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Abstract—In this paper, we present an algorithm that estimates dense planar-
parallax motion from multiple uncalibrated views of a 3D scene. This generalizes
the “plane+parallax” recovery methods to more than two frames. The parallax
motion of pixels across multiple frames (relative to a planar surface) is related to
the 3D scene structure and the camera epipoles. The parallax field, the epipoles,
and the 3D scene structure are estimated directly from image brightness variations
across multiple frames, without precomputing correspondences.

Index Terms—Plane+parallax, direct (gradient-based) methods, multiframe

analysis, correspondence estimation, structure from motion.
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1 INTRODUCTION

THE recovery of the 3D structure of a scene and the camera
epipolar-geometries (or camera motion) from multiple views has
been a topic of considerable research. The large majority of the
work on structure-from-motion (SFM) has assumed that corre-
spondences between image features (typically, a sparse set of
image points) are given and focused on the problem of recovering
SFM based on this input. Another class of methods has focused on
recovering dense 3D structure from a set of dense correspondences
or an optical flow field. While these have the advantage of
recovering dense 3D structure, they require that the correspon-
dences are known. However, correspondence (or flow) estimation
is a notoriously difficult problem.

A small set of techniques have attempted to combine the
correspondence estimation step together with SFM recovery. These
methods obtain dense correspondences while simultaneously esti-
mating the 3D structure and the camera geometries (or motion) [4],
[15], [19], [22], [21], [2]. By interweaving the two processes, the local
correspondence estimation process is constrained by the current
estimate of (global) epipolar geometry (or camera motion) and vice
versa. These techniques minimize the violation of the brightness
gradient constraint with respect to the unknown structure and
motion parameters. Typically, this leads to a significant improve-
ment in the estimated correspondences (and the attendant 3D
structure) and some improvement in the recovered camera
geometries (or motion). These methods are sometimes referred to
as “direct methods” [4] since they directly use image brightness
information to recover 3D structure and motion without explicitly
computing correspondences as an intermediate step.

While [4], [22], [21], [2] recover 3D information relative to the
camera, the “plane+parallax” approach [20], [15], [19], [10], [13], [12],
recovers 3D information relative to a planar surface in the scene (the
“reference plane”). The underlying concept is that, after the
alignment of the reference plane, the residual image motion is due
only to the translational motion of the camera and to the deviations of
the scene structure from the planar surface. All effects of camera
rotation or changes in camera calibration are eliminated by the plane

stabilization. Hence, the residual image motion (the planar-parallax
displacements) forms a radial flow field centered at the epipole. The
“plane+parallax” representation has several benefits over the
traditional camera-centered representation which make it an
attractive framework for correspondence estimation and for
3D shape recovery:

1. Reduced search space. By parametrically aligning a visible
image structure (which usually corresponds to a planar
surface in the scene), all effects of unknown rotation and
calibration parameters are folded into the homographies
used for patch alignment. The only remaining unknown
global camera parameters are the epipoles (i.e., three global
unknowns per frame; gauge ambiguity is reduced to a single
global scale factor for all epipoles across all frames). Since,
after plane alignment, the residual parallax displacements
are constrained to lie along radial lines emerging from the
epipoles, correspondence estimation at each pixel reduces
from a 2D search problem into a simpler 1D search problem.
This has the additional benefit that it can uniquely resolve
correspondences, even for pixels which lie on line structures
(i.e., pixels which suffer from the aperture problem).

2. Provides shape relative to a plane in the scene. In many
applications, fluctuations with respect to a plane in the
scene are more useful than distances from the camera. For
example, in robot navigation, heights of scene points from
the ground plane can be immediately translated into
evidence for obstacles or holes.

3. A compact representation. By removing the common global
component (the plane homography), the residual parallax
displacements are usually very small and, hence, require
significantly fewer bits to encode the shape fluctuations
than as required to encode distances from the camera.

4. A stratified 2D-3D representation. Work on motion analysis
can be roughly classified into two classes of techniques:
2D algorithms, which handle cases with no 3D parallax (e.g.,
estimating homographies, 2D affine transformations, etc.),
and 3D algorithms which handle cases with dense
3D parallax (e.g., estimating fundamental matrices, trifocal
tensors, 3D shape, etc). Prior model selection [23] is usually
required to decide which set of algorithms to apply,
depending on the underlying scenario. The plane+parallax
representation provides a unified approach to 2D and
3D scene analysis, with a strategy to gracefully bridge
the gap between those two extremes [14]. Within the
plane+parallax framework, the analysis always starts with
2D estimation (i.e., the homography estimation). When that
is all the information available in the image sequence, that is
where the analysis stops. The 3D analysis then gradually
builds on top of the 2D analysis (in the form of planar-parallax
displacements and shape-fluctuations w.r.t. the planar
surface).

Kumar et al. [15] and Sawhney [19] used the plane+parallax
framework to recover dense structure relative to the reference plane
from two uncalibrated views. While their algorithm linearly solves
for the structure directly from brightness measurements in two
frames, it does not naturally extend to multiple frames. In this paper,
we show how dense planar-parallax displacements and relative
structure can be recovered directly from brightness measurements in
multiple frames. As with camera-centered SFM methods, many of the
ambiguities existing in the two-frame plane+parallax case of [15],
[19] are resolved by extending the analysis to multiple frames. Our
algorithm assumes as input a sequence of images in which a planar
surface has been previously aligned with respect to a reference image
(e.g., via one of the 2D parametric estimation techniques, such as [1],
[9]). We do not assume that the camera calibration information is
known. The output of the algorithm is:

1. The epipoles for all the images with respect to the reference
image.
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2. Dense 3D structure of the scene relative to a planar surface.
3. The correspondences of all the pixels across all the frames,

which must be consistent with 1 and 2.

The estimation process uses the exact equations (as opposed to
instantaneous equations, such as in [5], [21]) relating the residual
parallax motion of pixels across multiple frames to the relative
3D structure and the camera epipoles. The 3D scene structure and
the camera epipoles are computed directly from image measure-
ments by minimizing the variation of image brightness across the
views without precomputing a correspondence map.

As in the two-frame case of [15], [19], our technique relies on
good prior alignment of the video frames with respect to a planar
surface. This requires that a large enough real physical plane exist
in the scene and be visible in all the video frames. Most indoor
scenes have a planar surface (e.g., walls, floor, pictures, windows,
etc.) and, in outdoor scenes, the ground or any large enough distant
object can serve as a planar surface. If the planar surface captures a
large enough image region, it can automatically be detected and
aligned using robust methods for locking onto a dominant planar
motion (e.g., [9]). However, if no such planar surface exists in the
scene, then our method will not be applicable.

The remainder of the paper describes the algorithm and shows
its performance on real and synthetic data. A shorter version of
this paper appeared in [11].

2 THE PLANE+PARALLAX DECOMPOSITION

The induced 2D image motion of a 3D scene point between two

images can be decomposed into two components [13], [10], [14],

[15], [19], [19], [12], [3]:

1. The image motion of a reference planar surface � (i.e., a
homography).

2. The residual image motion, known as “planar parallax.”

We begin with the plane+parallax motion equations of [14]. Let

~pp ¼ ðx; y; 1Þ denote the image location (in homogeneous coordi-

nates) of a point in one view (the “reference view”) and let ~p0p0 ¼
ðx0; y0; 1Þ be its coordinates in another view. Let B denote the

homography of the plane � between the two views. Let Bÿ1 denote

its inverse homography and Bÿ1
3 be the third row of Bÿ1. When

the second image is warped toward the first image using the

inverse homography Bÿ1, then the point ~p0p0 will move to ~pwpw in the

warped image:

~pwpw ¼ ðxw; yw; 1Þ ¼
Bÿ1~p0p0

Bÿ1
3
~p0p0:

For 3D points on the plane �, ~pwpw ¼ ~pp. For 3D points off �,
~pwpw 6¼ ~pp. It was shown [14] that:1

~p0p0 ÿ~pp ¼ ð~p0p0 ÿ ~pwpwÞ þ ð~pwpw ÿ~ppÞ;

where ~p0p0 ÿ ~pwpw is the planar part of the image motion (the
homography due to �) and ~pwpw ÿ~pp is the residual planar parallax
displacement:

~�� ¼ ~pwpw ÿ~pp ¼ ÿ
ðt3 ~pwpw ÿ~ttÞ: ð1Þ


 ¼ H=Z represents the 3D structure of the point ~pp, H is the
perpendicular distance (or “height”) of the point from the
reference plane �, and Z is its depth with respect to the reference
camera. All unknown calibration parameters are folded into the
canceled homography B and into ~tt ¼ ðt1; t2; t3Þ, which is the
epipole in projective coordinates.

For any given pixel ~pp in the reference image, the unknown
corresponding pixel ~pwpw in the other image appears on both sides
of (1). We eliminate it from the right-hand side to obtain an
expression of ~pwpw (and of the parallax displacement) as a function
of the pixel ~pp:

~pwpw ÿ~pp ¼ ÿ



1þ 
t3
ðt3~ppÿ~ttÞ: ð2Þ

This last expression will be used in our direct estimation algorithm.

3 MULTIFRAME PARALLAX ESTIMATION

Let f�jglj¼0 be lþ 1 images of a rigid scene, taken using cameras with

unknown calibration parameters. Let �0 denote the reference frame

(usually the middle frame of the sequence). Let � be a plane in the

scene that is visible in all lþ 1 images (the “reference plane”). Using a

technique similar to [1], [9], we estimate the homography of �

between the reference frame �0 and each of the other frames f�jglj¼1.

Warping the images by those homographies, fBjglj¼1, yields a new

sequence of lþ 1 images, fIjglj¼0, where the image of � is aligned

across all frames and I0 ¼ �0 is the reference image in the plane-

stabilized sequence (for notational simplicity, we will often drop the

subscript of the reference image I0, i.e., I ¼ I0). The only residual

image motion between reference frame I and the warped images,

fIjglj¼1, is the residual planar-parallax displacement f~pjwpjw ÿ~ppglj¼1 due

to 3D scene points that are not located on the reference plane �. This

residual planar parallax motion is what remains to be estimated.

Let ~ujuj ¼ ðuj; vjÞ denote the first two coordinates of
~
pjwp
j
w ÿ~pp (the

third coordinate is 0). From (2), we know that the residual parallax is:

~ujuj ¼ uj

vj

� �
¼ ÿ 


1þ 
tj3
tj3xÿ t

j
1

tj3yÿ t
j
2

� �
; ð3Þ

where the superscripts j denote the parameters associated with the
jth frame.

In the two-frame case, one can define � ¼ 

1þ
t3 and then the

problem posed in (3) becomes a bilinear problem in � and in
~tt ¼ ðt1; t2; t3Þ. This can be solved using a standard iterative method.
Once� and~tt are known, 
 can be recovered. A similar approach was
used in [15] for shape recovery from two-frames. However, this
approach does not extend to multiple (> 2) frames because � is not a
shape invariant (as it depends on t3) and, hence, varies from frame to
frame. In contrast, 
 is a shape invariant which is shared by all image
frames. Our multiframe process directly recovers 
 from multiframe
brightness quantities.

The basic idea behind our direct estimation algorithm is that,
rather than estimating l separate ~ujuj vectors (corresponding to each
frame) for each pixel, we can simply estimate a single 
 (the shape
parameter) which, for a particular pixel, is common to all the frames
and a single~tjtj ¼ ðt1; t2; t3Þwhich, for each frame Ij, is common to all
image pixels. There are two advantages in doing this:

. For n pixels over l frames, we reduce the number of
unknowns from 2nl to nþ 3l and, more importantly,

. the recovered flow vector is constrained to satisfy the
epipolar structure implicitly captured in (2).

This can be expected to significantly improve the quality of the
recovered parallax flow vectors.

Our direct estimation algorithm follows the same computa-
tional framework outlined in [1] for the quasi-parametric class of
models. The basic components of this framework are:

. pyramid construction,

. iterative estimation of global (motion) and local (structure)
parameters,

. coarse-to-fine refinement.
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1. The notation we use here is slightly different than the one used in [14].
The change to projective notation is used to unify the two separate
expressions provided in [14], one for the case of a finite epipole and the
other for the case of an infinite epipole.



Our algorithm is therefore as follows:

1. Construct pyramids from each of the images Ij and the
reference frame I.

2. Initialize the structure parameter 
 for each pixel and
motion parameter ~tjtj for each frame (usually, we start with

 ¼ 0 for all pixels and ~tjtj ¼ 0; 0; 1ð ÞT for all frames).

3. Starting with the coarsest pyramid level, at each level refine
the structure and motion using the method outlined in
Section 3.1.

4. Repeat this step several times (usually about four or five
times per level).

5. Propagate the final values of the structure and motion
parameters to the next finer pyramid level. Use these as
initial estimates for processing the next level.

6. The final output is the structure and the motion at the
finest pyramid level (at the resolution of the input
images) and the residual parallax flow field synthesized
from these.

It is important to note that accurate shape and motion recovery
relies on having obtained good prior alignment of the sequence
with respect to a viewed planar surface. Inaccurate plane
alignment will naturally introduce errors in the shape and motion
recovery. Moreover, as with any other iterative nonlinear mini-
mization scheme, this process has the risk of locking onto local
minima. However, this risk is significantly reduced by the coarse-
to-fine minimization strategy (see [1]). Furthermore, the limited
search space (only 3 degrees of freedom (d.o.f.) per frame in the
global motion estimation step and only 1 d.o.f. per point in the
local correspondence and shape estimation step—regardless of the
number of frames) increases the overall robustness of the
algorithm. Introducing additional assumptions, such as smooth-
ness of the camera motion (i.e., temporal smoothness), would
probably further condition the algorithm, but would also restrict it
to a continuous set of images obtained by a video camera. We do
not make such assumptions and can therefore also handle
collections of still images obtained from multiple view-points.

Of the various steps outline above, the pyramid construction and
the coarse-to-fine propagation of parameters are common to many
techniques for motion estimation (e.g., see [1]), hence we omit the
description of these steps. On the other hand, the refinement step is
specific to our current problem. This is described next.

3.1 The Estimation Process

The inner loop of the estimation process involves refining the

current values of the structure parameters 
 (one per pixel in the

reference image) and the motion parameters ~tjtj (three parameters

per frame). Let us denote the “true” (but unknown) values of

these parameters by 
ðx; yÞ (at location ðx; yÞ in the reference

frame) and ~tjtj. Let ~ujujðx; yÞ ¼ ðuj; vjÞ denote the corresponding

unknown true parallax flow vector. Let 
c;
~
tjct
j
c;
~
ujcu
j
c denote

the current estimates of these quantities. Let �
 ¼ 
 ÿ 
c,
�~tjtj ¼ ð�tj1; �t

j
2; �t

j
3Þ ¼ ~tjtj ÿ

~
tjct
j
c, and �~ujuj ¼ ð�uj; �vjÞ ¼ ~ujuj ÿ ~

ujcu
j
c. These

refinements � are estimated during each iteration.
Assuming brightness constancy (namely, that corresponding

image points across all frames have a similar brightness value2)
and a small residual displacement error ~�uj�uj , we use the linearized
brightness constancy equation [7]:

Itj ðx; yÞ þ Ix�uj þ Iy�vj � 0; ð4Þ

where Ix; Iy denote the spatial derivatives of the reference image (at

pixel location ðx; yÞ) and It
j

denotes the temporal derivative after

compensating for the parallax vector
~
ujcu
j
c estimated in the previous

iteration: It
j
ðx; yÞ ¼ Ijðxþ ujc; yþ vjcÞ ÿ Iðx; yÞ. Substituting the ex-

pression for It
j

and the expression for ~�uj�uj ¼ ~ujuj ÿ ~
ujcu
j
c into (4) and

regrouping the terms yields:

I�
j
ðx; yÞ þ Ixuj þ Iyvj � 0; ð5Þ

where I�
j
ðx; yÞ ¼def

Ijðxþ ujc; yþ vjcÞ ÿ Iðx; yÞ ÿ Ixujc ÿ Iyvjc: If we
now substitute the expression for the local parallax flow vector
~ujuj given in (3), we obtain the following equation that relates the
structure and motion parameters directly to image brightness
information:

I�
j
ðx; yÞ þ 
ðx; yÞ

1þ 
ðx; yÞtj3
Ixðtj3xÿ t

j
1Þ þ Iyðt

j
3yÿ t

j
2Þ

� �
� 0: ð6Þ

We refer to the above equation as the “epipolar brightness
constraint.”

Each pixel and each frame contributes one such equation where
the unknowns are: the relative scene structure 
ðx; yÞ for each pixel
ðx; yÞ and the epipoles f~tjtjglj¼1, one for each frame. Those unknowns
are computed in two phases: In the “Local Phase,” the relative scene
structure 
ðx; yÞ is estimated separately for each pixel via least
squares minimization over all frames simultaneously. This is
followed by the “Global Phase,” where each epipole ~tjtj is estimated
between the reference frame and each of the other frames, using
least squares minimization over all pixels. These two phases are
described in more detail below.

It should be noted that, although the linearized brightness
constancy equation has a limited range of convergence (these usually
iteratively converge to the correct solution when their initial guess is
� 2 pixels away from the correct solution), the multiresolution
minimization approach extends its range of applicability to sig-
nificantly larger displacements, up to � 7% of the image size. This
limit occurs because we do not allow for images smaller than 30� 30
at the highest resolution level (and 2

30 � 7%). Thus, for example, if an
image is 512� 512, then recoverable parallax displacements are
typically smaller than 35 pixels.

3.1.1 Local Phase

In the local phase, we assume all the epipoles are given (e.g., from

the previous iteration) and we estimate the unknown scene

structure 
 from all the images. 
 is a local quantity, but is common

to all the images at a point. Each frame Ij provides one constraint of

(6) on 
. When there are only two frames, there are n constraints (one

from each pixel), but nþ 3 unknowns (shape+epipole). Therefore,

there is insufficient information for recovering structure and motion

from the pointwise constraints of (6). This degeneracy is true for all

two-frame direct methods [8], [4], [18]. In such cases, an additional

assumption is usually made that the shape (
 in our case) is locally

constant within a small (typically, 5� 5) window around each pixel

in the reference frame (e.g., see [17], [4], [15], [19], [2]). However, in

the multiframe case, in general, there are enough constraints (3lþ n
unknowns and ln constraints, where l is the number of frames), in

which case, this window assumption is not necessary. However,

using such a window-constraint provides additional numerical

stability, especially if the different epipoles are very close to each

other. Here, too, the window assumption will tend to smooth the

results, but not as much as in the underconstrained two-frame case.
For each pixel ðx; yÞ in the reference frame, we therefore seek a

parameter 
 ¼ 
ðx; yÞ that will minimize the following multiframe-
based error function:

Eð
Þ ¼def P
j

P
Winðx;yÞ

�
~I�
j

I�
j
ð1þ 
tj3Þ þ 
 ~IxIxðtj3 ~xxÿ tj1Þ þ ~IyIyðtj3~yyÿ tj2Þ

� ��2

;

ð7Þ

1530 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 24, NO. 11, NOVEMBER 2002

2. Note that, over multiple frames, the brightness of a scene point will
tend to change somewhat, at least due to global illumination variation. We
can handle this by using the Laplacian pyramid (as opposed to the Gaussian
pyramid) or otherwise prefiltering the images (e.g., normalize to remove
global mean and contrast changes) and applying the brightness constraint
to the filtered images.



where the summation is over all pixels ð~xx; ~yyÞ in a 5� 5 window

Winðx; yÞ around ðx; yÞ, ~I�
j

I�
j
¼ I�

j
ð~xx; ~yyÞ, ~IxIx ¼ Ixð~xx; ~yyÞ, and ~IyIy ¼ Iyð~xx; ~yyÞ.

DifferentiatingEð
Þwith respect to 
 and equating it to zero yields a

single linear equation that can be solved to estimate 
ðx; yÞ.
The error term Eð
Þ was obtained by multiplying (6) by the

denominator ð1þ 
tj3Þ to yield a linear expression in 
. Note that,

without multiplying by the denominator, the local estimation

process (after differentiation) would require solving a polynomial

equation in 
 whose order increases with l (the number of frames).

MinimizingEð
Þ, is in practice, equivalent to applying weighted least

squares minimization on the collection of original (6), with weights

equal to the denominators. We could apply normalization weights
1

1þ
ctj3
(where 
c is the estimate of the shape at pixel ðx; yÞ from the

previous iteration) to the linearized expression in order to assure

minimization of meaningful quantities (as is done in [24]), but, in

practice, for the examples we used, we found it was not necessary to

do so during the local phase. However, such a normalization weight

was important during the global phase (see below).

3.1.2 Global Phase

In the global phase, we assume the structure 
 is given at every

pixel (e.g., from previous iteration), and we estimate, for each

image Ij, the position of its epipole ~tjtj with respect to the reference

frame. We do so by minimizing the following error function for

each epipole:

Eð~tjtjÞ ¼def
X
ðx;yÞ

�
Wj I�

j
ð1þ 
tj3Þ þ 
 Ixðtj3xÿ t

j
1Þ þ Iyðt

j
3yÿ t

j
2Þ

� �h i�2

;

ð8Þ
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Fig. 1. Resolving aperture problem: (a) A sample image. (b) Shape recovery for pure vertical motion. Ambiguity along vertical bars. (c) Shape recovery for pure horizontal
motion. Ambiguity along horizontal bars. (d) Shape recovery for a sequence with mixed motions. No ambiguity.

Fig. 2. Resolving epipole singularity in case of multiple epipoles. (a), (b), and (c) Three sample images from a 9-frame sequence with multiple epipoles (generated by
simulating large forward motion and small sideways motion). (d) Shape recovery using two images. The cross-hair marks the location of the single epipole. There is
singularity in the recovered shape in the vicinity of the epipole. A visual display of the recovered shape in the form of a 3D surface is shown in (g). (e) and (h) Shape
recovery using three images with two different epipoles. The epipoles are within the small rectangular region marked in white. Note that epipole singularity disappears in
the presence of multiple epipoles. (f) and (i) Shape recovery using five images with multiple epipoles. The accuracy of the recovered shape improves with the increase in
the number of images (improved signal-to-noise ratio). Note, however, that the recovered depth-discontinuities are no longer sharp. This is due to the fact that, with more
frames, there are larger (mistreated) occluded regions.



where

Wj ¼Wjðx; yÞ; Ix ¼ Ixðx; yÞ; Iy ¼ Iyðx; yÞ; I�
j
¼ I�

j
ðx; yÞ; 
 ¼ 
ðx; yÞ:

Note that, when 
ðx; yÞ are fixed, this minimization problem

decouples into a set of independent individual minimization

problems, each a function of one epipole ~tjtj for the jth frame. The

inside portion of this error term is similar to the one we used above

for the local phase, with the addition of a scalar weightWjðx; yÞ. The

scalar weight is used to serve two purposes. First, if (8) did not

contain the weightsWjðx; yÞ, it would be equivalent to a weighted least

squares minimization of (6), with weights equal to the denominators

ð1þ 
ðx; yÞtj3Þ. While this provides a convenient linear expression in

the unknown ~tjtj, these weights are not physically meaningful and

tend to skew the estimate of the recovered epipole. Therefore, in a

fashion similar to [24], we choose the weights Wjðx; yÞ to be

ð1þ 
ðx; yÞtj3;cÞ
ÿ1, where the 
 is the updated estimate from the local

phase, whereas the tj3;c is based on the current estimate of~tjtj (from the

previous iteration).
The scalar weight also provides us an easy way to introduce

additional robustness to the estimation process in order to reduce
the contribution of pixels that are potentially outliers. For example,
we can use weights based on residual misalignment of the kind
used in [9].

4 MULTIFRAME VERSUS TWO-FRAME ESTIMATION

The algorithm described in Section 3 extends the plane+parallax
estimation to multiple frames. The benefits of multiframe proces-
sing over two-frame processing are:

1. Overcoming the aperture problem from which the two-frame
estimation often suffers.

2. Resolving the singularity of shape recovery in the vicinity
of the epipole (we refer to this as the epipole singularity).

3. Improved signal-to-noise performance that is obtained due
to having a larger set of independent samples.

These benefits are common to all SFM methods. We demonstrate
these advantages in the context of the plane+parallax framework.

4.1 Eliminating the Aperture Problem

The residual parallax lies along epipolar lines (centered at the
epipole, see (3)). When the image gradient at an image point is
perpendicular to the epipolar line passing through the point, then
the Brightness Constancy Constraint line (5) is parallel to the
epipolar line, and the parallax displacement at that point cannot be
uniquely determined (and, hence, also its structure). However,
when multiple images with multiple epipoles are used, this
ambiguity is resolved because the image gradient at a point can
be perpendicular to at most one epipolar line passing through it.
This observation was also made by [5], [21].

To demonstrate this, we used a sequence composed of nine
images (105� 105 pixels) of four squares (30� 30 pixels) moving
over a stationary textured background (which plays the role of the
aligned reference plane). The four squares have the same motion:
First, they were all shifted to the right (one pixel per frame) to
generate the first five images and then they were all shifted down
(one pixel per frame) to generate the next four images. The width
of the stripes on the squares is five pixels. A sample frame is
shown in Fig. 1a (the fifth frame).

The horizontal motion and the vertical motion have an epipole
at infinity (ð1; 52:5� and ½52:5;1Þ, respectively). Fig. 1b shows the
depth map that results from applying the algorithm to sequences
with purely vertical motion. (Dark gray corresponds to the
reference plane and light gray corresponds to elevated scene parts,
i.e., the squares). The structure for the square with vertical bars is
not estimated well, as expected, because the epipolar constraints
are parallel to those bars. Fig. 1c shows the same problem for
horizontal bars under horizontal motion. Fig. 1d shows the depth
map that results when multiple directions of motion are present.
Note that now the shape recovery does not suffer from the
aperture problem.
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Fig. 3. Blocks sequence. (a) One image in the sequence. (b) The recovered shape (relative to the carpet plane). Brighter values correspond to taller points (larger 
).
(c) The recovered shape (
) shown from a different viewpoint. (d) A close-up mesh display of the toy car located at the bottom-left of the carpet.



4.2 Epipole Singularity

From the planar parallax (3), it is clear that the structure 
 cannot
be determined at the epipole because, at the epipole: tj3xÿ t

j
1 ¼ 0

and tj3yÿ t
j
2 ¼ 0. The recovered structure in the vicinity of the

epipole will also be unreliable. However, when there are multiple
epipoles, this ambiguity disappears. The singularity at one epipole
is resolved by information from another epipole.

To test this, we compared the results for the case of one epipole
(i.e., two-frames) to cases with multiple epipoles at different
locations. Results are shown in Fig. 2. The sequence that we used
was composed of images of a square elevated from a reference plane
and the simulated motion was a forward motion with a slight
sideways translation to allow for different epipoles. Figs. 2a, 2b, and
2c show three sample images from the sequence. Figs. 2d and 2g
show singularity around the epipole in the two-frame case. Figs. 2e,
2f, 2h, and 2i show that the singularity at the epipoles is eliminated
when there is more than one epipole. Using more images also
increases the signal-to-noise ratio and further improves the shape
reconstruction. However, there are stray errors near depth-disconti-
nuities due to the fact that with more frames, occluded and
disoccluded regions become larger.

5 REAL WORLD EXAMPLES

This section provides experimental results of applying our
algorithm to three real sequences. Even though, in some of these
sequences, the original image motion (before plane alignment) was
large (e.g., due to camera rotations), after plane alignment, the
residual planar-parallax displacement were small (typically, no
more than 10 pixels). The reference frame was usually chosen to be
the middle frame to minimize the sizes of planar parallax
displacements between the reference frame and any other frame
in the sequence. Even though, in general, the algorithm can recover

planar parallax displacements of up to 7 percent of the image size
(see Section 3.1), by working with small planar-parallax displace-
ments, we avoid the need to explicitly treat occluding boundaries.

Fig. 3a shows one of three images taken by a still camera
(extracted from the “block” sequence of [15]). The second and the
third images were captured after moving the camera sideways and
forward, respectively. The images were aligned with respect to the
carpet (the reference plane). Fig. 3b shows the recovered structure.
The brightness reflects the magnitude of the structure parameter 
.
Brighter gray levels correspond to taller points relative to the carpet.
Fig. 3c shows the recovered shape from a different view point. Fig. 3d
shows a close-up mesh plot of the toy car at the bottom-left of the
carpet. Comparison of these results to the ones in [15] shows that the
multiframe algorithm recovers more of the finer details than the two-
frame algorithm.

Fig. 4 shows an example of shape recovery for a sequence of
five frames (part of the flower garden sequence). The camera
moves sideways in this sequence. The reference plane is the facade
of the house. Fig. 4a shows the reference frame from the sequence.
Figs. 4b and 4c show the recovered structure. Note the gradual
change of depth in the field of flowers.

Fig. 5 shows an example of shape recovery for a sequence of
five frames. The reference plane is the flat ground region in front of
the building. The sequence was taken by a hand-held video camera
while walking toward the building. The epipoles in this case fall
inside the frames, but there are multiple (nearby) epipoles. Fig. 5a
shows one frame from the sequence. Figs. 5b and 5c show the
recovered structure. The shape of the building wall is not fully
recovered because of lack of texture in that region.

6 CONCLUSION

We presented an algorithm for estimating dense planar-parallax
displacements from multiple uncalibrated views. The image
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Fig. 4. Flower-garden sequence. (a) One frame from the sequence. (b) The recovered shape (relative to the facade of the house). Brighter values (larger 
) correspond to
points farther from the house. A visual display of the recovered shape 
 in the form of a 3D surface is shown in (c).

Fig. 5. Stairs sequence. (a) One frame from the sequence. (b) The recovered shape (relative to the ground surface in front of the building). A visual display of the

recovered shape 
 in the form of a 3D surface is shown in (c).



displacements, the 3D structure, and the camera epipoles are
estimated directly from image brightness variations across multiple
frames. The algorithm relies on having good prior alignment of the
sequence with respect to a viewed planar surface. This algorithm
extends the two-frames plane+parallax estimation algorithm of
[15], [19] to multiple frames. The benefits of multiframe processing
over two-frame processing are: 1) overcoming the aperture
problem, 2) resolving the singularity of shape recovery in the
vicinity of the epipole, and 3) improved signal-to-noise perfor-
mance. These were illustrated in the paper.
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