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Multi-Frame Estimation of Planar Motion

Lihi Zelnik-Manor and Michal Irani, Member, IEEE

Abstract—Traditional plane alignment techniques are typically performed between pairs of frames. In this paper, we present a method
for extending existing two-frame planar motion estimation techniques into a simultaneous multi-frame estimation, by exploiting multi-
frame subspace constraints of planar surfaces. The paper has three main contributions: 1) we show that when the camera calibration
does not change, the collection of all parametric image motions of a planar surface in the scene across multiple frames is embedded in
a low dimensional linear subspace; 2) we show that the relative image motion of multiple planar surfaces across multiple frames is
embedded in a yet lower dimensional linear subspace, even with varying camera calibration; and 3) we show how these multi-frame
constraints can be incorporated into simultaneous multi-frame estimation of planar motion, without explicitly recovering any 3D
information, or camera calibration. The resulting multi-frame estimation process is more constrained than the individual two-frame
estimations, leading to more accurate alignment, even when applied to small image regions.

Index Terms—Motion estimation, plane alignment, multi-frame analysis, gradient-based methods.

1 INTRODUCTION

PLANE stabilization (“2D parametric alignment”) is
essential for many video-related applications: It is used
for video stabilization and visualization, for 3D analysis
(e.g., using the Plane+Parallax approach [10], [14]), for
moving object detection, mosaicing, etc.

Many techniques have been proposed for estimating the
2D parametric motion of a planar surface between two
frames. Some examples are [12], [4], [21], [3], [13]. While
these techniques are very robust and perform well when the
planar surface captures a large image region, they tend to be
highly inaccurate when applied to small image regions.
Moreover, errors can accumulate over a sequence of frames
when the motion estimation is performed between succes-
sive pairs of frames (as is often done in mosaic construction).

An elegant approach was presented in [17] for auto-
matically estimating an optimal (usually virtual) reference
frame for a sequence of images with the corresponding
motion parameters that relate each frame to the virtual
reference frame. This overcomes the problem associated
with error accumulation in sequential frame alignment.
However, the alignment method used for estimating the
motion between the virtual reference frame and all other
frames remains a two-frame alignment method.

Other multi-frame estimation techniques (e.g., [5], [7],
[11], [12]) incrementally apply a two-frame motion estima-
tion technique, while relying on temporal smoothness of the
motion. This assumption is a heuristic, which is violated
when the camera motion changes abruptly. Sequential two-
frame parametric alignment methods do not exploit the fact
that all frames imaging the same planar surface share the
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same plane geometry (but not necessarily the same camera
motion).

In this paper, we present a method for extending
traditional two-frame planar-motion estimation techniques
into a simultaneous multi-frame estimation method, by
exploiting multi-frame linear subspace constraints of planar
motions (Section 4). These multi-frame constraints are
geometrically meaningful and do not rely on heuristics
such as temporal smoothness. However, when such
smoothness does exist in the video data, our method can
detect it and take advantage of it. The use of linear subspace
constraints, for motion analysis, has been introduced by
Tomasi and Kanade [20]. They used these constraints for
factoring 2D correspondences into 3D motion and shape
information. In contrast, here we use linear subspace
constraints for constraining our 2D planar motion estimation
process and not for factoring out any 3D information. This
results in a multi-frame estimation technique which is more
constrained than the individual two-frame estimation
processes, leading to more accurate alignment, even when
applied to small image regions. Furthermore, multi-frame
rigidity constraints relating multiple planar surfaces are
applied to further enhance parametric motion estimation in
scenes with multiple planar surfaces (Section 5).

2 BaAsic MODEL AND NOTATIONS

The instantaneous image motion of a 3D planar surface 7,
between two image frames can be expressed as a 2D
quadratic transformation (see Appendix A).

u(%; p) = X(D)p, (1)

where X(Z) is a matrix which depends only on the pixel
coordinates (%) = (x,y):

1
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and p = (p1,p2, ... ,pg)T is a parameter vector:
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where i = ( ,B,7)" is the normal of the plane  (i.e., G777 = 1,

V@ em), Q= (Qx,0,02)", and = (tx, ty,tz)" are the

camera rotation and translation, respectively, and f and [’
are the camera focal lengths used for obtaining the two
images.

The instantaneous motion model is valid when the
camera rotation is small and the forward translation is small
relative to the depth.

3 Two-FRAME PARAMETRIC ALIGNMENT

In this paper, we extend the direct two-frame motion
estimation approach of [4], [12] to multiple frames. To
make the paper self-contained, we first briefly outline the
basic two-frame technique below.

Two image frames (whose parametric image motion is
being estimated) are referred to by the names “reference”
image J and “inspection” image K. A Gaussian pyramid [1]
is constructed for J and K and the motion parameters from
J to K are estimated in a coarse-to-fine manner. Within
each pyramid level, the sum of squared linearized differ-
ences (i.e., the linearized brightness constancy measure) is
used as a match measure. This measure (Frr) is minimized
with respect to the unknown 2D motion parameters j of (1):

Bre() = Y ((K@) - @) + V@ i)
(@)

(K@) = (@) + VI@)' X

(@)
where u(Z;p) = X(Z)p is as defined in (1), J(Z) and K(Z)
denote the brightness value of image J and K at pixel Z,
respectively, and V.J(Z) de%notes the spatial gradient of J at
7 VJ(T) = (3—; (:E),g—;j(f)) . The sum is computed over all
the points within a region of interest (often the entire
image). Deriving Err with respect to the unknown para-
meters p and setting to zero, yields eight linear equations in

the eight unknowns:
CF="b, )

where C is an 8 x 8 matrix:
C= Z[

and b'is an 8 x 1 vector:

HVI@X@), (5)

—

=Y [X(:?)TVJ(a‘:’)(J(f)

- K(@). (6)
(@)

This leads to the linear solution 7 = C~'b. Note that C and b

are constructed of measurable image quantities, hence, the
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word direct estimation. This process does not require
recovery of any 3D information.

To allow for large displacements u(Z; ), the estimation
process of jj is performed iteratively, within a coarse-to-fine
computational framework. Multiscale analysis provides
three main benefits: 1) larger misalignments can be
handled, 2) the convergence rate is faster, and 3) it avoids
getting trapped in local minima. These three benefits are
discussed in detail in [4]. The iterative process starts at the
coarsest resolution level and after a few iterations of
parameter refinement (typically 5), the result is propagated
to the next resolution level, where the process is repeated.
For a detailed description of the iterative process, see
Appendix D.

The two-frame method performs well when applied to
large image regions (i.e., the region of interest over which
the summation is performed). Figs. 1f and 1i show an
example of applying this parametric alignment method.
This is an airborne sequence taken from a large distance,
hence, the camera induced motion can be described by a
single 2D parametric transformation of (1). Fig. 1c was the
reference image and Fig. 1b was the inspection image.
Fig. 1e shows the amount of initial misalignment between
the two input images. When the method is applied to the
entire image region, it yields accurate alignment (at subpixel
accuracy), as can be seen in Figs. 1f and 1i. However, once
the same method is applied to a small image region (such as
the rectangular region marked in Figs. 1g and 1j), its
accuracy degrades significantly. The farther a pixel is from
the region of analysis, the more misaligned it is. In the next
section, we show how information from multiple frames (as
opposed to two) can be used to increase accuracy of image
alignment even when applied to small image regions.

4 MULTIFRAME PARAMETRIC ALIGNMENT

In this section, we present a method for extending the two-
frame technique reviewed in Section 3 into a multi-frame
technique, which exploits multi-frame constraints on the
image motion of a planar surface. In Section 4.1, we derive
such a multi-frame constraint and in Section 4.2, we show
how it can be incorporated into the 2D parametric
estimation of planar motion, without requiring any recov-
ery of 3D information, or camera calibration. In Section 4.3,
we present the idea of frame reliability measure, to further
enhance multi-frame motion estimation.

4.1 Single Plane Subspace Constraint

Let J be a reference frame, and let K', ..., K be a sequence
of F' inspection frames imaging the same planar surface with
the same focal length f. Let 7', ..., 5" be the corresponding
quadratic parameter vectors of the planar motion (see (1)).
The instantaneous motion model of (1) is a good approx-
imation of the motion over short video segments, as the
camera does not gain large motions in short periods of time.
In some cases, such as airborne video, this approximation is
good also for very long sequences. Choosing the reference
frame as the middle frame extends the applicability of the
model to twice as many frames.

We arrange 7', ...,p" in an 8 x F matrix P, where each
column corresponds to one frame. From (2):
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Fig. 1. Single Plane Motion Estimation. (a), (b), (c), and (d) are sample frames from a 17-frame airborne video clip. Apart from camera motion, there
is also a small moving car. Image (c) was the reference frame. (e) shows the absolute differences between two input frames (b) and (c) which
indicates initial misalignment. (f) and (i) display high quality alignment (at subpixel accuracy) from applying the two-frame technique to the entire
image region. (f) shows absolute differences after alignment, while (i) shows the average of the two aligned images. Only the independently moving
car is misaligned. (g) and (j) display poor alignment from applying the two-frame alignment to a small image region, marked by a rectangle. Although
the rectangular region is well-aligned (apart from the moving car), large misalignments can be detected in image pixels which are distant from the
analysis region. (h) and (k) show high quality alignment from applying the constrained multi-frame alignment to the same small rectangular region. It
was applied simultaneously to all 17 frames. Even pixels distant from the analysis window appear well-aligned.

PR oL i
where
[fv 0 0 0 f 0]
a 0 —y 0 0 O
B 0 0 0 0 -1
0O f+ 0 —f 0 O
S=10 a 0 0 0 1 (8)
0 B —v 0 0 0
a 1
0 0 _Z O1 7 0
[0 0 =7 =7 0 0]

and 1&7, Qj, are the camera translation and rotation, between
the reference frame J and frame K” (j = 1..F). Note that the
shape matrix S is common to all frames, because they all
share the same plane normal 7@ = («, 3, ’y)T and focal length
f. The dimensionality of the matrices on the right hand side
of (7) implies that, without noise, the parameter matrix P is
of rank 6 at most. This implies that the collection of all the
s (j = 1..F) resides in a low dimensional linear subspace.
The actual rank of P may be even lower than six, depending
on the complexity of the camera motion over the sequence
(e.g., in case of uniform motion it will be 1).

Note that the quadratic motion model defined in (1) and
(2) must be valid between the reference frame and each of
the other frames. As this model is only an approximation to
the full motion equations, it is applicable to a limited
number of frames. This number is sequence-dependent

(e.g., will be large for airborne videos and smaller for
indoor videos). In our experiments, the number of frames
varied from 10 to 50 frames. Automatic determination of the
number of frames to which the validity of the model
extends is a topic for future work.

4.2 Incorporating Subspace Constraint into

Multiframe Estimation
In this section, we show how the low-rank constraint on P
can be incorporated into the estimation of 7', . .., 5*, without
explicitly solving for any 3D information, nor for camera
calibration.

It is not advisable to first solve for P and then project its
columns onto a lower dimensional subspace, because then
the individual s will already be very erroneous. Instead,
we would like to use the low dimensionality constraint to
constrain the estimation of the individual p’s a priori. We
next show how we can apply this constraint directly to
measurable image quantities prior to solving for the individual
P’s. This method is presented below. For a review and
comparison of the other possible approaches which we
have tried (and rejected), see Appendix C.

Since all inspection frames K',..., K share the same
reference frame J, (4) can be extended to multiple frames as:
ngg[ﬁl'“ﬁF]SxF:[61"'5}‘}8><F (9)

or, in short: CP = B. Equation (9) implies that
rank(B) < rank(P) < 6. B contains only measurable image
quantities. Therefore, instead of applying the low-rank
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constraint to P, we apply it directly to B, and only then solve
for P. Namely, at each iteration i of the algorithm, first
compute B; = [5;l . ISZT ] and then project its columns onto a
lower-dimensional linear subspace by seeking a matrix B; of
rank r (r < 6), which is closest to B; (in the Frobenius norm).
Then solve for P, =C; ' B;, which yields the desired Ps.

The advantage of applying the constraint to B instead of
P can also be explained as follows: Note that the matrix C in
(4) is the posterior inverse covariance matrix! of the
parameter vector p. Therefore, applying the constraint to
B is equivalent to applying it to the matrix P, but after
weighting its columns by the inverse covariance matrix C
(Note that all /s share the same C.)

The subspace projection of the columns of B; is done
using SVD (see Appendix C). To equalize the effect of
subspace projection on all matrix entries and to further
condition the numerical process, we use the coordinate
normalization technique suggested by Hartley [9] (also used
in the two-frame method).

In the results presented throughout this paper, we
compare our multi-frame subspace constrained method
against the unconstrained two-frame method described in
Section 3. The reason for this is that this specific two-frame
method and our multi-frame method differ only in the use
of the subspace constraints. Other than that, they are
identical. This allows us to isolate the effects of the subspace
constraints on the estimation process.

Fig. 1 shows a comparison of applying the two-frame and
and multi-frame alignment techniques to a small image
region (marked by a rectangle). Figs. 1g and 1j are the result
of the two-frame alignment. The region of interest is indeed
aligned, but the rest of the image is completely distorted. In
contrast, the multi-frame constrained alignment (applied to
17 frames), successfully aligned the entire image even
though applied only to the same small region. This can be
seen in Figs. 1h and 1k.

Fig.2 shows a quantitative comparison of the two-frame and
multi-frame alignment techniques. When applying two-
frame motion estimation to the small region, the farther the
pixel is from the center of the region the larger the error is.
However, when applying multi-frame motion estimation to
the same small region, the errors everywhere are at subpixel
level.

Fig. 3 shows another comparison of applying two-frame
alignment and multi-frame alignment to small image
regions. The sequence contains 34 frames taken by a
moving camera. Because the camera is imaging the scene
from a short distance and because its motion also contains a
translation, therefore different planar surfaces (e.g., the
house, the road sign, etc.) induce different 2D parametric
motions. As long as the house was not occluded, the two-
frame alignment, when applied only to the house region,
stabilized the house reasonably well. However, once the
house was partially occluded by the road sign, and was not
fully in the camera’s field of view, the quality of the

1. The error term Err in (3) can be viewed as an x> merit function,
assuming Gaussian noise on the temporal brightness differences (K (%) —
J(Z)) (or for the multi-frame case (K”(Z) — J(&))), with the same standard
deviation for all image points. The eight linear equations of (4) are the
normal equations of the least-squares minimization of Err. Hence, under the
above Gaussian noise assumptions, the matrix C, defined by (5), is the
inverse covariance matrix of the parameter vector p (see [16], the chapter on
“General Linear Least-Squares”).
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Fig. 2. Quantitative Comparison. A quantitative comparison of two-frame
and multi-frame alignment. The values in the graph correspond to
misalignments in Figs. 1g and 1h. These errors are displayed as a
function of the distance from the center of the rectangular region in Fig. 1.
The results of two-frame alignment applied to the entire image region
(Fig. 1f) were used as ground truth.

two-frame alignment degraded drastically (see Figs. 3f and
3j). The multi-frame constrained alignment, on the other
hand, successfully aligned the house, even in frames where
only a small portion of the house was visible (see Figs. 3g
and 3k). In this case, the actual rank used was much smaller
than six (it was two), and was detected from studying the
rate of decay of the eigenvalues of the matrix B (Currently,
this detection was done manually; however, this process
could be automated, see [8]). Applying a robust two-frame
estimation technique might slightly improve the quality of
the two-frame alignment as it will ignore outliers. However,
because of the very small region of interest it will still not
provide accurate alignment (see [19]). While our multi-
frame method does not include any explicit outlier rejection
process, it gave good alignment results even for frames with
more outliers than inliers (e.g., see Fig. 3g). This indicates
the built-in robustness of the multi-frame method.

4.3 Frame Reliability

We further enhance the multi-frame estimation process,
introducing confidence measures on frames. We associate a
weight v’ with each frame K7 according to the accuracy of
alignment obtained at the previous iteration. We can use
these weights to obtain confidence-weighted subspace
projection as follows: Instead of projecting the columns of
the matrix B on to a lower-dimensional subspace, we will
project the columns of:

Beacause the weights matrix is regular (w’ # 0, Vj),~the
rank of B is the same as that of B. After projecting B to
obtain B, we multiply B by the inverse weight matrix to get
B, ie.

Fo
B=B| -
0 o

which is then used to solve for P: P =C'B.
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0 (k) o (m)

Fig. 3. Two-frame vs. multi-frame. (a), (b), (c), (d), and (e) are sample images from a sequence of 34 frames. Image (b) was used as the reference
frame. (f) shows poor two-frame alignment of the house region between the reference frame (b) and frame (d). The frame was completely distorted
because the house region was significantly occluded by the road sign. The region of interest, marked in white, was manually selected only in the
reference frame (No need to specify the region in any of the other frames, as all other frames are matched against the reference frame). For clarity of
the results, we overlayed the reference frame region-of-interest on all the result figures. (j) shows the same result overlayed on top of the reference
image (b). (g) is the corresponding result from applying the constrained multi-frame alignment. The house is now well-aligned even though only a
small portion of the house is visible (see overlay image (k)), while the rest of the image is not distorted. The road sign is not aligned because it is at a
different depth and displays accurate 3D parallax. (h) and (l) shows badly distorted two-frame alignment applied to the road sign (region marked in
white) between frames (b) and (a) (where the sign is barely visible). Although the sign appears aligned, the rest of the image is distorted, and the
house displays wrong parallax. (i) and (m) show the corresponding result (to (h) and (l)) from applying the constrained multiplane (multi-frame)
alignment to the sign (see text). The misalignment of the house is due to 3D parallax. For full video sequences of the results, see http://

www.wisdom.weizmann.ac.il/~lihi/Demos/multiframe-align.html.

The weights should reflect the following: 1) the amount of
residual misalignment in the region of interest after registra-
tion, 2) the amount of distortions introduced by the quadratic
parameters (e.g., bending of straight lines), and 3) the degree
of overlap within the region of interest (after alignment)
between the reference frame and the inspection frame.

For our experiments, we used a heuristic measure
reflecting only the amount of distortions in the image. The
instantaneous motion assumptions, leading to the para-
metric quadratic model, imply small values for the
parameters p7, pg of (2). Typical values of p; and pg (without
the coordinate normalization of Hartley [9]) are smaller
than 1E—04. When this is not maintained, the resulting
image after alignment is highly distorted. Based on this, we
assigned each frame a weight v’ according to:

1
B ma‘){(' b7 |7 | P8 |76)7

where ¢ is used to avoid division by 0, and in our
experiments was set to be € = 1E+06.

As discussed in Section 4.2, applying the low rank
constraint to B instead of P implicitly associates confidence

weights with the different parameter components (i.e.,
P1,--.,ps). Here, we associate confidence weights with the
different frames (j = 1...F). Therefore, using both types of
weights, we obtain a confidence-weighted subspace projec-
tion both in the parameter space and in the frame space. We
found this approach to significantly improve the results,
although no convergence analysis was performed.

5 EXTENDING TO MULTIPLE PLANES

In this section, we show that in scenes containing multiple
planar surfaces, even stronger subspace constraints can be
derived and used to improve the parametric motion
estimation. We present two different multi-frame subspace
constraints for sequences with multiple planes. The second
constraint does not require constant camera calibration.

5.1 The Multiplane Rank-6 Constraint

Let my,...,m, be m planar surfaces with normals
ite, = [, B1,m)", -, Tn, = [Qms By ], Tespectively. All
planes share the same 3D motion. Let P, ,..., P, be the
corresponding quadratic motion parameter matrices and let
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Sxs ..., 5%, be the corresponding shape matrices, as defined
by (7) and (8). We can stack the P; (7= 1...m) matrices to
form an 8m x F matrix P, where each column corresponds
to one frame. Since all planar surfaces , share the same
3D camera motion between a pair of frames, we get from (7):

i
P = =
Pr,

Sn hy o
- A

: 2 it (10)
- Ql QF:|6><F.

Sfrm 8mx6

8mxF

The dimensionality of the matrices on the right hand side of
(10) implies that, without noise, the parameter matrix P is
also of rank 6 at most. (As before, the actual rank of P may
be even lower than six, depending on the complexity and
variability of the camera motion over the sequence.)

5.2 Incorporating Multiplane Rank-6 Constraint into

Estimation

Again, we would like to apply the constraint to measurable
image quantities. We show next how this can be done. Let
Crir...,Cr, be the matrices corresponding to planes
Ti,..., Ty Note that the matrices C s are different from
each other due to the difference in the region of summation,
which is the region of each planar surface in the reference
frame. We can write:

Cx 0O --- 0
01 c. ... 0 Pﬂ_] B7r1
S : = : NCEY
b 0 Cﬂ Pﬂm 8mxF B"'m 8mxF

or, in short: CP = B. Note that here, as opposed to (9), P, B,
and C contain information from all planar surfaces.
Equation (11) implies that rank(B) < rank(P) < 6. We thus
project the columns of matrix B onto a lower-dimensional
subspace, at each iteration, resulting in B (which is closest to
B in the Frobenius norm), and then solve for P = C'B. In
other words, we solve for all parametric motions of all
planar surfaces, across all frames, simultaneously. The low-
rank constraint is stronger here than in the single plane
case, because the matrix B is of a larger dimension
(8m x F).

5.3 Relative Motion Rank-3 Constraint

Moreover, by looking at the relative motion of planar
surfaces we can get an even stronger subspace constraint,
which is true even for the case of varying camera calibration. For
readability purpose, we show it here only for the case of
varying focal length. However, this is true for the general
uncalibrated case (see Appendix B).

Let f and f7 be the focal length of the frame J and frame
Ki, respectively. Let 7, be an arbitrary planar surface (7,
could be one of 7i,...,m,). Denote Ap) :f}'él -
(m=1...m). It is easy to see from (2) that taking the
difference Ap) eliminates all effects of camera rotation,
leaving only effects of camera translation and the focal
length:

[Aﬁz,]su = [Agn]8x3[7_"j]3x1 (12)
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where 7 = [fit), fit},t,]", and:

I (77] - ’Vr) 0 0 ]
%(O‘n - ay) 0 =% =)
LB -8) 0 0
~ 0 (v — ) 0
ASy = 0 %(a]n — ) 0
0 %(ﬂn =B)  —m=n)
0 0 _711 (o) — )
L 0 0 _%(ﬂn - 67) ]

AS',,, is common to all frames. The camera translation i and
focal length f/ are common to all planes (between the
reference frame J and frame K’). We can therefore extend
(12) to multiple planes and multiple frames as follows:

AP AS,,
AP = : = : [l 7

'TF]3><F. (13)
APWm

8mxF A‘Sﬂm 8mx3

The dimensionality of the matrices on the right hand side of
(13) implies that, without noise, the difference parameter
matrix AP is of rank 3 at most.

It is possible to obtain a similar constraint (with
rank < 4), for general homographies case [23] (as opposed to
the instantaneous case). The rank-4 constraint is an
extension to the constraint shown by [18]. Shashua and
Avidan presented a rank-4 constraint on the collection of
homographies of multiple planes between a pair of frames. In
our case [23], the constraints are on multiple planes across
multiple frames. We refer the reader to [23] for more details.

In Section 5.4, we show how the multiplane rank-3
constraint can be incorporated into the multi-frame estima-
tion process to further enhance planar-motion estimation.

5.4 Incorporating the Rank-3 Constraint into

Multiframe Estimation
Assume that for one planar surface, m,, we know the
collection of all its parametric motions, P, (This is either
given to us, or estimated at previous iteration). We would
like to use the (rank < 3) constraint to refine the estimation

of the collection of parametric motions Py, ..., P, , of all
other planes. Using (11), we derive:
Bm - Cm P Ty
CAP = =B (14)

Bﬂ'm - CTFmPﬂ'r 8mxF

Therefore, rank(B*) < rank(AP) <3. To incorporate the
constraint into the estimation of the individual Py s, we
project the columns of the matrix B* onto a lower-
dimensional (< 3) subspace at each iteration, resulting in
B* (which is closest to B* in Frobenius norm). Therefore
(from (14)), we can estimate a new matrix B**

Cn

B* =CP = P, + B (15)

Q e

Tm,
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(d) (e) ()

Fig. 4. Single-Plane vs. Multiplane. (a), (b), and (c) are sample images from a sequence of 26 frames obtained by a moving camera. Images (b) and
(c) show how as the camera moves, the disk held by the person in the image moves out of the field of view. Image (a) (with the region of interest
marked) was used as the reference frame. The region of interest (the disk) was manually selected only in the reference frame (no need to specify the
region in any of the other frames as all other frames are matched against the reference frame). (d) shows an example of bad two-frame alignment of
the disk region between the reference frame (a) and frame (c). This image shows frame (c) warped towards frame (a) according to the computed
alignment parameters using the two-frame method. The frame was completely distorted because the disk region is very small. (e) is an example of
single-plane multi-frame alignment. This image shows frame (c) warped towards frame (a) according to the computed parameters using the multi-
frame method. Since the disk region is very small in all frames, and is partially out of the frame in many of them (e.g., (b) and (c)), the single-plane
multi-frame alignment was insufficient to give accurate results. Though the image is no longer distorted, it can be seen in (e) that the disk region is
not perfectly aligned (the boundaries of the disk are not perfectly aligned with the marked region). (f) displays high quality alignment resulting from
applying the constrained relative motion, multiplane, multi-frame alignment (see text). The person body (which is larger) was used as the reference
plane. More accurate alignment results of the person body region led to good alignment of the disk region as well (although they reside on different

planes and have different parameters).

and then solve for P, = C;UIB;*. Note that here B* and B**
are constructed from measurable image quantities (B and
C), as well as from the parameters P, which are either
known or else estimated at previous iteration. The process
is repeated at each iteration. Note: 1) If we know that the
focal length does not change along the sequence, we can
also apply the constraint rank(B™) < rank(P) < 6 prior to
solving for P 2) 7, can alternate between the planes, but
we found it to work best when w, was chosen to be a
“dominant” plane (i.e.,, one whose matrix C, is best
conditioned).

Fig. 3 also presents a comparison of regular (uncon-
strained) two-frame alignment with the multiplane con-
strained alignment, applied to the road sign. The motion
parameters of the house region were first estimated using
the single-plane multi-frame constrained alignment (see
Section 4). These were then used as inputs for constraining
the estimation of the sequence of 2D motion parameters of
the road sign. The two-frame alignment technique did not
perform well in cases when the sign was only partially
visible (see Figs. 3h and 3l). The multiplane (multi-frame)
constrained alignment, on the other hand, stabilized the

sign well even in cases when the sign was only partially
visible (see Figs. 3i and 3m).

Fig. 4 shows a comparison of single-plane constrained
alignment with the multiplane constrained alignment,
applied to the disk region. The motion parameters of the
person body region were first estimated using the single-
plane multi-frame constrained alignment (see Section 4).
Though not being a real planar surface, the body region can
be approximated by one. These results were then used as
inputs for constraining the estimation of the sequence of 2D
motion parameters of the disk region. The single-plane
multi-frame alignment technique, although significantly
better then the two-frame unconstrained alignment (see
Fig. 4d), did not achieve perfect alignment in some cases
(see Fig. 4e). This is because the disk region was very small
in all frames and in some frames was hardly visible at all
(e.g., Fig. 4c). The multiplane (multi-frame) constrained
alignment, on the other hand, stabilized the disk even in
these cases (see Fig. 4f). The differences are more evident in
video mode, where even small imperfections in the
stabilization are easily noticed.

In the current implementation, we first estimate the
parameters of one plane and then use these to constrain the
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estimation of the parameters of a second plane. This could
be extended to an iterative process, where at each iteration a
different plane is used as a reference plane to constrain the
estimation of all the other planes. However, we have not
implemented or experimented with this iterative approach.

6 CONCLUDING REMARKS

In this paper, a method was introduced for extending
existing two-frame planar-motion estimation techniques
into a simultaneous multi-frame planar-motion estimation
by exploiting multi-frame subsapce constraints on the
motion parameters. It was shown how these constraints
can be incorporated into the 2D parametric estimation of
planar motion, without solving for any 3D information, nor
for camera calibration. The subspace constraints were
applied directly to measurable image quantities, which
were then used to solve for the 2D motion parameters.

The advantage of the presented method, as was shown,
is that by simultaneously using information from multiple
frames, these frames which have more information content
can constrain the estimation in frames where the informa-
tion is sparse or noisy, as in the case of small image regions
or partial occlusion. The multiplane multi-frame motion
estimation leads to even more constrained estimation and
allows for varying camera calibration.

Currently, the suggested method is a batch process
which estimates the motion of the entire sequence simulta-
neously. Such a process can theoretically be applied to a
long sequence by repeatedly applying it to a shifting
window in time. An interesting question is how to
efficiently and incrementally modify the matrices associated
with the shifting window, without reestimating all the
necessary values again. This is a topic for future research.

APPENDIX A
INSTANTANEOUS MoTION MODEL

The notations describing the 3D motion of the camera and the
corresponding 2D motion of the planar surfaces in the image
plane, for the fully uncalibrated camera model, are introduced
in this section. These are similar to the ones first suggested by
[15], only there the camera calibration was assumed to be fixed
and, here, we allow for varying camera calibration.

A.1 The Case of the Uncalibrated Camera

Let Q=(X,Y,2)" and Q' = (X',Y’,Z')T denote a scene
point with respect to two different camera views, respec-
tively. Let §= (z,v, D" and ¢ = (2/,4/,1)" denote the
corresponding points in the two images. We can write:

i=vg

where = denotes equality up to a scale factor. V and V' are
projection matrices [6].

Let m be a planar surface with plane normal 77, then
'@ =1 for all points Q € 7 (77 = 717”, where 7 is a unit
vector in the direction of the plane normal, and d, is the
distance of the plane from the first camera center). The
transformation between the 3D coordinates of a scene point

Q@ € 7 in the two views, can be expressed by:

q=V'aQ, (16)
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Q'=GQ, (17)

where

G =R+ti’ (18)

R is the rotation matrix and ¢ is the translation of the
camera. Therefore, the induced transformation between the
corresponding image points is:

HZ

q = Hg, (19)

where

H=V' R+t )V (20)

is the induced homography between the two views of the
plane 7. From (19) it is clear that when H is computed from
image point correspondences, it can be estimated only up to
a scale factor. Denoting by [H], the ith row of the matrix H,
we can further derive:

(21)

and the 2D displacement (u,v)=
image plane, can be expressed by:

(' —x,y —y) in the

(], —ol)7
i

(1, yl)7 .
i

We next want to show how under certain assumptions
the denominator (which we will denote by D) is ~ 1. This is
required in order to get a quadratic parametric model. In
general, the camera internal calibration matrix V' has the
following form [6]:

—fky  frucot() wp a b c
V=1 0 s w | = d el, (23
0 0 1 0 0 1

where f is the camera focal length, k., &,
scaling of retinal coordinates, ug, vy are the principal point
coordinates, and @ is the angle between the retinal axes.

Assuming the camera rotation is relatively small, the
matrix R can be approximated by:

represent the

1 -Qz Qy
R=| Qg 1 —Qx
—Qy  Qx 1

(24)

Using (24), (23), and (20), we can show that the denominator
D of (22) is the following expression:

— Vo
Q
f’fu, + Y COb( ) f 1

— Qxsin(d ) + +1

D=, Y

(25)

f U

therefore, the denominator D ~ 1 if the following assump-
tions hold: 1) The scaling of retinal coordinates is not very
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small (i.e., k., K, are not close to 0), 2) small field of view
(i.e., f is large), 3) small camera rotation, and 4) %Z < 1.

Substituting (24), (23), and (20) in (22), assuming D ~ 1,
yields:

{U] _ [pl + po + psy + pra? +psxy]

3 (26)
v P4 + D5T + PeY + PrTY + PRY

where:

p2 =
+—Q7 + a/@ltx + b/@lty
a
=+ (Clq)l — q)g)tz

ps =

+ a'@gtx + b,‘I’QtY + Clq)gtz

d /
—764‘6/— (d/+%)QX

N (c_e/ 3 bee’) Oy
a ad

d bd'
+ (7 ac + e) Qg+ d’fbgty + 6,@3?52
a Qa

Py =

d
0y 120, 4 dDity + €Dty
a a

d e ¢

bd
— @QZ + d,q)gty + (6,(132 - q)S)tZ

1
+—Qy — Oty
a

1 b
= —=Qx ——Qy — Oot
ps p X ad Y 2lz

pr =

and

be c e
Py=———]Ja—- .
3 (ad a)a dﬂ""y

This result is equivalent to the ones showed by [15], [2],
[4], [10], only they assumed fixed camera calibration and,
here, we allow for varying camera calibration.
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A.2 The Longuet-Higgins Model
The notations introduced in Appendix A.1 are true for the
general case of uncalibrated camera. For readability
purposes, we chose to use in the body of the work a
limited case, which allows for simpler forms of equations.
Making the following assumptions on the camera
calibration: 1) the retinal coordinates are orthogonal (i.e.,
6 =90°), 2) the principal point is at the origin of the
coordinate axes (i.e, (ug,v9) = (0,0)), and 3) the aspect ratio
equals 1 (ie., K, = K,). Introducing these assumptions into
(23), we get a simpler form for the calibration matrix:

f 0 0
v=10 f of. (28)
0 0 1
Substituting (28), (24), and (20) in (22) yields:
{u] — [Pl + pa + p3y + pra® + Psmy] (29)
v Pa+ psT + poy + pray +psy’ |’
where:
p=FfOtx+Q)  pp=%(+atx)—ytz—1
ps=—5(Qz = Btx) pi= [ty — Q) (30)

ps =% (Qz +aty)
pr=7(Qy —atz)

po ="t (14 Bty) =tz — 1
ps = —$(Qx + Btz).

These equations are the same as (1) and (2), which are used
in the body of the paper. Equation (30) is a generalization of
the Longuet-Higgins equations for planar motion [15],
which is the case when f' = f = 1.

APPENDIX B

MULTIFRAME PARAMETRIC ALIGNMENT FOR AN
UNCALIBRATED CAMERA

We now show that the rank-3 constraint derived in Section 5.3
applies also in the more general case of completely
unconstrained (and unknown) camera calibration.

Let (a,b,c,d,e) and (a’,V/,c/,d,¢/) be the camera
calibration parameters of the frame J and frame K7,
respectively. Let 7, be an arbitrary planar surface (7, could
be one of 7y, ..., m,). Denote Aﬁ% = 54, — ﬁjr m=1...m). It
is easy to see from (27) that taking the difference Ap)
eliminates all effects of camera rotation, leaving only effects
of camera translation and camera calibration:

[Aﬁ%]Sx] = [Agﬁ]8x3[?j]3xl’ (31)
where 7 = [a/t}; + bt} + ¢It),, '}, + eit),, t}]", and:
I ((1)377 - q)JT) 0 0 1
(q)ln - (1)17') 0 _(®3r] - q)?)r)
(q)Qn - @27-) 0 0
5 0 (@3, — ®3,) 0
AS, = g ! 32
/ 0 (@1, — ) 0 (32)
0 (@2” - q)Qr) —('1)37] - CDST)
0 0 ((bln - (blr)
i 0 0 (P — ©a,) |
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Note that Ag,] is common to all frames. Since the camera
translation and calibration parameters are common to all
planes (but can differ from one frame to another), we can
extend (31) to multiple planes and multiple frames as follows:

AP, AS,,

AP=| - - - 7.7

APT"m

AS;,

8mxF 8mx3

The dimensionality of the matrices on the right hand side of
(33) implies that, without noise, the difference parameter
matrix AP is of rank 3 at most. This is the generalization of
the result obtained in (13). Therefore, the algorithm
described in Section 5.3 applies to the case of an
uncalibrated camera as well.

APPENDIX C
SuBSPACE PROJECTION UsSING SVD

In the next section, we describe the technique used for
subspace projection, and then in (Section C.2), we analyze
its applications to our problem.

C.1 Rank Deficiency and the SVD

Let A be a real m x n matrix. It can be decomposed (see
[8]) into A =UXVT, where U,V are orthogonal matrices,
of dimensions m x ¢ and ¢ xn, respectively. ¢=
min(m,n) ie, UTU=VVT = (here I, is the identity
matrix of size ¢ xg), and X = diag(oy,09,...,0,) with
01>092>...20,2>0.If Ais known to be of rank r < g,
we can set all eigenvalues ¢; with ¢ > r to zero, in ¥. This
yields: ¥’ = diag(oy,...,0,,0,...,0). We then compose the
matrices back together: A =UX'V'. It was shown by
Golub and Van-Loan [8] that A is the best possible rank-r
approximation to the matrix A, in the Frobenius norm
(which is defined by: |4|r=,/>", ijl la;?). Hence, we use
this technique to project matrices onto a lower

r-dimensional subspace.

C.2 Analysis

In the following, we analyze three different possible ways

for incorporating the low-rank constraint into the estima-

tion process. Our experiments imply that one of them gives
better results than the others (which is the method
described in the body of this paper).

Method 1. As was shown in (7), P is of rank < 6. Thus, in
the process of parametric motion estimation, we could
first solve for P and then project its columns on to a
lower-dimensional linear subspace.

Method 2. From (9), we get CP = B, which implies that
rank(B) < rank(P) < 6, i.e., we can apply the low-rank
constraint to the columns of B and then solve for P.

Method 3. Looking at (4), (5), and (6), we can write:
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VJ (@) X (@)

=F

(77" Jser

J(&) — KF (&)

= Vxr,

where each column in V is:

J(#) — K/ (7))

U{le =

T(@n) - K@)

and N is the number of pixels in the region of interest.
From (34), we get rank(V) < rank(P) < 6 and, so, we can
apply the low-rank constraint to V' and then solve for P.

Note that in Method 1, the subspace projection is
performed in the parameter space while in Methods 2 and 3
it is performed in spaces of image measurements.

Method 2 is preferable over Method 1 for the following
reason: In Method 1, the error minimization is performed in
the parameter space (P). However, errors are not equal for
different parameters (some parameters in j tend to be more
reliable then others). On the other hand, note that the matrix
C in (4) is the posterior inverse covariance matrix of the
parameter vector p. Therefore, applying the constraint to B
is equivalent to applying it to the matrix P, but after
weighting its components by the inverse covariance matrix
C (Note that all p’s share the same C.) In other words,
Method 2 corresponds to confidence-weighted subspace
projection of P and, hence, is superior to Method 1. This
theoretical observation was also supported by experimental
comparisons of the two methods.

We also found Method 2 to be superior to Method 3 as well
for two reasons. First, in terms of runtime complexity,
Method 2 is significantly faster than Method 3, as the former
applies SVD to 8 x I’ matrices, while the latter applies it to
N x F' matrices. The second reason is that SVD-based
projection implicitly assumes errors of the same order of
magnitude in all matrix entries. While this assumption is true
for B (see below), it is not true for the matrix V' of Method 3.
Errors in the temporal derivatives (which are the entries of V)
are due to misalignment errors and due to errors introduced
by the subpixel interpolation. These errors are highly
dependent on the magnitude of the spatial derivatives at
each pixel. On the other hand, errors in Bare of the same order
of magnitude. This is shown below. From (6), we get:

Z Jfo

ZIJJ;Jt

ZyJ.LJt

S gy

> wdyd;

> ydyJ:
Z($2JI: + l‘ny)Jf
| X (ay e + 97 Ty) T, |

Sy
I
|
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where J, =21 (%), J, = %(55’), and J, = K(Z) — J(Z). In our
algorithm, we use the coordinate normalization technique
suggested by Hartley [9], i.e, the pixel coordinates z,y are
normalized such that —/2 < xz,y < V2 (see [9]). Thus, the
magnitude of each component in the vector b is bounded by

the corresponding entry of the following vector:

i Z ‘ Jr,Jt | i
\/52 | Jl'Jt |
Z ‘ Jth |
V23| Ty |
V23 [y |
200 | Jadi | 422 1y i )
L2020 [ e [+ 221 Ty i )]

Observing the vector in (35), it can be seen that all entries
in b will have errors of the same order of magnitude and,
hence, applying the SVD-based projection to B is well
conditioned and leads to good numerical results.

The superiority of Method 2 over Method 3 was also
supported by experimental tests. Note, however, that the
choice between Method 2 and Method 3 was partially based
on the implicit noise assumption in the SVD-based
projection. It could very well be that a different subspace
projection technique will find Method 3 preferable over
Method 2, as the rank-r constraint on V, which is a larger
matrix than B, theoretically appears to be a stronger
constraint.

(35)

APPENDIX D
MOTION ESTIMATION PROCESS

In this appendix, we provide the details of the iterative
refinement steps of the two-frame parameter estimation
process which was briefly described in Section 3.

Let

— -

@ = iy + ou; (36)

denote the estimate of the displacement at pixel &, at
iteration ¢. Assuming small éu;, the brightness constancy
constraint can be rewritten as:

K(Z 4 @1 (%5 piZ1))

= J(F — 6ui(: 7)) (37)
~ J(T) — VJ(2)T 6u;(Z; 6p; ).
Rearranging (37), we get:
K (& + G (#:p71)) = (@) + VI (@) bui(@: 6pr) = 0. (38)
Substituting 61_[1- = U; — u;_; into (38) yields:
(K(Z + U1 (Z;pit1)) — J ()
— V(@) 1 (T pi1)) (39)

+vJ(@) @7 ;) = 0.

Therefore, given p;”; (from the previous iteration), we
can solve for a refined estimate of the parameters p; by
minimizing the following error function:
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o o T o v )2
Brr(i) = Y (So(@ 5i) + VI@ @@ 5))

(@)

(40)

where

So(Z;Pi—1) = K(Z 4 ti—1(x; Di1))
—J(&) — VJ(@) uil (% pi)

is known from the previous iteration and @;(Z;p;) is as
defined in (1). Equation (40) is the iterative version of (3).
Note that (40) is expressed in terms of the full parametric
transformation p; and not in terms of the incremental
transformation &p;. This is important because the subspace
constraints are valid for p;, but not for 6];, Since the images
are discrete, we use bilinear interpolation to approximate
image intensity values at nondiscrete positions (e.g., at
K(% + -1 (25 Pi-1)))-

The iterative coarse-to-fine estimation process is sum-
marized below:

1. Construct two Gaussian pyramids, one for each
input image: Jy, Ji, J2..Jr and Ko, K1, Ky.. K1, (Where
Jo = J is the highest resolution level and J;, is the
lowest level).

2. Initialize p; :=0

3. For every resolution level, [ = L..0, do:

a) Refine p; according to (40), using images J; and
K, and the parameters p;_;.
b) Set pi_1:=p; and repeat Step a for a few
iterations (typically 5).
4. Propagate p; to the next pyramid level [ -1, and
repeat Step 3 for J,_; and Kj_;.
The resulting p; is
transformation.
In our experiments, we used this method for both the two-
frame and the multi-frame motion estimation techniques.

the estimated parametric
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