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Statistical Analysis of Dynamic Actions

Lihi Zelnik-Manor and Michal Irani, Member, IEEE

Abstract—Real-world action recognition applications require the development of
systems which are fast, can handle a large variety of actions without a priori
knowledge of the type of actions, need a minimal number of parameters, and
necessitate as short as possible learning stage. In this paper, we suggest such an
approach. We regard dynamic activities as long-term temporal objects, which are
characterized by spatio-temporal features at multiple temporal scales. Based on
this, we design a simple statistical distance measure between video sequences
which captures the similarities in their behavioral content. This measure is
nonparametric and can thus handle a wide range of complex dynamic actions.
Having a behavior-based distance measure between sequences, we use it for a
variety of tasks, including: video indexing, temporal segmentation, and action-
based video clustering. These tasks are performed without prior knowledge of the
types of actions, their models, or their temporal extents.

Index Terms—Action recognition, video indexing, temporal segmentation.
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1 INTRODUCTION

DYNAMIC activities can form a powerful cue for analysis of video
information, including action-based video indexing, browsing,
clustering, and segmentation. Previous work [23], [2], [11], [15],
[14], [9], [17], [12], [20] has primarily focused on the recognition of
sets of predefined actions, or assumed restricted imaging environ-
ments. For example, Ju et al. model and recognize articulated
motions [11], Black and Yacoob treat facial expressions [2], and the
approaches of Polana and Nelson [17], Cutler and Davis [6], Liu
and Picard [12], and of Saisan et al. [20] are designed to detect
periodic activities. These methods propose elegant approaches for
capturing the important characteristics of these actions by
specialized parametric models which usually give rise to high-
quality recognition of the studied actions. Their construction,
however, is usually done via an extensive learning phase, where
many examples of each studied action are provided (often
manually segmented and/or manually aligned).

Real-world applications, however, are unlikely to be restricted
to recognition of prestudied carefully modeled actions. When
dealing with general video data often there is no prior knowledge
about the types of actions in the video sequence, their temporal
and spatial extent, or their nature (periodic/nonperiodic). A
desired application might be for the user who is viewing a movie
(e.g., a sports movie), to point out an interesting video segment
which contains an action of interest (e.g., a short clip which shows
a tennis serve), and request the “system” to fast-forward to the
next clip (or find all clips) where a “similar” action occurs. We refer
to this as “action-based video indexing” or “Intelligent Fast-Forward.”
Another desired application is behavior-based temporal segmenta-
tion of long video sequences. Given a long video sequence
containing a variety of actions one would like to detect the start-
end points of the actions, without requiring any a priori knowl-
edge of the types of actions or their temporal extents. Such
applications require developing a notion of behavior-based
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similarity between video clips which is based on a less-specialized
(but also less restrictive) approach to activity modeling.

In this paper, we develop such an approach. We design a
similarity measure between video sequences which is based on
behavior alone. That is, it preserves the temporal variations, while
being insensitive to appearance changes such as varying clothing,
lighting conditions, etc. This measure is nonparametric and can thus
handle a wide range of dynamic behaviors. It may not be optimal for
one specific action, but allows for general behavior-based analysis of
video information containing unknown action types.

A preliminary version of this paper appeared in CVPR “01 [24].

2 RELATED WORK

Approaches for modeling actions in nonparametric ways have been
previously suggested (e.g., [17], [22], [20], [1], [5], [8]). Most of these
were limited to recognition of periodic activities or dynamic textures
[17],[22], [20], [1], however, some did aim at recognizing structured
activities. Chomat and Crowley [5], represented actions by
distributions of motion features at multiple spatial scales. Our
measurements, on the other hand, are performed at multiple
temporal scales. We therefore capture temporal textures as opposed
to “moving spatial textures” which are captured by [5]. In a more
recent work, Efros et al. [8] suggested a nonparametric approach to
action recognition, based on comparing templates of dense optical
flow-fields. This comparison is possible when the figure in the video
is in coarse resolution (e.g., a few tens of pixels tall). When these
conditions hold, the approach of [8] provides very good action
recognition results. However, it cannot handle cases where the
actors have different sizes, shapes, or are of different phases of the
same motion.

Two highly related lines of work are that using Motion History
Images (MHI) [3] and the work of Niyogi and Adelson [15], [14].
Both rely on finding the silhouette in each image and characterizing
the action by the properties of the stacked silhouettes. The MHI
work [3], [4] generated a 2D template image for each action by
overlaying weighted silhouettes, while Niyogi and Adelson [15],
[14] tried to characterize the shape of the XYT volume generated by
the stacked set of silhouettes. The MHI approach relies on template
matching and thus can detect occurrences of a previously learned
action; however, it cannot be used for action-based temporal
segmentation and clustering where the actions in the video are not
known a priori. Both approaches are limited to actions which can be
characterized by their silhouettes and cannot handle temporal
textures such as flowing water.

3 WHAT Is AN ACTION?

Actions are long-term temporal objects, which usually extend over
tens or hundreds of frames. Polana and Nelson [17] separated the
class of temporal objects into three groups and suggested separate
approaches for modeling and recognizing each: 1) temporal textures
which have indefinite spatial and temporal extent (e.g., flowing
water), see [16], 2) activities which are temporally periodic but
spatially restricted (e.g., a person walking), see [17], and 3) motion
events which are isolated actions that do not repeat either in space
or in time (e.g., smiling). In this paper, we refer to temporal actions/
behaviors as all of the above, and would like to treat all of them
within a single framework. Nevertheless, most of our experiments
focused on the latter two as we find those more interesting.

We next make a set of observations that will affect the design of
our action modeling scheme. First, we observe that a representa-
tion which can handle the three types of actions/behaviors has to
be general, i.e., it cannot make any hard assumptions such as
stationarity (which is common in modeling temporal textures) or
periodicity (which is common in modeling repetitive activities).
Second, a behavior-based representation has to rely on motion-
based features which are invariant to changes in appearance such
as those caused by different clothes, changes in lighting conditions,
variations in background, etc. Last, we note that actions are
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(b)

Fig. 1. Representation: The temporal derivative of a walk action at (a) high and
(b) low temporal resolutions. (c) The space-time volume S corresponding to a left-
to-right walk. The space-time gradient (S.,5,,S;) = (4,%7,%) is estimated at
each space-time point (z,y,t).

characterized by multiple temporal scales. For example, in a
sequence of a walking person, the high temporal resolutions will
capture the motion of the limbs, whereas the low temporal
resolutions will mostly capture the gross movement of the entire
body (see Figs. 1a and 1b).

One should note that, although actions are captured at multiple
temporal scales, a specific action is always performed at approxi-
mately the same speed and, thus, captured at the same temporal
scales. For example, a single step of a walking person, viewed by
two different video cameras of the same frame rate, will extend
over the same number of frames in both sequences, regardless of
the internal or external camera parameters. Similarly, a single step
of two different people will extend roughly across the same
number of frames. This observation implies that when comparing
two actions one need not perform comparisons across temporal
scales, but rather it suffices to compare actions at corresponding
temporal scales. This facilitates the design of a sequence-to-
sequence similarity measure.

A scenario which does not comply to the above assumption is
when the same action is performed at significantly different
speeds. In this case, comparing corresponding temporal scales
might be insufficient to detect the similarity between the actions.
Note, however, that, in this case, it is not straightforward to say
whether indeed the two videos should be considered as capturing
the same action or not. For example, are jogging and sprinting the
same action? Is a slow dance equivalent to a fast one? If, for the
application at hand, the answer is yes, then one would extend the
proposed approach to handle those cases by comparing measure-
ments across temporal scales as well.

4 ACTION REPRESENTATION AND DISTANCE MEASURE

Based on the above observations, local space-time measurements at
multiple temporal scales of the video sequence are taken as samples of
a stochastic temporal process (the action) and are used to construct
an empirical distribution associated with this action. Two actions
are considered similar if they could have been generated by the
same stochastic process, i.e., if their empirical distributions at
corresponding temporal scales are similar. This is explained next.

For obtaining measurements at multiple temporal scales we
first construct a temporal pyramid of the entire video sequence by
blurring and subsampling the sequence along the temporal
direction only. The temporal pyramid of a sequence S is thus a
pyramid of sequences S'(= 5), $2, ..., SL, where the image frames
in all the levels (sequences) within the pyramid are of the same
size, and each sequence S’ has half the number of frames of the
higher resolution sequence S'~!.

For each level (sequence) S' in the temporal pyramid, we
estimate the local space-time intensity gradient (S., S, S}) at all
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space-time points (See Fig. 1). We then ignore all space-time points
for which the temporal derivative is below some threshold, thus
using information only from spatio-temporal points which
participate in the action. This step can be regarded as a very
rough spatial segmentation when the sequence shows a person
performing against a static background. For videos displaying
temporal textures, such as flowing water, or when the camera is
moving, changes occur in most of the space-time points and thus
this step has little effect if at all.

The gradient is normal to the local spatio-temporal surface
generated by the motion in the space-time sequence volume' (at
temporal resolution [). Thus, the gradient direction captures the
local surface orientation, which depends mostly on the local
behavioral properties of the moving object, while its magnitude
depends primarily on the local photometric properties of the
moving object and is affected by its spatial appearance (e.g.,
contrast, color, texture of clothes, illumination, etc.). To preserve
the behavioral (orientation) information alone and eliminate as
much of the photometric component as possible (the magnitude),
we normalize the spatio-temporal intensity gradients to be of
length 1. To be invariant to negated contrasts between foreground
and background (e.g., a person wearing dark/light clothes against
a light/dark background) and to the direction of action (e.g., right-
to-left or left-to-right), we further take the absolute value of the
normalized space-time gradients. Our local space-time measure-
ments are therefore:

(EANEANED
V82 + (S + (8D

where [ =1,..., L and usually L =3 or 4.

Our action representation would ideally be the 3L-dimensional
distribution of the set of measurements associated with each space-
time point across all temporal scales. For example, when using three
temporal scales (L = 3) each space-time point is associated with a
nine-dimensional vector: [N}, M} N}, N2, ]\73 N2, N3, N;’, N}, To
enforce simultaneous occurrence of space-time measurements at
multiple temporal scales we would like to construct a multi-
dimensional (9D) distribution over the set of all vectors. However,
multidimensional histograms (e.g., [21]), are computationally
intensive and memory-consuming (e.g., for L = 3, and assuming
256 bins for each histogram dimension, the size of the multi-
dimensional histogram is 256°).

To handle this curse-of-dimensionality, we suggest a simplified
representation, obtained by assuming that all the components of a
spatio-temporal point are independent of each other. Taking this
assumption, we associate with each action a set of 3L one-
dimensional empirical distributions {p}}, one for each component
of the space-time measurements (k = z,y, ) at each temporal scale
(I=1,...,L). The empirical distribution p} of measurements N} is
represented by a discrete smoothed histogram £}, whose integral is
normalized to 1. For example, when using three temporal scales an
action is represented by a set of nine one-dimensional histograms:
{hy s by B2 h2 b b3 b3 hiy. We then require the simultaneous
occurrence of distributions of space-time measurements at multiple
temporal scales. The “behavioral” distance between two sequences
(S1 and S5) is measured by the distances between corresponding
empirical distributions of all the components of the space-time
measurements at all temporal scales using x? divergence,? which are

(N, Ny ;) = (1)

1. This can be seen from the linear expansion of the brightness constancy
equation: Let (dz, dy, dt) denote the local translation of the space-time point
(2,y,t). Assuming local brightness constancy yields S(z,y,t) = S(x + dx,
y+dy,t+dt). First order Taylor Expansion provides (S;,S,,5:)-
(dz, dy, dt)T =0, ie., the space-time gradient is orthogonal to the local
space-time displacement.

2. We have experimented with various distance measures, such as
Jensen-Shannon and Intersection, and all provided similar results. We have
selected the x? as it extends naturally to multidimensional histograms.
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Fig. 2. Distributions of space-timemeasurements: 663 video clips, each 64 frame
long, were taken out of the video sequence of Fig. 3, showing different people
walking, running, waving, and rolling. The plots above show for each action the
mean distribution of each space-time component in two scales. (a) k!, (b) h?,
(c) hy, (d) Ay, (e) by, and (f) A,

added to obtain a single (squared) distance measure between the
two sequences:

, ke{xyt}
i () —hy ()] o
DQZLZk“M I=1,...,L (2)
LAkl D)+ (1) i=1,...,number of bins.

Clearly, the strong independence assumption taken above is
wrong as the components N} of each spatio-temporal point are
dependent by construction. By ignoring this dependence, we
implicitly make a new assumption: that the set of one-dimensional
empirical distributions suffices to capture the differences between
actions. One cannot prove when this claim holds. Instead, we
examine the quality of this representation empirically by testing on
a variety of action types as described in the next few sections.

To provide a better intuition on what can be captured by the
suggested action representation Fig. 2 shows the mean empirical
distributions (histograms) computed over multiple video clips of
four different actions. Some actions differ in all of the components,
e.g., waving and rolling, while others differ only in some
components, e.g., walking and running. As will be shown in the
following sections, these differences were enough to separate
between these actions.

Since our representation is based on distributions, it will be the
same for sequences displaying the same action, even when they are
of different frame size or when they display a different number of
repetitions of the action.

5 APPLICATIONS

5.1 Action-Based Indexing (Detection)

Given a single example clip of an action of interest and a long test
sequence, we wish to detect actions similar to the example action,
having no prior information on the content of the test video. This is
achieved by comparing the action-of-interest against all subse-
quences of the long video, with the same temporal length as the
example clip (similar to the action detection in [6]). Subsequences
with small distance to the given example clip are detected as
representing the same action. When an action repeats multiple times
consecutive subsequences will be detected as the same action, thus
the final detection results can include video segments of various
lengths.

5.2 Action-Based Temporal Segmentation

To temporally segment a streaming video, we compare every
subsequence of length T to its consecutive subsequence of length T’
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using the distance measure of (2). This results in a set of distance
values where maxima points correspond to start-end points of
actions. The number of frames T" should be loosely related to the
length of a single repetition of an action in the sequence.

5.3 Action-Based Clustering

The temporal segmentation scheme described above can be
applied online as video streams in. However, when the entire
video sequence is available (e.g., in a batch mode) and when the
sequence contains multiple occurrences of actions (e.g., the same
actions performed at different times), then our action-based
distance measure can further be used for grouping actions into
action-consistent clusters. We compare every subsequence of
length T against all other subsequences of length T within the
long video sequence to construct a distance matrix. We then use
the normalized cut approach of [18] to cluster the data (the number
of clusters is determined by the user).

6 EXPERIMENTS AND RESULTS

To evaluate the quality of the suggested approach, we have
performed a series of experiments on four video sequences including
a variety of action types. The actual videos can be found at: http://
www.wisdom.weizmann.ac.il/ ~vision/EventDetection.html.

e  Periodic activities—“Walk” sequence. Fig. 3 shows results
on a video sequence of several-minutes long (approximately
6,000 frames). The video was recorded outdoors by a
stationary video camera. It contains four types of frequently
occurring periodic activities: walking, running, hand-wav-
ing, and walking-in-place (performed by different people of
both genders wearing different clothes for different lengths
of time), and single occurrences of several other activities
(e.g., rolling and other free activities). Most of the activities
were performed parallel to the image plane, but several
parts include walking in slightly diagonal directions and
some on snake-like paths. Waving includes waving with a
single hand or both hands (not necessarily having the same
phase). Fig. 3 shows the high-quality results obtained for
action-based indexing and clustering using T' = 64.

e Nonperiodic activities—“Punch-Kick-Duck” sequence.
Fig. 4 shows results on a video displaying both multiple
repetitions and single occurrences of three actions: punch,
kick, and duck.

e  Isolated nonperiodic activities—“Tennis” sequence. Fig. 5
shows the result of applying action-based clustering to a
500-frame long tennis sequence recorded with a panning
camera. The sequence was first stabilized to compensate for
the camera-induced background motion using [10]. A
sliding window of size T' = 10 was applied to the stabilized
sequence. The three detected clusters correspond to strokes
(backhand and forehand), hops, and steps of the tennis
player. Since our normalized local measurements are
invariant to mirror reflections of the same action, the
backhand and forehand strokes are clustered together into
a single “strokes” class. In this sequence, the strokes
appeared with no consecutive repetitions showing the
capability of our approach to handle isolated nonperiodic
actions.

e Temporal textures—“Water” sequence. Fig. 6 further
displays the robustness of our approach to classification
of temporal textures. The sequence is composed of a
mixture of 11 video clips showing water flowing in four
different types of motion. The transitions between con-
secutive clips is an additive fade-in/fade-out effect. Our
clustering scheme separated the sequence into the four
types of motion.
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Fig. 3. Periodic activities: (a), (b), (c), (d), (e), and (f) Representative frames of the “Walk” sequence. (g) The measured distances (using (2)) between a single example
clip showing a person walking and a sliding window shifted across the entire sequence. The blue bars mark ground-truth for walks. (h) Results of action-based clustering.
Top row: All subsequences corresponding to the same cluster were assigned the same color. Bottom row: Manually marked ground-truth information.

7 EVALUATING ROBUSTNESS

We next evaluate the robustness of the suggested action recogni-
tion scheme by analyzing its invariance with respect to various
parameters.

Invariance to Spatial and Temporal Translations. The spatial
position of an object in the image plane has no effect on the local
space-time gradients; thus, our distance measure is invariant to
translations in the image plane. The suggested representation and
distance measure are also invariant to temporal translations.
Namely, two actions will be recognized as the same even if they
are not temporally synchronized (i.e., if they are out of phase) since
the statistics are collected over the entire space-time volume of a clip.

Varying Spatial Scales. Variations in spatial size due to
moderate changes in zoom or in distance of the acting person
from the video camera have only a little affect on the gradient
orientations and, thus, can be handled by our approach. On the
other hand, large changes in zoom or in the distance from the
camera may change the observed spatial features and, therefore,
will affect the gradient orientations. To overcome this problem, one
can extend the suggested approach by constructing for each action
a representation at multiple spatial scales.

Appearance Changes. Changes in appearance inflicted by
different clothing or background will be handled nicely by the
suggested approach, as the results show. This invariance will break
when extreme changes are involved, for example, when one

person wears a highly textured shirt and single color pants while
the other wears a single color shirt and highly textured pants. This
is since there will be very little gradient information in the single
color body part. To overcome this, we first blur the sequences;
thus, textured clothes are smeared into single color. We also noted
that, in most cases, clothes are not perfectly homogeneous thus
sufficient gradient information can be obtained.

Varying Temporal Scales. As discussed in Section 3, we
assume that different instances of the same action occur at similar
speeds. Nevertheless, our approach proved empirically to be
robust to moderate changes in speed. For example, in the “punch-
kick-duck” sequence of Fig. 4 the extent of a single repetition of an
action varied between 25 and 40 frames. Nevertheless, we were
able to correctly classify all of them. We have also tested this on a
sequence showing a person walking (at 5, 6, and 7 kmh) and
running (at 8 and 9 kmh) on a treadmill (results are not included
due to lack of space). Although the difference in speed between the
fastest walk and the slowest run was the same as between the two
runs, or two walks, an accurate separation between walking and
running was obtained.

Changes in Viewing Direction. Significant changes in viewing
direction will induce different image motions and, thus, different
gradients. Although in theory our distance measure should not be
view-point invariant, we have empirically found it to be rather
robust to it. This can be seen, for example, in the results obtained for
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Fig. 4. Nonperiodic actions: (a), (b), and (c) Sample frames from the “punch-kick-duck” sequence. (d) The measured distances between a single punch clip and all other
subsequences. The blue bars mark ground-truth for punches. (e) Results of temporal segmentation and clustering using a temporal windows of length 7' = 32 frames.
For temporal segmentation, the detected cuts are marked by black vertical lines on top of the ground-truth values.
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Fig. 5. Isolated nonperiodic actions: Representative frames and clustering result of the “Tennis” sequence.
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Fig. 6. Temporal textures: Representative frames and clustering result of the “Water” sequence.

the sequences of Figs. 3 and 4 where some of the activities were the camera. Applying the clustering process to this sequence while

performed at various angles. An evaluation of robustness to view-  setting the number of clusters to two separated between front view
point changes was additionally performed® on a video sequence

i.e., walking t d th d side view, although the sid
showing different people walking at various angles with respect to (i.e,, walking toward the camera) and side view, although the side

view included a high variability in angles (between 30 and

3. Results are not included due to lack of space. 90 degrees to the camera optical axis).
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Robustness to Length of Temporal Window. The applications of
Section 5 require setting a user-defined length 7. We investigated the
robustness to variations in 7" on the “punch-kick-duck” sequence.
Using T = 32, high-quality results were obtained although the
length of a single repetition of an action in this sequence varies
between 25 and 40 frames. When using T = 16, high-quality
clustering results were still obtained, however, when applying
temporal segmentation some false temporal cuts were also detected.
In most cases, these occurred at the short pauses between repeated
occurrences of the same action. A very small temporal window of
length T' = 8 captures too little information about the action, hence,
some of the correct cuts were missed, while other false cuts were
detected, both when clustering and when segmenting.

Robustness to Changes in Number of Clusters. In the
clustering process, we have one extra parameter: the number of
clusters. We tested robustness to the choice of the number of
clusters on the “punch-kick-duck” sequence. When the number of
clusters is set to 2 (instead of the correct number 3) all “punches”
and all “kicks” are grouped together into one cluster and the
second cluster corresponds to all the “ducks.” This result is
intuitive since the “punches” and “kicks” are far more similar to
each other than to the “ducks.” Setting the number of clusters to
the wrong number 4 resulted in separating the “punches” into two
clusters. One contained all the clips in which the punching person
stood frontal to the camera and the other clips with a small angle
between the person and the camera.

8 REFINING THE REPRESENTATION AND MEASURE

When only a single example clip of an action is available, the action
representation is constructed from it. When multiple example clips
of the same action are available (either specified manually or
obtained via the automatic clustering process), we can refine the
action representation to emphasize the contribution of important
space—time measurements at the important temporal scales, as
learned from the examples.

We first rewrite the x? distance measure using vector notation:
x% = (hy — h1) [diag(hy + h1)] "' (hy — hy), where diag(hy + hy) is a
diagonal matrix whose ith diagonal entry is hy(i) + k(i) and can
be viewed as a weight assigned to the ith histogram bin.

When multiple example clips of the same action type A are
available, we compute the mean and covariance of all the correspond-
ing distributions. The mean histogram h 4 can be used as the action
representation and the covariances cov, indicate the reliability and
the relative significance of the individual histogram bins. When
estimating the distance measure between the action A (represented
by h4) and any new incoming sequence with an empirical
distribution %, the weights of bins should be replaced with covs .
This way, high weights are assigned to bins of low variance (which
are more reliable) and low weights to bins of high variance (which are
less reliable). The refined distance measure specialized for detecting
actions similar to A is therefore: D% = (h— H)Tcom’l(h — ha).
This is actually the squared Mahalanobis distance [7], applied here to
distributions (histograms).

9 CONCLUSIONS

The task of action recognition in video is an extremely difficult one.
Many approaches thus focus on recognizing a highly limited set of
actions, often just a single one like walking. However, real systems
will have to extend the variety and number of action types they can
handle. In this paper, we presented an approach which aims to go
in that direction. By representing actions in a nonparametric way,
we were able to utilize a single framework to recognize periodic
and nonperiodic activities, isolated occurrences, and multiple-
repetitions, as well as handling both “structured” video (e.g.,
showing people) and dynamic textures (e.g., flowing water). While
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this provides a “proof-of-concept” that a single system can handle
such a wide variety of cases, better methods still need to be
developed to allow for further invariance to changes in viewing
direction, appearance, distance to the camera, etc.
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