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Abstract

We propose a principled approach to summarization of
visual data (images or video) based on optimization of a
well-defined similarity measure. The problem we consider
is re-targeting (or summarization) of image/video data into
smaller sizes. A good “visual summary” should satisfy two
properties: (1) it should contain as much as possible visual
information from the input data; (2) it should introduce as
few as possible new visual artifacts that were not in the in-
put data (i.e., preserve visual coherence). We propose a
bi-directional similarity measure which quantitatively cap-
tures these two requirements: Two signals S and T are
considered visually similar if all patches of S (at multiple
scales) are contained in T , and vice versa.

The problem of summarization/re-targeting is posed as
an optimization problem of this bi-directional similarity
measure. We show summarization results for image and
video data. We further show that the same approach can be
used to address a variety of other problems, including au-
tomatic cropping, completion and synthesis of visual data,
image collage, object removal, photo reshuffling and more.

1. Introduction

Given a large image/video, we often want to display it in
a different (usually smaller) size – e.g., for generating image
thumbnails, for obtaining short summaries of long videos,
or for displaying images/videos on different screen sizes.
This smaller representation (the visual summary) should
faithfully represent the original visual appearance and dy-
namics as best as possible, and be visually pleasing.

The simplest and most commonly used methods for gen-
erating smaller-sized visual displays are scaling and crop-
ping. Image scaling maintains the entire global layout of
the image, but compromises its visual resolution, and dis-
torts appearance of objects when the aspect ratio changes.
Cropping, on the other hand, preserves visual resolution and
appearance within the cropped region, but looses all visual
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Figure 1. The bidirectional similarity (Completeness + Coher-
ence). Two signals are considered visually similar if all patches
of one signal are contained in the other signal, and vice versa. The
patches are taken at multiple scales: spatial scales in the case of
images (a), space-time scales in the case of video sequences (b).

information outside that region.
More sophisticated methods have been proposed for au-

tomatic retargeting by reorganizing the visual data (image
or video) in a more compact way, while trying to pre-
serve visual coherence of important (usually sparse) re-
gions [3, 8, 10, 11, 12, 14, 15, 16, 17]. These methods can
roughly be classified into three families: (i) Importance-
based scaling methods [10, 14, 16] first identify important
regions within the image (e.g., salient regions, faces, high-
motion regions). The outputs of these methods are char-
acterized by scaling-down of unimportant regions (e.g., the
background), while the important regions are preserved as
close as possible to their original size (e.g., foreground ob-
jects). Nice results are obtained when there are only a few
“important” objects within an image. However, these meth-
ods reduce to pure image scaling in case of uniform impor-
tance throughout the image. (ii) Importance-based crop-
ping methods [3, 11, 15] provide nice results when the in-
teresting information is concentrated in one region (spatial
or temporal). (iii) Importance-based bin-packing meth-
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ods [8, 12, 14, 17] further account for the main deficiency
of cropping – the inability to capture spatially or temporally
separated objects – by compact packing (spatial and/or tem-
poral) of segmented important/salient regions/blobs.

Importance-based methods require the important re-
gions to be relatively compact and sparse within the visual
data. In contrast, the elegant “Seam Carving” approach [1]
does not rely on compactness/sparseness of important in-
formation. It removes uniform regions scattered throughout
the image, by carving out vertical and horizontal pixel-wide
seams with low gradient content. It beautifully shrinks im-
ages as long as there are enough low-gradient pixels to re-
move. Our experiments suggest, however, that when the
image gets too small (i.e., all low gradient pixels have been
removed), or when the interesting object/s span the entire
image, “Seam Carving” deforms important image content.

An image retargeting example was also shown in a con-
current work [5]. It is based on choosing patch arrange-
ments that fit together well. However, this method does not
impose completeness of the visual data, i.e., does not re-
quire that all source patches/information be represented in
the output. As such, it is not designed to generate com-
plete/faithful visual summaries. Note that neither “Seam
Carving”, nor “importance based summarization”, nor [5],
exploit repetitiveness or redundancy of visual data in the re-
targeting/summarization process.

In this paper we propose a measure for quantifying how
“good” a visual summary is. Such a measure is useful for
two purposes: (i) As an objective function within an opti-
mization process to generate good visual summaries; (ii) To
quantitatively compare and evaluate visual summaries pro-
duced by different methods.

The proposed similarity measure is simple yet intuitive,
and can be used to compare two images or two videos of
different sizes. We say that T is a good visual summary of
S if both: (1) T is visually complete w.r.t. S (i.e., T repre-
sents all the visual data in S); and (2) T is visually coher-
ent w.r.t. S (i.e., T does not introduce new visual artifacts
that were not observed in S). These two requirements are
formulated and captured in our patch-based bi-directional
similarity measure (Fig. 1): Two signals S and T are con-
sidered visually similar if as many as possible patches of S
(at multiple scales) are contained in T , and vice versa.

We further show how this similarity measure can be used
to solve the following problem: “Find a visual summary
T (of user-defined dimensions) which maximizes the bi-
directional similarity measure when compared to the input
source S.” We show results of applying this approach for
generating visual summaries of images and videos, as well
as for other applications (image montage, image synthesis,
object removal, and auto-cropping). Our algorithm pro-
duces visually coherent small-sized summaries which are
impossible to obtain with currently existing methods (since

they do not exploit data redundancy). Moreover, we show
how non-uniform importance can also be incorporated into
our measure and optimization process, if desired.

The main contributions of this paper are therefore:
(i) A bi-directional similarity measure between visual data
of different sizes (with or without importance weights).
(ii) A summarization/retargeting algorithm of image/video
data, which optimizes this measure.
(iii) Application of this approach to a variety of prob-
lems: image summarization, image synthesis, image col-
lage, photo reshuffling, object removal, and auto-cropping.

The rest of this paper is organized as follows: Sec. 2 for-
mulates the bidirectional similarity measure between two
signals. Sec. 3 presents the retargeting algorithm for gener-
ating visual summaries by optimizing this measure. Results,
applications and comparison to other methods are provided
in Sec. 4. Finally, Sec. 5 shows how non-uniform impor-
tance can be incorporated into our framework.

2. The Bidirectional Similarity Measure
We consider two signals S and T to be “visually similar”

if as many as possible patches of S (at multiple scales) are
contained in T , and vice versa. This bi-directional similar-
ity is illustrated in Fig. 1, and is formulated below. Denote
by S, T two visual signals of the same type (images, videos,
etc.) In the case of visual summarization or retargeting, S
will be the input Source signal, and T will be the output Tar-
get signal. S and T need not be of the same size: T may be
smaller than S (data summarization), or larger than S (data
synthesis). Let P and Q denote patches in S and T , respec-
tively, and let NS and NT denote the number of patches in
S and T , respectively.

We define the following error (dissimilarity) measure:

d(S, T ) =

dcomplete(S,T )︷ ︸︸ ︷
1

NS

∑
P⊂S

min
Q⊂T

D(P,Q) +

dcohere(S,T )︷ ︸︸ ︷
1

NT

∑
Q⊂T

min
P⊂S

D(Q,P )

(1)
Namely, for every patch Q ⊂ T we search for the most
similar patch P ⊂ S, and measure their distance D(, ),
and vice-versa. The patches are taken around every pixel
and at multiple scales, resulting in significant patch over-
lap. The spatial (or spatio-temporal) geometric relations
are implicitly captured by treating images (or videos) as un-
ordered sets of all their overlapping patches. The distance
D(, ) in Eq. (1) may be any distance measure between two
patches. In our current implementation we used SSD (Sum
of Squared Distances), measured in CIE L∗a∗b∗ color space
and normalized by the patch size.

We can further introduce different relative weights of the
two terms in Eq. (1), depending on the application:

d(S, T ) = α · dcomplete(S, T ) + (1− α) · dcohere(S, T ) (2)
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Figure 2. Importance of “completeness” and “coherence”. Col-
umn (a) shows images which are fully coherent w.r.t. their source
image, but are not complete (e.g., an arbitrary cropping – all its
patches are contained in the source). Column (b) shows images
that are fully complete w.r.t. the source, but are not coherent w.r.t.
it (e.g., “Epitome” [4, 7] – contains all patches from the source).
Column (c) shows images that are both complete and coherent.
The bidirectional dissimilarity (error) measure d(S, T ) of Eq. (1)
is displayed below each image.

We used α = 0.5 in all our summarization examples.
In order to capture bi-directional similarity locally and

globally, the completeness and coherence terms need to be
computed at multiple scales. In our current implementation,
signals S and T are compared at multiple (corresponding)
resolutions within a Gaussian pyramid. In each pyramid
level, Eq. (1) is computed using patches of size 7 × 7 for
images and 7× 7× 5 (spatio-temporal) for video data.

While the two terms in Eq. (1) above seem very simi-
lar to each other, they have important complementary roles.
The first term, dcomplete(S, T ), measures the deviation of the
target T from “completeness” w.r.t. S. Namely, it mea-
sures if all patches of S (at multiple scales) have been pre-
served in T (or how well S can be reconstructed from T ).
The second term, dcohere(S, T ), measures the deviation of
the target T from “coherence” w.r.t. S. Namely, it mea-
sures if there are any ‘newborn’ patches in T which have
not originated from S (i.e., new undesired visual artifacts).
These are the two properties we expect from a good visual
summary: (i) to represent the input well (be complete), and
(ii) to be visually pleasing (coherent).

Neither completeness nor coherence on its own suffices
to provide a good visual summary, as illustrated in Fig. 2.
Arbitrary image cropping (Fig. 2.a) provides a perfectly co-
herent image with respect to the input (all its patches can be
found among the input patches), but it is clearly not a com-
plete representation of the input image, hence not a good

visual summary. To illustrate the effect of exploiting only
completeness, we use the “Epitome” [4, 7] method. The
“Epitome” results1 in Fig. 2.b contains all the input patches
(thus complete), but introduces new undesired visual arti-
facts (has additional patches which were not in the input
image), thus being incoherent with respect to the input im-
age. In this paper we show that combining these two con-
straints provides a useful measure for visual summarization.
Fig. 2.c shows results of our algorithm, which optimizes
both terms (completeness and coherence) simultaneously.

Each term separately had been previously employed for
other purposes. The completeness term alone (when α = 1
in Eq. (2)) resembles the objective function optimized in
the “Epitome” work of [4, 7]. The coherence term alone
(when α = 0 in Eq. (2)) is similar to the objective function
optimized in the data completion work of [18].

Other completeness or coherence measures have also
been introduced. The “Jigsaw” work of [9], like “Epit-
ome”, generates a concise complete representation by learn-
ing non-regular shaped image parts – ‘jigsaw pieces’. Al-
though more coherent than “Epitome”, its output is still
scrambled. The similarity measure proposed by [2] can be
regarded as maximizing coherence with respect to the input,
but is indifferent to preserving completeness (it is a single-
directional measure).

Although not psychophysically verified, our similarity
measure is quite intuitive and simple to use for comparing
images or video sequences of different sizes. Moreover, its
simple mathematical formulation is convenient for analyti-
cal derivations, making it easy to use within an optimization
algorithm, as will be shown next.

3. The Summarization (Retargeting) Algorithm
Given a source signal S, we want to reconstruct a tar-

get signal T (of pre-defined dimensions) that optimizes the
similarity measure of Eq. (1) w.r.t. S. Formally, we search
for Toutput such that:

Toutput = arg min
T

d(S, T ). (3)

Below we describe the algorithm we use to solve this
optimization problem. Sec. 3.1 shows how to update target
pixel colors T in order to decrease d(S, T ) at each itera-
tion (the update rule). Sec. 3.2 shows how to achieve good
convergence of the iterative process (coarse-to-fine gradual
resizing algorithm).

3.1. The Iterative Update rule

In this section we derive an iterative-update rule in
the color space of pixels of the target T , that minimizes
d(S, T ). Let q ∈ T be a pixel in T , and let T (q) denote its

1Code from http://research.microsoft.com/∼jojic/
epitome.htm.
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Figure 3. Notations for the update rule.

color. We first isolate the contribution of the color of each
pixel q ∈ T to the error d(S, T ) of Eq. (1).

The error a pixel q ∈ T contributes to dcohere(S, T ):
Let Q1, . . . , Qm denote all the patches in T that contain
pixel q (e.g., if our patches are 7 × 7, there are 49 such
patches). Let P1, . . . , Pm denote the corresponding (most
similar) patches in S (i.e., Pi = arg minP⊂S D(P,Qi)).
Let p1, . . . , pm be the pixels in P1, . . . , Pm corresponding
to the position of pixel q within Q1, . . . , Qm (see Fig. 3).
Then 1

NT

∑m
i=1(S(pi) − T (q))2 is the contribution of the

color of pixel q ∈ T to the term dcohere(S, T ) in Eq. (1).

The error a pixel q ∈ T contributes to dcomplete(S, T ):
Let Q̂1, . . . , Q̂n denote all the patches in T that con-
tain pixel q and serve as “the most similar patch” to
some patches P̂1, . . . , P̂n in S (i.e., ∃P̂j ⊂ S s.t. Q̂j =
arg minQ⊂T D(P̂j , Q)). Note that unlike m above, which
is a fixed number for all pixels q ∈ T , n varies from pixel to
pixel. It may also be zero if no patch in S points to a patch
containing q ∈ T as its most similar patch. Let p̂1, . . . , p̂n

be the pixels in patches P̂1, . . . , P̂n corresponding to the
position of pixel q within Q̂1, . . . , Q̂n (see Fig. 3). Then
1

NS

∑n
j=1(S(p̂j) − T (q))2 is the contribution of the color

of pixel q ∈ T to the term dcomplete(S, T ) in Eq. (1).

Thus, the overall contribution of the color of pixel q ∈ T
to the global bidirectional error d(S, T ) of Eq. (1) is:

Err(T (q)) =

1
NS

n∑
j=1

(S(p̂j)− T (q))2 +
1

NT

m∑
i=1

(S(pi)− T (q))2. (4)

To find the color T (q) which minimizes the error in Eq. (4),
Err(T (q)) is differentiated w.r.t. the unknown color T (q)
and equated to zero, leading to the following expression for
the optimal color of pixel q ∈ T (the Update Rule):

T (q) =

1
NS

n∑
j=1

S(p̂j) + 1
NT

m∑
i=1

S(pi)

n
NS

+ m
NT

(5)

This entails a simple iterative algorithm. Given the target
image T (l) obtained in the l-th iteration, we compute the
colors of the target image T (l+1) as follows:

1. For each target patch Q ⊂ T (l) find the most similar
source patch P ⊂ S (minimize D(P,Q)). Colors of pixels

in P are votes for pixels in Q with weight 1/NT .
2. In the opposite direction: for each P̂ ⊂ S find the

most similar Q̂ ⊂ T (l). Pixels in P̂ vote for pixels in Q̂
with weight 1/NS .

3. For each target pixel q take weighted average of all
its votes as its new color T (l+1)(q). (Color votes S(pi) are
found in step 1, S(p̂i) in step 2.)

3.2. Convergence by Gradual Resizing
As in any iterative algorithm with a non-convex error

surface, the local refinement process converges to a good
solution only if the initial guess is “close enough” to the
solution. But what would be a good initial guess in this
case? Obviously the “gap” in size (and hence in appear-
ance) between the source image S and the target image T
is too large for a trivial initial guess to suffice: A random
guess would be a bad initial guess of T ; Simple cropping
of S to the size of T cannot serve as a good initial guess,
because most of the source patches would have been dis-
carded and would not be recoverable in the iterative refine-
ment process; Scaling down of S to the size of T is not a
good initial guess either, because the appearance of scaled-
down patches is dramatically different from the appearance
of source patches, preventing recovery of source patches in
the iterative refinement process.

If, on the other hand, the “gap” in size between the
source S and target T were only minor (e.g., |T | = 0.95|S|,
where | · | denotes the size), then subtle scaling down of the
source image S to the size of T could serve as a good ini-
tial guess (since all source patches are present with minor
changes in appearance). In such an “ideal” case, iterative
refinement using the update rule of Eq. (5) would converge
to a good solution.

Following this logic, our algorithm is applied through a
gradual resizing process, illustrated in Fig. 4. A sequence
of intermediate target images T0, T1, . . . , TK of gradually
decreasing sizes (|S| = |T0| > |T1| > ... > |TK | = |T |)
is produced, where T0 = S. For each intermediate tar-
get Tk (k = 1, . . . ,K) a few refinement iterations are per-
formed. The target Tk is first initialized to be a scaled-down
version of the previously generated (and slightly larger)
target Tk−1, i.e., T

(0)
k := scale down(Tk−1). Then it-

erative refinement is performed using the update rule of
Eq. (5) until convergence is obtained for the k-th target size:
T

(L)
k = arg min d(S, Tk). This gradual resizing guarantees

that at each intermediate output size (k = 1, . . . ,K) the
initial guess T

(0)
k is always close to the desired optimum

of Tk, thus guaranteeing convergence at that output size.
Note that the bidirectional distance measure d(S, Tk) is al-
ways minimized w.r.t. the original source image S (and
not w.r.t. to the previously recovered target Tk−1), since
we want to obtain a final desired output summary T = TK

that will minimize d(S, T ). An example sequence of im-
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Figure 4. Gradual resizing algorithm. Target size is gradually decreased until it reaches the desired dimensions. For each intermediate
output Tk (k = 1, . . . , K) the iterations T

(0)
k , . . . , T

(L)
k (inside blue rectangles) are initialized by scaling down the final result of the

previous output: T
(L)
k−1. Fig. 5 shows intermediate outputs in such gradual resizing. Please view video in www.wisdom.weizmann.

ac.il/∼vision/VisualSummary.html.
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T3 T4 T5 T6 T7 T8

d(S,T0) = 0 d(S,T1) = 175 d(S,T2) = 345 d = 504 d = 597 d = 640 d = 980 1408 2150
Figure 5. Gradual image resizing. Results of our algorithm for gradually decreasing target size, with corresponding dissimilarity values
d(S, T ) given by Eq. (1). Note that when the target size is so small that we must compromise completeness (such as in T6, T7, T8, where
is not enough space to contain all source patches), the algorithm still preserves coherence. It selects the most coherent result among the
equally incomplete ones.

age summaries of gradually decreasing sizes is shown in
Fig. 5. Please view video in www.wisdom.weizmann.
ac.il/∼vision/VisualSummary.html.

This gradual resizing procedure is implemented coarse-
to-fine within a Gaussian pyramid (spatial in the case of im-
ages, spatio-temporal in the case of videos). Such a multi-
scale approach allows to escape local minima and speeds up
convergence, having a significant impact on the results.

4. Results and Applications
Our similarity measure (Sec. 2) and retargeting al-

gorithm (Sec. 3) can be used for a variety of ap-
plications. Results are shown below for image/video
summarization, image montage, image synthesis, photo
reshuffling, and automatic cropping. Video results
can be found in www.wisdom.weizmann.ac.il/
∼vision/VisualSummary.html.

Image Summarization: Figs. 5 shows results of our
gradual resizing algorithm (Sec. 3) and the corresponding
similarity measure d(S, T ) of Eq. (1). In the first few im-
ages, T1, ..., T5, the loss of visual information is gradual, ac-
companied by a slow increase in the dissimilarity measure
d(S, T ). Starting from T6 a significant amount of visual
information is lost from image to image, which is also sup-
ported by a sharp increase in d(S, T ) (see graph in Fig. 5).
This may suggest an automatic way to identify a good stop-
ping point in the size reduction. Developing such a criterion
is part of our ongoing work.

Fig. 6 presents results of image summarization obtained
with our algorithm (Sec. 3) for several input images and
for several different output sizes. It shows how the algo-
rithm performs under different space limitations, down to
very small sizes. These results are compared side-by-side
with the output of the “Seam Carving” [1] algorithm2.

Our algorithm exploits redundancy of image patterns
(e.g., the windows in the building) by mapping repetitive
patches in the source image to a few representative patches
in the target image (as in “Epitome” [4, 7]), thus preserving
their appearance at the original scale. “Seam Carving” [1]
removes vertical and horizontal paths of pixels with small
gradients, nicely shrinking large images as long as there
are enough low-gradient pixels to remove. It first removes
uniform regions (such as the sky in the building image of
Fig. 6), while maintaining faithful appearance of all objects
in the image. However, when the image gets too small and
all low-gradient pixels have been removed, “Seam Carving”
starts distorting the image content. Moreover, since its de-
cisions are based on pixel-wide seams, it does not try to pre-
serve larger image patterns, nor does it exploit redundancy
of such patterns. As such, it is less adequate for highly
structured images (like images of buildings). Please view
video on demo website, exemplifying these behaviors.

Our algorithm as described in Sec. 3 is significantly
slower than “Seam Carving”. However, the computation-
ally heavy nearest-neighbor search may be significantly

2Code from http://www.thegedanken.com/retarget.

www.wisdom.weizmann.ac.il/~vision/VisualSummary.html
www.wisdom.weizmann.ac.il/~vision/VisualSummary.html
www.wisdom.weizmann.ac.il/~vision/VisualSummary.html
www.wisdom.weizmann.ac.il/~vision/VisualSummary.html
www.wisdom.weizmann.ac.il/~vision/VisualSummary.html
www.wisdom.weizmann.ac.il/~vision/VisualSummary.html
http://www.thegedanken.com/retarget
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Figure 6. Image summarization results. Our method exploits redundancies in the images (bushes, waves, windows of the buildings, etc.),
often creating coherently-looking images even for extremely small target sizes. “Seam Carving” prefers to remove low-gradient pixels,
thus distorts the image considerably at small sizes, when there are no more low-gradient pixels left. Please view video on demo website.
The Dolphin image is from Avidan and Shamir [1], the right-most building image from Wolf et al. [16].

sped up by using location from previous iteration to con-
strain the search. Our current implementation in Matlab
takes 5 minutes to resize 250×200 to half its size, and scales
linearly with the image size. Our algorithm can be paral-
lelized on multiple CPU’s/GPU for significant speedup.

After pure image scaling objects may become indis-
cernible if significantly scaled down, or distorted if the as-
pect ratio changes substantially from source to target (see
an example in Fig. 6). The importance-based retargeting
methods of [10, 14, 16] give very nice results when there are
few “important” objects within an image, but reduce to pure
image scaling in case of uniform importance throughout the
image. For instance, in the right-most example in Fig. 6,
the result of Wolf et al. [16] is very similar to pure image
scaling. In Sec. 5 we further describe how non-uniform im-
portance can also be incorporated into our summarization
algorithm, and present comparison to Wolf et al. [16] on
one of their examples containing faces.

Note that most existing summarization algorithms
(e.g., [1, 14, 16, 3, 15, 10, 12, 8, 17]) cannot exploit repet-
itiveness or redundancy of the visual data. This leads to
significant scaling down or distortion of image patterns by
these methods when the target size gets very small.

Image/Video Montage. Image Tapestry/AutoCollage
(e.g., [13]) and Video Montage (e.g., [8]) address the fol-
lowing problem: Given a set of inputs S1, S2, ..Sn (im-
ages or videos), merge them into a single output T (im-
age or video) in a seamless “sensible” way. Our algo-
rithm of Sec. 3 can be applied to produce an image/video
montage by taking multiple images/videos as a source (i.e.,
S = {S1, S2, ..Sn}). An example result is shown in Fig. 7.

Output montageInput 1

Input 2 Input 3

Figure 7. Image montage result. Three different input images
were automatically merged into a single output in a seamless co-
herent way. Simple side-by-side stacking of the three input images
was taken as an initial guess, and then gradually resized to the
target montage size using our algorithm from Sec. 3.

Bigger output (Synthesis)Input

Figure 8. Synthesis results. (See text for details.)

Completeness guarantees that all patches from all input im-
ages are found in the output montage, while the coherence
term guarantees their coherent merging. Note that no graph-
cut nor post-processing blending has been used in this case.
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Figure 9. Photo reshuffling. The user specifies new locations of
objects (man and ox, girl and bench). The rest of the image is
reconstructed in the most complete and coherent way.

. . .. . .

Source video Target video 
(½ length)

Figure 10. Video summarization result. A complex ballet video
sequence was summarized to half its temporal length by our algo-
rithm (Sec. 3). Please view video on demo website.

Image/Video Completion and Synthesis: In data synthe-
sis/completion (e.g., [6, 18]), the new synthesized regions
must be visually coherent with respect to the input data. By
setting α = 0 in Eq. (2), our similarity measure reduces to
the Coherence objective function of [18], and our optimiza-
tion algorithm of Sec. 3 reduces to a synthesis algorithm
similar to that of [18]. An example of an image synthesis
result can be found in Fig. 8.

Photo reshuffling: We used our algorithm to reshuffle vi-
sual information according to user guidance (see Fig. 9).
The user roughly marks objects and specifies their desired
locations in the output. We then apply our similarity-
optimization algorithm (Sec. 3) to fill in the remaining parts
of the image in the most complete and coherent way. A
different approach for photo-reshuffling appears in [5].

Video results: We further applied our optimization algo-
rithm to generate a visual summary of video data (where
S and T are video clips, and the patches are space-time
patches at multiple space-time scales). We summarized a
complex ballet video clip S by a shorter target clip T of
half the temporal length – see Fig 10. The resulting output
clip, although shorter, is visually coherent – it conveys a vi-
sually pleasing summary of the ballet movements at their
original speed! On the other hand, it is also complete in
the sense that it preserves information from all parts of the
longer source video. Please view video on demo website,
showing the input sequence and the resulting shorter output
sequence (the video summary).

Automatic Cropping: The bidirectional measure described
in Sec. 2 allows for automatic extraction of the best win-
dow to crop. Let S be the input image, and let T be the

Input image Bidirectional 
similarity map

Detected 
optimal cropping

(a) (b) (c)

Figure 11. Automatic optimal cropping. (a) Input images.
(b) The bidirectional similarity measure maps color coded from
blue (low similarity) to red (high similarity). The white circles
mark the highest peaks and the white rectangles mark the corre-
sponding best windows to crop. (c) The detected optimal cropping.

(unknown) desired cropped region of S, of predefined di-
mensions m × n. Sliding a window of size m × n across
the entire image, we compute the bidirectional similarity
score of Eq. (1) for each window, and assign it to its center
pixel. This generates a continuous bidirectional similarity
map for S – see Fig. 11.b. The peak of that map is the cen-
ter pixel of the best window to crop in order to maintain
maximal information (note that in this case only the “com-
pleteness” term will affect the choice, since all sub windows
of S are perfectly “coherent” with respect to S). Often there
is no single “good” place to crop (see lower row of Fig. 11).
In that case the bidirectional similarity map contains multi-
ple peaks, which can serve as multiple possible locations to
crop the image (with their relative scores).

The same approach was used for temporal cropping in
video data, using our bidirectional similarity measure with
space-time patches. View video on the project website.

5. Incorporating Non-Uniform Importance
So far we assumed that all image regions are equally im-

portant. Often, however, this is not the case. For example,
people are often more important than other objects. Such
non-uniform importance is exploited in many retargeting
and auto-cropping methods (e.g., [8, 11, 12, 14, 15, 16]).
Non-uniform importance can be incorporated into our bidi-
rectional similarity measure by introducing “importance
weights” in Eq. (1):

d(S, T ) =∑
P⊂S

wP · min
Q⊂T

D(P,Q)∑
P⊂S wP

+

∑
Q⊂T

wP̂ · min
P⊂S

D(Q,P )∑
Q⊂T wP̂

(6)

where wP is the patch importance weight and P̂ =
arg minP⊂S D(Q,P ). Note that the weights in both com-



Input image Importance weights

Our summary
without weights

Wolf et al.
(with weights)

Our summary
with weights

Figure 12. Incorporating non-uniform importance. Without
weights (left) our method prefers to preserve textured regions (e.g.,
books) over semantically important regions (e.g., faces). Impor-
tance weights on the faces solve this problem (center). Corre-
sponding result of Wolf et al. [16] is shown on the right (the mask
they used for this result may be different from ours). Note that the
face of the girl has been preserved better with our method.

Input Importance mask Outputs

Figure 13. Summarization with object removal constraints.
White = high weights, black = low weights. This guarantees that
the bungee jumper will not be included in the visual summary. No
accurate segmentation is needed. Visual summaries of different
sizes are shown.

pleteness and coherence terms (wP and wP̂ , respectively)
are defined over the source image.

Fig. 12 illustrates the contribution of using importance
weights. Without importance weights, our method prefers
the textured regions (e.g., the books) over the relatively ho-
mogeneous regions (e.g., the faces), which may be seman-
tically more important. Introduction of importance weights
solves this problem. Fig. 12 also includes comparison to the
importance-based method of [16].

Importance weights can further be used to re-
move/eliminate undesired objects from the output image in
the summarization process, as shown in Fig. 13.

6. Conclusion
We proposed a bidirectional similarity measure between

two images/videos of different sizes. We described a prin-
cipled approach to retargeting and summarization of visual
data (images and videos) by optimizing this bidirectional
similarity measure. We showed applications of this ap-
proach to image/video summarization, data completion and
removal, image synthesis, image collage, photo reshuffling
and auto-cropping.
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