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Abstract
The body of work on multi-body factorization separates

between objects whose motions are independent. In this
work we show that in many cases objects moving with dif-
ferent 3D motions will be captured as a single object using
these approaches. We analyze what causes these degenera-
cies between objects and suggest an approach for overcom-
ing some of them. We further show that in the case of multi-
ple sequences linear dependencies can supply information
for temporal synchronization of sequences and for spatial
matching of points across sequences.

1 Introduction
Dynamic scenes include either a single moving object

or multiple moving objects. When a single video camera
views a dynamic scene with multiple objects our goal is
to separate between objects moving with different motions.
We refer to this as the “multi-body factorization problem”,
which was presented in [3, 4]). When multiple video cam-
eras view the same scene at the same time, in addition to
the multi-body factorization problem, we are interested also
in matching across cameras. This can be either temporal
matching (i.e., temporal synchronization) or spatial match-
ing (i.e., point correspondences). We refer to this as the
“multi-sequence factorization problem”.

The body of work on multi-body factorization (e.g.,
[3, 4, 5, 1, 7]), suggest employing multi-frame linear sub-
space constraints to separate between objects moving with
independent motions. We first show that often objects mov-
ing with different 3D motions will be captured as a single
object using previously suggested approaches. We show
that this happens even when there is only partial linear de-
pendence between the object motions. In many of these
cases, although the motions are partially dependent they are
conceptually different and we would like to separate them.
Thus, we suggest a preliminary algorithm which can over-
come some of these degeneracies and distinguish between
such moving objects where other methods fail.

When multiple video sequences of the same dynamic
scene are available (which includes either a single object
or multiple objects) there can be dependencies between the

motions or shapes captured by the sequences. Wolf &
Zomet [10] showed that a dependence between the motions
can be used for temporal synchronization of sequences. We
extend this and show that even partial dependence suffices
for synchronization purposes. This can be applied to syn-
chronize sequences with only partial spatial overlap. Addi-
tionally, we show that when the sequences view the same
set of points we get a dependence which can be used to find
the spatial matching of the points across sequences.

2 Dependencies between Image Coordinate
Matrices

Let I1; : : : ; IF denote a sequence of F frames with N
points tracked along the sequence. Let (xfi ; y

f
i ) denote the

coordinates of pixel (xi; yi) in frame If (i = 1; : : : ; N ,
f = 1; : : : ; F ). Let X and Y denote two F � N matri-
ces constructed from the image coordinates of all the points
across all frames:
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Each row in these matrices corresponds to a single frame,
and each column corresponds to a single point. Stacking the
matrices X and Y of Eq. (1) vertically results in a 2F �N
matrix

�
X
Y

�
. It has been previously shown that under var-

ious camera and scene models [8, 6, 2] the image coordi-
nate matrix of a single object can be factorized into motion
and shape matrices:

�
X
Y

�
=M2F�rSr�N . When the scene

contains multiple objects (see [3, 4]) we still get a factor-
ization into motion and shape matrices

�
X
Y

�
= MallSall

where Mall is the matrix of motions of all objects and Sall
contains shape information of all objects.

Let W1 (of size 2F � N1) and W2 (of size 2F � N2)

be two image coordinate matrices ( W1 =
h
X1

Y1

i
and W2 =h

X2

Y2

i
). In the case of the multi-body (single sequence) fac-

torization, each of these would correspond to an indepen-
dently moving object, i.e., W1 = Wobj1;W2 = Wobj2. In
the case of multi-sequence factorization, each of these ma-



trices corresponds to a single sequence (i.e., the trajectories
of all points on all objects in each sequence): W1 = Wseq1

and W2 = Wseq2. Let r1 and r2 be the true (noise-
less) ranks of W1 and W2, respectively. Then, in both
cases these matrices can be each factorized into motion and
shape information: [W1]2F�N1

= [M1]2F�r1 [S1]r1�N1

and [W2]2F�N2
= [M2]2F�r2 [S2]r2�N2

, where M1;M2

contain motion information and S1; S2 contain shape infor-
mation. In the multi-sequence factorization case the motion
and shape matrices will include information of all the ob-
jects in the corresponding scene.

In this paper we will examine the meaning of full and
partial linear dependencies between W1 and W2, and their
implications on multi-body (single sequence) and multi-
sequence factorizations. We will see that in the multi-body
(single sequence) case these dependencies lead to degenera-
cies (and therefore are not desired), whereas in the multi-
sequence factorization these dependencies are useful and
provide additional information. In particular, there are two
possible linear dependencies between W1 and W2: (i) Full
or partial linear dependence between the columns ofW1 and
W2, and (ii) Full or partial linear dependence between the
rows of W1 and W2. We will show that:

1. In the multi-body factorization case:
- Dependencies between the columns of W1 and W2

cause degeneracies and hence misbehavior of multi-
body segmentation algorithms. We also propose an al-
ternative approach which can handle these cases.
- Linear dependencies between the rows have no effect
on the multi-body factorization.

2. In the multi-sequence factorization case:
- Linear dependencies between the columns ofW1 and
W2 provide constraints for temporal correspondence
(i.e., temporal synchronization) between sequences.
- Linear dependencies between the rows ofW1 andW2

provide constraints for spatial correspondence (i.e.,
spatial matching of points) across the sequences.

The analysis in the following sections will be based on
the following two claims on the full/partial dependencies
between the columns and between the rows of W1 and W2.
We provide here the proofs for the full dependence case.
The proofs of these claims for the case of partial depen-
dence are provided in Appendix 5.

Claim 1 The columns of W1 and W2 are fully/partially
linearly dependent iff the columns of M1 and M2 are
fully/partially linearly dependent.

In the case of full linear dependence this reduces to:
9C s.t. W2 = W1C bf iff 9C 0 s.t. M2 = M1C

0 (C
is a N1 �N2 coefficient matrix, and C 0 is a matrix of size
r1 � r2 which linearly depends on C).
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Claim 2 The rows of W1 and W2 are fully/partially lin-
early dependent iff the rows of S1 and S2 are fully/partially
linearly dependent.

In the case of full linear dependence this reduces to:
9C s.t. W2 = CW1 iff 9C 0 s.t. S2 = C 0S1 (C is a

N2�N1 coefficient matrix, andC 0 is a matrix of size r2�r1
which linearly depends on C).
Proof:
First Direction: W2 = CW1 ) M2S2 = CM1S1 )
MT

2 M2S2 = MT
2 CM1S1. MT

2 M2 is invertible
(see note below), hence, S2 � C 0S1 where C 0 =
(MT

2 M2)
�1MT

2 CM1.
Second Direction: S2 = C 0S1 ) M2S2 = M2C

0S1.
MT
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Note: The assumption that M T
i Mi and SiSTi (i = 1; 2) are

invertible is valid also in degenerate cases. Mi is assumed
here to be a 2F � ri matrix and Si is an ri � N matrix,
where ri is the actual rank of Wi. In degenerate cases, the
rank ri will be lower than the theoretical upper-bound rank.

In the following sections we examine the meaning and
the implications of each of these dependencies, both for the
single-sequence (multi-body factorization) case and for the
multi-sequence case.

3 Single Sequence Multi-Body Factorization
In this section we examine the implications of linear

dependencies between the columns of W1 and W2 (of
obj1 and obj2) on multi-body factorization. We show
(Section 3.1) that full or partial dependence between the
columns of W1 and W2 result in grouping together such
objects in previous multi-body factorization approaches. In
Section 3.2 we suggest an approach which can overcome
some of these degeneracies and can separate between par-
tially dependent objects. Section 3.3 shows that a depen-
dence between the rows of W1 and W2 has no effect on the
segmentation.

3.1 Dependencies between Object Motions
Let W1, W2 be the image coordinates sub-matrices cor-

responding to two objects (W1 =Wobj1 andW2 =Wobj2).
We wish to classify the columns of the combined matrix



[W1jW2] according to objects. Let �1, �2 be the linear sub-
spaces spanned by the columns ofW1 andW2, respectively,
and r1 and r2 be the ranks of W1 and W2, respectively (i.e.,
r1 = rank(W1) and r2 = rank(W2)). The two subspaces
�1 and �2 can lie in three different configurations1:
I. Linear Independence: When �1 and �2 are two disjoint
linear subspaces �1 \ �2 = f0g, then rank([W1jW2]) =
r1+r2. According to Claim 1 this occurs when the motions
M1 andM2 of the two objects are linearly independent. Al-
gorithms for separating independent linear subspaces can
separate the columns of W1 and W2.
II. Full Linear Dependence: When one subspace is a
subset of (or equal to) the other (e.g., �2 � �1), then
W2 = W1C and rank([W1jW2]) = max(r1; r2). Ac-
cording to Claim 1 this occurs when the motions M1 and
M2 of the two objects are fully linearly dependent, i.e.,
M2 = M1C

0. In this case all subspace based algorithms
should group together the columns of W1 and W2.
III. Partial Linear Dependence: When �1 and �2 intersect
partially (f0g � �1 \ �2 � �1 [ �2), then max(r1; r2) <
rank([W1jW2]) < r1 + r2. According to Claim 1 this oc-
curs when the motions M1 and M2 of the two objects are
partially linearly dependent. In this case subspace based ap-
proaches can in general separate between the objects, how-
ever, most previously suggested algorithms will group them
into a single object.

Costeira and Kanade [3] have estimated the SVD of
[W1jW2], i.e., [W1jW2] = U�V T (whereU and V are uni-
tary matrices) and showed that the “shape interaction ma-

trix” Q = V V T =

�
ST1 �

�1
1 S1 0
0 ST2 �

�1
2 S2

�
has a block

diagonal structure. The algorithm they suggested (as well
as those suggested in [3, 5, 1, 7]) relied on the block di-
agonal structure of Q which occurs iff V is block diago-
nal. However, the columns of V are the eigenvectors of

[W1jW2]
T [W1jW2] =

�
ST1 M

T
1 M1S1 ST1 M

T
1 M2S2

ST2 M
T
2 M1S1 ST2 M

T
2 M2S2

�
.

Hence, V and therefore Q will have a block diagonal struc-
ture only if the motion matrices M1 and M2 are linearly
independent. When M1 and M2 are partially dependent
the off-diagonal blocks ST

1 M
T
1 M2S2 and ST2 M

T
2 M1S1 are

non-zero. Hence, algorithms like [3, 5, 1, 7], which rely
on the block diagonal structure of Q will fail to separate
between the objects. Note, that partial dependence occurs
even if only a single column of the motion matrix of one
object is linearly dependent on the columns of the motion
matrix of the other object. This can occur quite often in real
sequences.

An example where this occurs is illustrated in Fig. 1.
The synthetic sequence displays a planar scene with two
objects (one marked in red and the other marked in cyan)

1These claims build upon the observations previously made by Boult &
Brown [1] and by Gear [4].

moving with the same rotations but with independent trans-
lations. Putting together all the image coordinates of all
points corresponding to the red object yields a matrix W red

where rank(Wred) = 3. Similarly, the matrix of im-
age coordinates of the cyan object has rank(Wcyan) = 3.
Combining the image coordinates of all points on both ob-
jects into a single matrix gives W = [WredjWcyan] with
rank(W ) = 4. This implies that the subspaces correspond-
ing to the red and to the cyan objects intersect. Fig. 1.e
shows that the matrix Q has no block-diagonal structure.
Therefore, most previous subspace based segmentation al-
gorithms will group the red object and the cyan object as
one although their motions are obviously different.

3.2 Handling Partially Dependent Objects
As was shown by the example in Fig. 1 in many cases

we would like to separate between objects with partial de-
pendence. In this section we suggest an approach for doing
so. When most of the trajectory vectors lie outside the in-
tersection area and are relatively far from it (i.e., are unique
to one object or the other) one would like for these to be
interpreted as two separate objects.

The approach we suggest is similar to that suggested by
Kanatani [7] which groups points into clusters in an ag-
glomerative way. In Kanatani’s approach the cost of group-
ing two clusters was composed of two factors. The first fac-
tor is based on the increase in the rank when grouping the
two clusters. Although intended for independent objects,
this applies also to the case of partially dependent objects.
This is because adding to a group of points of one object
more points from the same object will not change the rank
(i.e., when the initial group of points spans the linear sub-
space corresponding to that object), whereas adding even a
single point from another object will increase the rank, even
if the objects are only partially dependent. When the clus-
ters are large enough the agglomerative process is likely to
continue correctly, however, for the initial stages to be cor-
rect we need additional information. For this Kanatani [7]
used a second factor which is based on the values within
the shape interaction matrix Q (high values indicate low-
cost whereas low values indicate a high-cost). However, as
was shown in Section 3.1, when the objects are partially de-
pendent, the Q matrix looses its block diagonal structure.
Hence, relying on this factor can lead to erroneous segmen-
tation. Instead, we use the matrix Q̂ defined next.

The values in W TW = [W1jW2]
T [W1jW2] are dot

products between trajectory vectors (i.e., columns in W i).
These values decrease with the increase of the angle be-
tween the trajectory vectors. The angles between trajec-
tory vectors of points on the same object are expected to
be on the average significantly smaller than the angles be-
tween trajectory vectors of points on different objects (i.e.,
when the trajectory vectors lie relatively far from the inter-
section area). Therefore, although the off-diagonal blocks
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Figure 1. Degeneracies in multi-body (single sequence) factorization: (a)-(d) Four sample frames (at
times t=1,17,34,50) from a synthetic sequence showing partially dependent objects (tracked points marked in black).
Both objects rotate counter-clockwise, but the red object also translates horizontally whereas the cyan object trans-
lates vertically. Although the motions of the red object and the cyan object are different, they are partially depen-
dent. Therefore, their image coordinate matrices are partially dependent: rank(W red) = 3, rank(Wcyan) = 3 and
rank([WredjWcyan]) = 4). (e) The distance matrix used by previous algorithms for segmentation (the “shape inter-
action matrix” Q) after sorting the points according to objects. There is no block diagonal structure hence the points
will not be separated correctly. (f) The matrix Q̂ we suggest to use, after sorting the points according to objects. The
evident block-diagonal structure implies a good prior for segmentation. (g) Segmentation into two objects when using
the classical shape interaction matrix Q. Points in differently detected clusters are marked by different colors (red and
blue). The segmentation is obviously erroneous and mixes between the objects. (h) The corresponding segmentation
result when using our proposed matrix Q̂. The points on the red and the cyan objects are separated correctly.

of W TW are non-zero, they will usually have significantly
smaller values than the main-diagonal blocks. We can thus

write W TW =

�
A C
CT B

�
, where on the average the val-

ues in A;B are larger than the values in C. According to
Weiss [9], when A;B and C are constant the eigenvectors
(denoted v) of the normalized version of W TW (see [9])
will have v(i) = v(j) for points i and j on the same ob-
ject. In our case A;B and C are not constant, however, the
values in A;B are larger than the values in C. We can thus
expect the more dominant eigenvectors to account for the
constant part which separates between the blocks and the
less dominant eigenvectors to account for the within object
variations. The shape interaction matrix Q is constructed
using all eigenvectors hence has no block diagonal struc-
ture. Instead, we suggest to construct an affinity matrix
Q̂ where Q̂ij =

P
k e

(vk(i)�vk(j))
2

where vk are the most
dominant eigenvectors of W TW . Fig. 1.f shows the matrix
Q̂ for the synthetic sequence of Figs. 1.a-d (using a single,
most dominant, eigenvector). It can be seen that Q̂ has an
obvious block diagonal structure, whereas Q does not.

Figs. 1.g,h show a comparison of the agglomerative clus-
tering algorithm described above, once using the matrix Q,
and once using the matrix Q̂. Using Q̂ gave correct segmen-
tation results, whereas using Q mixed the points of the two

objects.
Fig. 2 shows an example of partial dependence in a real

sequence. In this example, two cameras viewed a per-
son stepping forward. Figs. 2.a-c show example frames
from the first camera sequence, and Figs. 2.d-f show ex-
ample frames from the second camera sequence. The non-
rigid motion performed by the person can be viewed as a
group of rigid sub-parts each moving with a different mo-
tion. In both sequences we tracked points on two sub-parts:
the arm and the shin (lower leg). The tracked points are
marked in yellow in Figs. 2.a-c,d-f. In both sequences
the rank of the image-coordinate matrix W = [W1jW2]
for all the points on both parts is higher than the rank of
the image-coordinate matrix Wi(i = 1; 2) for each of the
individual parts but is lower than the sum of them, i.e.,
rank(Wi) < rank([W1jW2]) < rank(W1) + rank(W2)
(see Fig. 2.g). Fig. 2.h and Fig. 2.i show the result of ap-
plying this clustering scheme to the points tracked in the se-
quences of Figs. 2.a-c and Figs. 2.d-f, respectively. The re-
sult of the segmentation (forcing it into two objects) shows
that the points on the arm and the shin were all classified
correctly to the two different body parts.

3.3 Dependencies between Object Shapes
In Section 3.1 it was shown that a dependence between

the columns of W1 and W2 causes degeneracies which af-



First sequence:

(a) (b) (c)
Second sequence:
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Multi-body segmentation:
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Figure 2. Multi-body segmentation. (a)-(c) Frames number 1; 30; 60, from a sequence showing a walking person.
Tracked points are marked in yellow. (d)-(f) Frames 1; 30 and 60 from a second sequence showing the same scene, taken
by a different camera (the two cameras where activated at different times). (g) The rank of the arm and leg together is
lower than the sum of the individual ranks of each, since their motions are partially dependent. (h) Segmentation result
of the first sequence, using our approach: different colors mark the different detected objects (red = leg, green = arm).
(i) Segmentation result of the second sequence using our algorithm.

fect the quality of multi-body segmentation. In this section
we show that a dependence between the rows ofW1 andW2

has no effect on the multi-body segmentation.
As was shown in Section 2, a dependence between the

rows of W1 and W2 implies that S2 = C 0S1. This implies
that both objects share the same shape up to a selection of
the object coordinate frame. When only the shapes are the
dependent and the motions are still independent, the two
objects will still be separated in all multi-body segmentation
algorithms, since:

[W1jW2] = [M1jM2]

�
S1 0
0 CS1

�

and rank([W1jW2]) = r1 + r2.

4 Multi-Sequence Factorization
In this section we examine the case of multiple se-

quences, i.e., W1 = Wseq1 = Mseq1Sseq1 and W2 =
Wseq2 = Mseq2Sseq2. Note that the two sequences can
each contain multiple objects moving with different mo-
tions.The motion and shape matrices will accordingly in-
clude information of all the objects in the corresponding
scene. As opposed to the multi-body factorization case, we

show that in the multi-sequence case dependencies between
the image coordinate matrices W1 and W2 of the two se-
quences do not cause degeneracies. On the contrary, they
produce useful information! In particular, dependencies
between the columns of W1 and W2 supply information
for temporal synchronization of the sequences (Section 4.1)
and dependencies between the rows of W1 and W2 supply
information for spatial matching of points across sequences
(Section 4.2).

4.1 Temporal Synchronization

Wolf & Zomet [10] showed how subspace constraints
can be used for temporal synchronization of sequences
when two cameras see the same moving objects. We re-
formulate this problem in terms of dependencies between
W1 and W2, and analyze when this situation occurs. We
further extend this to temporal synchronization in the case
of partial dependence between W1 and W2 (i.e., when the
fields-of-view of the two video cameras are only partially
overlapping).

As was shown in Claim 1, the columns of W1 and W2

are linearly dependent when M2 = M1C
0. Stacking W1



and W2 horizontally gives [W1jW2] = M1[S1jC
0S2] and

therefore rank ([W1jW2]) � r1. Note, however, that we
get this low rank only when the rows of W1 correspond to
frames taken at the same time instance as the frames of the
corresponding rows ofW2. This can be used to find the tem-
poral synchronization between the two sequences, i.e., the
alignment of rows with the minimal rank gives the tempo-
ral synchronization [10]. Furthermore, even if the motions
that the two sequences capture are only partially linearly
dependent, we will still get the lowest rank when the rows
of the matrices W1 and W2 of the two sequences are cor-
rectly aligned temporally. Partial dependence between the
motions captured by different sequences occurs when the
fields of view of the corresponding cameras have only par-
tial spatial overlap. Note that the cameras are assumed to
be fixed with respect to each other (they can move jointly,
however), but the points on the objects need not be the same
points in both sequences.

Figs. 3.a-d show temporal synchronization results on the
sequences of Fig. 2. The two stationary cameras viewed the
same scene but from different view points and were not ac-
tivated at the same time. We then used an approach similar
to that suggested by Wolf & Zomet [10]. We tested the rank
of the combined matrix [W1jW2] for all possible temporal
shifts. The rank was approximated by looking at the rate of
decay of the singular values. Let �1 � �2 � �3; : : : be the
singular values of [W1jW2]. We set rank([W1jW2]) = i�1
where i is the index of the largest singular value for which
�i=�1 < 0:01. Since the data is noisy we might get this rank
for more than one shift. Hence, we additionally estimated
the residual error as Error =

PN

i=rank+1 �i. The graph
in Fig. 3.a shows that the minimum error was achieved
at a temporal shift of 14 frames between the sequences.
Figs. 3.b-d verify the correctness of this result.

4.2 Spatial Matching

When the video cameras are not fixed with respect to
each other but they view the same set of 3D points in the
dynamic scene, the spatial correspondence between these
points across sequences can be recovered. In this case the
subspaces spanned by the rows of W1 and W2 are equal,
i.e., W2 = CW1. As was shown in Section 2, this oc-
curs if and only if S2 = CS1. Note, that in this case
there is no need for the cameras to be fixed with respect
to each other (they can move independently), as only de-
pendence between shapes (S1 and S2) is assumed. Stack-

ing W1 and W2 vertically gives:
h
W1

W2

i
=
h

M1

M2C0

i
S1 and

rank
�h

W1

W2

i�
� max(r1; r2). Note, that we get this low

rank only when the columns of W1 and W2 correspond to
the same points and are ordered in the same way. This
can be used to find the spatial correspondence between the
points in the two cameras, i.e., the permutation of columns

in W2 which leads to a minimal rank of
h
W1

W2

i
gives the

correct spatial matching.
Fig. 3.e examines this low rank constraint on the two se-

quences of Fig. 2. The graph shows the residual error for
1000 permutations, 999 of which were chosen randomly,
and only one was set to be the correct permutation (the
residual error here is again Error =

PN
i=rank+1 �i, where

�i are the singular values of
h
W1

W2

i
). The graph shows that

the correct permutation yields a significantly lower error.
We next suggest a possible algorithm for obtaining such

a spatial matching of points across sequences. However, the
cross-sequence matching constraint presented above is not
limited to this particular algorithm. One could, for example,
start by selecting r point matches (r = max(r1; r2)) either
manually or using image-to-image feature correspondence
algorithms (taking only the r most prominent matches).
The rest of the points could be matched automatically by
employing only temporal information: given the matrixh
Wmatch

1

Wmatch

2

i
of the already matched points we add a new

point (a new column) by choosing one point from the first
sequence and testing the residual error when matching it
against all the remaining points from the second sequence.
The match which gives the minimal residual error is taken
as the correct one. Fig. 3.f illustrates that the correct spatial
matching was found.

5 Conclusions
In this paper we presented an analysis of linear depen-

dencies and their implications on multi-body (single se-
quence) and multi-sequence factorizations. Our contribu-
tions are:
(i) a single unified framework for analyzing multi-body and
multi-sequence factorization methods,
(ii) an analysis of degeneracies in multi-body factorization,
(iii) an approach to separating objects in such degenerate
cases,
(iv) an extension of the temporal synchronization of [10] to
the case of partially overlapping fields of view, and,
(v) an approach to spatial matching of points across se-
quences.
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Figure 3. Multiple Cameras. Temporal synchronization and spatial matching applied to the sequences of Fig. 2.
(a) The minimal rank residual error (see Section 4.1) is obtained at the correct temporal shift, which was 14 frames.
(b) The 46’th frame of the first sequence. (c) The 46’th frame of the second sequence. As the second camera was turned
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Claim: The columns of W1 and W2 are partially linearly
dependent iff the columns of M1 and M2 are partially lin-
early dependent.
proof:
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