the different limbs are different,
they share the same set of coefficients in the frame-to-frame linear
dependence of flow-fields (i.e., Cright arm = Cleft arm = Cright leg =
Cleft leg). Therefore, in a segmentation based on the flow-field matrix
all the limbs will be grouped as a single object.
Figures 3 and 4 also illustrate the difference between what can be

achieved by a trajectory-based segmentation versus a flow-field based
segmentation, this time on real sequences. Each of the tested sequences
displays a single non-rigid object consisting of a group of rigid sub-parts
with different 3D motions. In these examples we tracked points on the
sub-parts and analyzed the ranks of the trajectory matrices and of the
flow-field matrices both for each separate part as well as for the union
of all parts. Fig. 3.e displays the resulting ranks for a video sequence
showing a person walking. Points were tracked on three sub-parts: the
forearm, the shin (lower-leg) and the head (marked in black in Figs.
3.a-c). The rank of the trajectory matrix for all the points on all parts
is higher than the rank of the trajectory matrix for any of the single
parts (see Fig. 3.e). On the other hand, the rank of the flow-field matrix
for all the points on all parts of this example equals the rank of the
flow-fields matrix for the single object with the highest rank (see Fig.
3.e). This implies that a segmentation applied to the flow-field matrix
[U, V ] will group the forearm, the shin and the head into a single object
in this particular sequence.
The resulting ranks for a sequence showing a hand where its five

fingers expand and contract simultaneously are displayed in Fig. 4.
Points were tracked on each of the fingertips (marked in black in Figs.
4.a-b). The rank of the trajectory matrix for all the tracked points is
higher than the rank of the trajectory matrix for a single fingertip (see
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(a) (b)

Figure 2. (a) Sample frames from a synthetic sequence showing a stick figure per-
forming jumping-jacks. (b) Example of the trajectories of six different points on the
figure, one on the left leg, one on the right leg, two on the left arm and two on the
right arm.
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Figure 3. (a)-(c) Sample frames from a sequence showing a person stepping forward.
The tracked points are marked in red. (d) The trajectories of the tracked points
displayed on a sample image. (e) Graphs showing the singular values of the trajectory
matrices and of the flow-field matrices for each object separately and for all points
together.

Fig. 4.e). Alternatively, the rank of the flow-field matrix for all the
points equals the rank of the flow-field matrix for a single fingertip (see
Fig. 4.e). This implies that in this case a segmentation according to the
flow-field matrix will group all the fingers into a single object.

3. Multi-Body Factorization with Uncertainty

In the above-discussed segmentation of the trajectory matrix
[

U
V

]
, or

the flow-field matrix [U, V ], we have assumed that feature points have
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(a) (b)
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Figure 4. (a)-(b) Sample frames from a sequence of a hand where the fingertips move
simultaneously (the hand is squeezing and expanding). The tracked points are marked
in black. (c) The trajectories of the tracked points marked on a sample image. (d)
Graphs showing the singular values of the trajectory matrices and of the flow-field
matrices for each object separately and for all points together.

(a) (b)
Figure 5. Directional uncertainty indicated by ellipse. (a) Uncertainty of a sharp
corner point. The uncertainty in all directions is small, since the underlying intensity
structure shows variation in multiple directions. (b) Uncertainty of a point on a flat
curve, almost a straight line. Note that the uncertainty in the direction of the line is
large, while the uncertainty in the direction perpendicular to the line is small. This
is because it is hard to localize the point along the line.

been reliably tracked across all frames. However, in general, only a
sparse set of feature points in an image can be assumed to produce
such reliable tracking along a sequence. To allow for dense segmen-
tation of the entire image (and not only grouping of a sparse set of
image points) we introduce the notion of local uncertainty into the
segmentation process.
The quality of feature matching depends on the spatial variation of

the intensity pattern around each feature, which affects the positional
inaccuracy both in the x and in the y components in a correlated
fashion. This dependency can be modelled by directional uncertainty
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12 Zelnik-Machline-Irani

(which varies from point to point, as is shown in Fig. 5). Such direc-
tional uncertainty can be modelled by a 2×2 inverse covariance matrix
(Morris and Kanade, 1998).
(Anandan and Irani, 2002) showed that directional uncertainty can

be introduced into the flow-field matrix [U, V ], whereas only isotropic

uncertainty can be introduced into the trajectory matrix
[

U
V

]
. We

briefly review the reasons for this next.
Every column in the trajectory matrix

[
U
V

]
corresponds to a different

point. To associate a different uncertainty with each point one can
multiply the trajectory matrix

[
U
V

]
by a (diagonal) weight matrix A on

the right to get:
[

U
V

]
A. While this will associate a different uncertainty

(weight) to different points (columns), it will associate the same uncer-
tainty (same weight) to the x and y components of a point. This implies
that one can introduce only isotropic uncertainty information into the
trajectory matrix

[
U
V

]
. In (Anandan and Irani, 2002) it was shown,

however, that multiplying the flow-field matrix [U, V ] by a weight ma-
trix on the right does allow the introduction of directional uncertainty.
Multiplying [U, V ] by a weight matrix Q on the right (to get [U, V ]Q)
achieves two goals: (i) we can assign different weights to the x and
y components of the same point (because they are now in different
columns), and, (ii) we can introduce correlation between the x and y
components of the same point. The large matrix Q is generated from
the values in all the individual 2× 2 local inverse covariance matrices
(we explain the construction of the matrix Q in the description of the
algorithm in Section 4). Hence, using the flow-field matrix [U, V ] allows
us to introduce directional uncertainty. Using the inverse covariance
matrices associated with each point allows us to transform the input
displacement vectors from the raw data space into a new data space
(the “covariance-weighted space”), where the noise is uncorrelated and
identically distributed. In the new covariance-weighted data space, cor-
ner points and points on lines all have the same reliability, and their
new positional components are uncorrelated (this is in contrast with
the original data space, where corner points and points on lines had
different reliability, and their x and y components were correlated).
This allows performing factorization even to pure normal-flow data.
For more details see (Anandan and Irani, 2002).
(Anandan and Irani, 2002) dealt with a single object factoriza-

tion. We would like to extend this reasoning to multi-body segmen-
tation. The quality of the multi-body segmentation depends directly
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Multi-body Factorization With Uncertainty 13

on the accuracy of the estimated displacements (uf
i , v

f
i ) (i = 1, . . . , N

, f = 1, . . . , F ) of the tracked feature points. All previous work on
subspace-based multi-body segmentation/factorization (e.g., (Costeira
and Kanade, 1995; Gear, 1998; Ichimura, 2000; Boult and Brown, 1991))
relied on carefully tracked sparse feature points. In order to get dense
segmentation we introduce directional uncertainty into the multi-body
factorization process.
As explained above, directional uncertainty can only be introduced

in the flow-field matrix [U, V ], and not in the trajectory matrix
[

U
V

]
.

Therefore, we first show (Section 3.1) that the multi-body factorization
framework of (Gear, 1998) and (Costeira and Kanade, 1995), which

was originally developed for
[

U
V

]
, applies to [U, V ]. We then show (Sec-

tion 3.2) that by introducing directional uncertainty information we
can translate these constraints from flow-fields to covariance weighted
quantities (i.e., we show that we can get factorization with uncertainty
also in the multi-body case).

3.1. Multi-Body Constraints on the Flow-Field Matrix
[U, V ]

The flow-field matrix of a single object can be factored into a multi-

plication of two matrices: [U, V ] = [MU ,MV ]
[
S 0
0 S

]
, where MU ,MV

contain motion information and S contains shape information (Anan-
dan and Irani, 2002; Irani, 2002). When the scene contains multiple
moving objects, their columns are usually not sorted and are mixed in
the flow-field matrix [U, V ]. Let [Ũ , Ṽ ] be a matrix obtained by sorting
the columns of [U, V ] into independent objects. Then it should have
the following form:

[
Ũ , Ṽ

]
= [U1, V1, · · · , UK , VK ]

=

M︷ ︸︸ ︷
[MU1 ,MV1 , · · · ,MUK

,MVK
]

S︷ ︸︸ ︷


[
S1 0
0 S1

]
0 · · · 0

0
. . .

...
...

. . . 0

0 · · · 0
[
SK 0
0 SK

]



(2)
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14 Zelnik-Machline-Irani

where K is the number of objects. Note that the combined shape ma-
trix S of the sorted matrix [Ũ , Ṽ ] is block diagonal, where each block
corresponds to a single object.
Thus, when only the unsorted flow-field matrix [U, V ] is available,

its columns can be sorted and grouped into objects by seeking a block
diagonal structure of the total “shape” matrix S of Eq. (2). The sorting
can be done in the same way suggested by (Gear, 1998) or (Costeira

and Kanade, 1995) for the
[

U
V

]
matrix. However, as was shown in

Section 2, in the case of the [U, V ] matrix, such grouping will lead to
grouping points which have temporally consistent behaviors (and not
necessarily motion). We next show how this can be applied directly to
covariance-weighted measurements, thus allowing for segmentation of
very inaccurate flow-fields.

3.2. Multi-Body Constraints on Covariance-Weighted
Measurements

Let
[
ai bi
ci di

]
be the 2 × 2 inverse covariance matrix containing the

local uncertainty information at a pixel i (i = 1, . . . , N). Usually, the
inverse covariance matrix is symmetric, i.e., bi = ci. This information
can be computed from the underlying local brightness pattern at each
pixel in the image (see (Anandan and Irani, 2002)). When all the flow
vectors across the entire image sequence are estimated relative to a

single reference image frame then,
[
ai bi
ci di

]
is the same for pixel i

across all frames (i.e., when [uf
i v

f
i ] is the flow-vector of pixel i between

the reference-frame and frame f). It was shown by (Anandan and

Irani, 2002) that one can construct a 2N × 2N matrix Q =
[
A B
C D

]
where A,B,C and D are diagonal N × N matrices constructed from
the individual coefficients ai, bi, ci and di of each pixel. Multiplying
the flow-field matrix [U, V ] on the right by the matrix Q gives the
covariance-weighted measurement matrix [G,H]:

[G,H]F×2N = [U, V ]F×2NQ2N×2N . (3)
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Multi-body Factorization With Uncertainty 15

When the scene contains multiple moving objects, sorting the columns
of [G,H] according to objects gives [G̃, H̃] such that:

[G̃, H̃] = [G1, H1, · · · , GK , HK ] = [U1, V1, · · · , UK , VK ]



Q1 · · · 0
...
. . .

...
0 · · · QK




(4)

where Qk =
[
Ak Bk

Ck Dk

]
are 2Nk × 2Nk matrices and Nk is the number

of image points belonging to object k. Note, that the right-hand-side
matrix of Eq. (4) has a block-diagonal structure.
Combining Eq. (2) and (4) gives:

[G̃, H̃] =

M̃︷ ︸︸ ︷
[MU1 ,MV1 , · · · ,MUK

,MVK
]

L̃︷ ︸︸ ︷


[
S1 0
0 S1

]
Q1 · · · 0

...
. . .

...

0 · · ·
[
SK 0
0 SK

]
QK




(5)
Eq. (5) implies that the sorted matrix [G̃, H̃] can be factored into a
product of two matrices [G̃, H̃] = M̃L̃, where L̃ is block diagonal. The
number of blocks in this representation corresponds to the number of
moving objects in the scene, and the rank of each block rk characterizes
the rank of each object. In other words, multi-body factorization can be
applied directly to the covariance-weighted flow [G,H], and not only to
accurate flow [U, V ]. In particular, it can also handle pure normal-flow
information (which has infinite uncertainty in one direction).
The unsorted covariance-weighted flow-field matrix [G,H] can be

constructed from dense optical flow information (which is available
for all the points) weighted by their local uncertainty (which is also
available for all image points). We no longer need to detect and track
sparse feature points. Having the [G,H] matrix, its columns can be
sorted and grouped into objects (with temporally consistent behaviors)
by seeking a block diagonal structure of the right-hand-side matrix of
Eq. (5). This can be done using similar methods to those used in (Gear,
1998) or (Costeira and Kanade, 1995).
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16 Zelnik-Machline-Irani

4. Direct Intensity-Based Multi-Body Segmentation

The covariance-weighted flow matrix [G,H] can be computed in two
steps, by first computing the (unreliable) flow matrix [U, V ], and then
multiplying it by the local directional uncertainty. Alternatively, [G,H]
can be computed directly from image brightness quantities with no
prior flow estimation. We next present an algorithm for multi-body
segmentation of video clips by applying sub-space constraints of the
flow-field matrix [U, V ] directly to image brightness measurements. The
segmentation is embedded in an iterative coarse-to-fine framework and
extends the work of (Irani, 2002) into multiple moving objects. The
algorithm that is outlined below does not require prior tracking of
points nor any prior optical-flow estimation, and segments the entire
image (pixel by pixel) into groups characterized by consistent behavior
over time.
In (Lucas and Kanade, 1981) the estimation of the local flow vector

[uf
i v

f
i ] of a pixel i at frame f was done by solving the equation:

[uf
i v

f
i ]

[ ∑
I2
x

∑
IxIy∑

IxIy
∑
I2
y

]
i
=

[−∑
IxI

f
t

∑
IyI

f
t

]f
i

(6)

where
[ ∑

I2
x

∑
IxIy∑

IxIy
∑
I2
y

]
and

[−∑
IxI

f
t

∑
IyI

f
t

]
are measurable im-

age quantities, in which Ix and Iy are the spatial image derivatives
(computed in the reference image) and If

t is the temporal image deriva-
tive (between frame f and the reference frame). The summation is
performed over a local window around pixel i. Under Gaussian noise

assumptions the spatial derivative matrix
[ ∑

I2
x

∑
IxIy∑

IxIy
∑
I2
y

]
i
can be

shown to be the posterior inverse-covariance matrix of the flow-vector
[uf

i v
f
i ]. Thus, the measurable image quantities

[−∑
IxI

f
t

∑
IyI

f
t

]f
i

approximate the covariance-weighted flow information.
Instead of first computing flow and then weighting it by its local

directional uncertainty we estimate the covariance-weighted flow [G,H]
and the local uncertainty Q (the use of Q in the direct algorithm is
explained in the algorithm description in Section 4.1) for all pixels
directly from image brightness measurements:

[gf
i h

f
i ] = [−

∑
IxIt −∑

IyIt ][
ai bi
ci di

]
=

[ ∑
I2
x

∑
IxIy∑

IxIy
∑
I2
y

]
We then construct the unsorted brightness-measurement matrix [G,H].
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Multi-body Factorization With Uncertainty 17

The above estimation assumes brightness constancy and thus will
not perform well under effects of shadows, changing illumination etc.
When the changes in brightness are not too rapid we overcome this
problem by taking into account in the segmentation only a small num-
ber of frames in which the brightness constancy assumption holds. We
then use a sliding temporal window to obtain a segmentation for all
frames.
Eq. (5) implies that segmenting the entire image (all pixels) into in-

dependent objects can be done by sorting the columns of the brightness-
measurement matrix [G,H]. We obtain such a sorting by finding the
reduced row-echelon form of [G,H] using a method similar to that
suggested in (Gear, 1998)3. However, since [G,H] is a large F × 2N
matrix, which in practice has a much lower rank r, we can first factor
[G,H] into two rank-r matrices using SVD: [G,H] =MF×r ·Lr×2N , and
then find the reduced row-echelon form of the smaller matrix L. When
M is full ranked then the matrix L has the same reduced row-echelon
form as [G,H] (see (Gear, 1998) for more details).
Interestingly, for the purpose of segmentation, accurate knowledge of

the rank r and the block ranks r1, . . . , rK is not necessary. In fact, even
if the rank of the matricesM and L (and hence also the rank of [Ĝ, Ĥ] =
ML) is lower than the true rank of [G,H], correct segmentation is still
possible. This is because clustering (segmentation) is a “competitive”
process between the different objects which is often resolved already
by a few dominant basis vectors, and may not require the use of the
entire basis. This is unique to the segmentation task, and is not true
for shape and motion recovery tasks, which require accurate knowledge
of the true ranks r1, . . . , rK .
The measured image quantities ai, bi, ci, di, g

f
i , h

f
i of Eq. (6) are ob-

tained from the linearized brightness constancy equation. However,
this linearization is a good approximation only for small displacements
(uf

i , v
f
i ). To handle larger displacements, we apply our segmentation

scheme within a multi-frame multi-scale (pyramid) data structure. Large
displacements at high resolution levels translate to small displacements
at coarse resolution levels. Our segmentation scheme can therefore be
applied at coarse resolution levels, but this will only provide coarse
segmentation. To refine it, the process must be propagated to higher
resolution levels. This is achieved by an iterate-warp coarse-to-fine
framework similar to the one used in (Irani, 2002) for a single rigid
scene. Since warping requires intermediate flow estimation, more ac-
curate knowledge of the ranks r1, . . . , rK is required. These ranks are
automatically detected from the brightness matrices [Gk, Hk] for each
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18 Zelnik-Machline-Irani

of the segmented objects extracted in the previous iteration. Note that
this does not require prior model selection (2D, 3D or non-rigid), as
no 3D shape or motion information is recovered (see (Irani, 2002) for
more details). We next summarize the algorithm.

4.1. Summary of the direct multi-body segmentation
algorithm:

(1) Construct a Gaussian pyramid for all image frames.
(2) For each iteration at each pyramid level (starting at the lowest
resolution level) do:

− Compute matrices G, H and Q of Eq. (3) directly from brightness
quantities.

− Factorize [G,H]F×2N intoMF×r ·Lr×2N , thus reducing dimension-
ality and noise.

− Find the reduced row echelon form of L.

− Sort the reduced row echelon form of L into groups of columns
which correspond to the same object. This defines the correct
sorting of [G,H].

− Project [Gk, Hk] (k = 1, . . . ,K) of each object onto a low-dimensional
linear subspace of dimension rk to reduce noise and get [Ĝk, Ĥk].

− Estimate the displacements from the equation: [Uk, Vk] ·Qk = [Ĝk, Ĥk]
where k = 1 . . .K (see (Irani, 2002)).

− Warp all frames towards the reference frame according to the
estimated displacements (for all objects).

(3) Iterate step 2 several times (typically 4-5 times) in each resolution
and propagate the result to the next (higher) resolution level in the
pyramid.

For computational efficiency, the coarse-to-fine process is often halted
at an intermediate resolution level, (For example, in our experiments
we usually stopped at the pyramid level corresponding to 1

4 resolution
in image width and height, i.e., at 1

16 of the image size N). The penalty
for this is that the boundaries of the detected segments (objects) are
not recovered accurately.
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5. Results

We tested our direct multi-body segmentation algorithm on video se-
quences with different types of induced camera motions (2D planar
/ 3D), and different types of object motions (rigid / non-rigid). The
sequences consist of 40-80 frames each, and with approximate image
size of∼ 300×350. As mentioned above, the coarse-to-fine segmentation
process was stopped at a pyramid resolution corresponding to 1

16 of the
image size.
The first sequence consists of a globe rolling on a track situated in

a 3D scene (Figs. 6.a-d. See sequence globus at web-site). The object is
undergoing a rotation and translation while the camera is translating
from right to left, back and forth, inducing 3D parallax effects of the
background scene (e.g., note the parallax between the two tripods: they
occlude each other in Fig. 6.b and are both visible in Fig.6.c). Applying
our algorithm to the scene produced a segmentation into two separate
objects (see Figs. 6.e-g), one which corresponds to the globe and the
second which corresponds to the background scene. The background
was grouped into a single object even though no explicit 3D model was
assumed for the background motion. This is because although pixels
with different depths have different flows, the pattern of changes over
time in their flows are the same (i.e., they share the same coefficients
over time in the factorization of the [U, V ] flow-matrix).
The second example consists of an outdoor scene in which a helium

balloon drifts up with changing wind directions (Figs. 7.a-c. See se-
quence baloon at web-site). The camera is again translating from left to
right and back causing parallax effects (e.g., the tree trunk is occluded
by the woman on the bench in Fig. 7.a and is visible in Fig.7.b). The
result of applying our algorithm (Fig. 7.d-f) detects the balloon as one
object and groups the 3D background scene into a second object.
The third sequence shows a hand with the fingers expanding and

contracting making a squeezing motion, and a plant with dense leaves
in the background (Figs. 8.a-c. See sequence hand at web-site). Each
finger moves in an articulated motion while the motion of all fingers
is non-rigid. In addition, the camera is rotating around the Z axis. As
predicted by the analysis in Section 2, the flow-field based segmentation
algorithm grouped together all the fingers into a single object, and all
the parts which undergo pure camera motion (including the arm and
the palm of the hand, which were stationary relative to the background)
into a second object (Figs. 8.d-f).
The forth experiment was done on a sequence showing a large piece

of cloth being folded and unfolded in a natural waving motion, while a
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branch of leaves is being waved up and down in front of it (Figs. 9.a-c.
See sequence cloth at web-site). The motion of the cloth is non-rigid.
The two sides of the cloth are waving from outside towards the center,
while the center top part of the cloth moves vertically (i.e., the top
center of the cloth is raised as the cloth is stretched in Fig. 9.a and is
lowered as the cloth is folded in Fig. 9.b). However, all the parts of the
cloth have consistent temporal behavior. Indeed applying the segmen-
tation process of Section 4 segmented the scene into two objects, one
which corresponds to the leaves and the second which corresponds to
the cloth (see Figs. 9.d-f). The textureless background region (marked
in green in Fig. 9.f) was ignored in this example. Note that the different
regions of the cloth were grouped together, even though no non-rigid
motion model was specified.
The boundaries of the segmentation results in some of the examples

that we have used can be considerably improved by proceeding to
higher resolution levels of the pyramid, and by utilizing more sophisti-
cated clustering methods than the naive clustering approach which we
implemented.

6. Conclusions

In this paper we presented an analysis of motion consistency in sub-
space based segmentation methods. This analysis led to a new defini-
tion for motion consistency which can handle both rigid and non-rigid
objects in a single framework. Based on this, we suggested an algo-
rithm which groups regions with consistent behavior along time. The
suggested algorithm applies the new motion consistency constraints
directly to covariance-weighted image brightness measurements result-
ing in a dense spatial segmentation. This is done without requiring
prior correspondence estimation nor feature tracking and without prior
knowledge on the types of motions in the sequence.
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(a) (b) (c) (d)

(e) (f) (g)

Figure 6. Segmentation under 3D parallax: (a)-(d) Four sample frames of a sequence
showing a globe rolling on a track while the camera translates (see attached se-
quence globus.mpg). (e)-(g) Results of the direct multi-body segmentation algorithm.
(e) Shows the first object, (f) shows the second object and (g) shows an overlay
of the segmentation result on the reference image. For sequences and results see
http://www.wisdom.weizmann.ac.il/∼vision/MultiBodySeg.html.

(a) (b) (c)

(d) (e) (f)

Figure 7. Segmentation under 3D parallax: (a)-(c) Three sample frames of a se-
quence showing a helium balloon drifting with the wind while the camera translates
(see attached sequence baloon.mpg). (d)-(f) Results of the direct multi-body segmen-
tation algorithm. (d) Shows the first object, (e) shows the second object and (f) shows
an overlay of the segmentation result on the reference image. For sequences and
results see http://www.wisdom.weizmann.ac.il/∼vision/MultiBodySeg.html.
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(a) (b) (c)

(d) (e) (f)

Figure 8. Segmentation under articulated motion: (a)-(c) Three sample frames
of a sequence showing a hand with the fingers expanding and contracting
while the camera translates and rotates (see attached sequence hand.mpg).
(d)-(f) Results of the direct multi-body segmentation algorithm. (d) Shows the
first object, (e) shows the second object and (f) shows an overlay of the
segmentation result on the reference image. For sequences and results see
http://www.wisdom.weizmann.ac.il/∼vision/MultiBodySeg.html.

(a) (b) (c)

(d) (e) (f)

Figure 9. Segmentation under non-rigid motion: (a)-(c) Three sample frames
of a sequence showing a cloth moving non-rigidly (folded and stretched) and a
branch waving independently, while the camera remains still (see attached sequence
cloth.mpg). (d)-(f) Results of the direct multi-body segmentation algorithm. (d)
Shows the first object, (e) shows the second object and (f) shows an overlay of
the segmentation result on the reference image. For sequences and results see
http://www.wisdom.weizmann.ac.il/∼vision/MultiBodySeg.html.
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Appendix

A. Relation between
[

U
V

]
and [U, V ] Segmentation

In this section we give the proof of observation 2 of Section 2.
Claim 1: If two objects are grouped together by case III of Eq. (2) in a

trajectory based segmentation of
[

U
V

]
, they will also be grouped together

by case III of Eq. (2) in a flow-field based segmentation of [U, V ] (but
not necessarily vice versa).
Claim 2: Equivalently, if two objects are separated by case I of Eq. (2)
in a flow-field based segmentation of [U, V ], they will also be separated

by case I of Eq. (2) in a trajectory based segmentation of
[

U
V

]
(but not

necessarily vice versa).
Proof:
First direction:
Without loss of generality, assume rank(

[
U1
V1

]
) ≥ rank(

[
U2
V2

]
).

Claim 1: Assuming that the two objects are grouped together ac-
cording to case III of Eq. (2) in a

[
U
V

]
segmentation, then:

rank(
[

U1
V1
, U2

V2

]
) = rank(

[
U1
V1

]
)

⇓
∃CN1×N2 such that

[
U2
V2

]
=

[
U1
V1

]
C

⇓

[U1, V1, U2, V2] = [U1, V1]

[
I 0 C 0
0 I 0 C

]

⇓
rank([U1, V1, U2, V2]) = rank([U1, V1])

⇓
The two objects will also be grouped together according to case
III of Eq. (2) in a [U, V ] segmentation.

Claim 2: Assuming that the two objects are separated according to
case I of Eq. (2) in [U, V ] segmentation, then:
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rank([U1, V1, U2, V2]) = rank([U1, V1]) + rank([U2, V2])
⇓

columns([U1, V1]) lin. ind. columns([U2, V2])
⇓

columns(
[

U1
V1

]
) lin. ind. columns(

[
U2
V2

]
)

⇓
rank(

[
U1
V1
, U2

V2

]
) = rank(

[
U1
V1

]
) + rank(

[
U2
V2

]
)

⇓
The two objects will also be separated according to case I
of Eq. (2) in a

[
U
V

]
segmentation.

Second Direction: Here we will show that the other direction is not
true, i.e., we give an example where two objects are grouped together
in a flow-field based segmentation but separated in a trajectory based
segmentation. Note that this contradicts both the reverse direction of
claim 1 and of claim 2.

Let rank([U1, U2]) = rank(U1) + rank(U2)
(i.e., U1 and U2 are linearly independent)

⇓
rank(

[
U1
V1
, U2

V2

]
) = rank(

[
U1
V1

]
) + rank(

[
U2
V2

]
)

⇓
The two objects will be separated in a

[
U
V

]
segmentation

according to case I of Eq. (2)

Additionally, let V1 = V2 = U1(�= U2)
⇓

rank([U1, V1, U2, V2]) = rank([U2, V2])
⇓

The two objects will be grouped together in a [U, V ]
segmentation according to case III of Eq. (2)

Fig. 2 provides another (visual) counter example. ♦

Notes

1 A shorter version of this paper appeared in (Machline et al., 2002)
2 This rank rule builds upon the observations previously made by Boult & Brown

(Boult and Brown, 1991).
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3 The matrix [G, H] is of size F × 2N where N (the number of pixels) is typically

very large. The segmentation method proposed in (Costeira and Kanade, 1995) is

suitable only for matrices with a small N , because it is applied to
[

U
V

]T [
U
V

]
, which

is an N ×N matrix. The segmentation method of (Gear, 1998), however, is applied

to
[

U
V

]
2F×N

, and is therefore more suitable for larger N .
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