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Abstract. Factorization using Singular Value Decomposition (SVD) is often used for recovering 3D shape and
motion from feature correspondences across multiple views. SVD is powerful at finding the global solution to the
associated least-square-error minimization problem. However, this is the correct error to minimize only when the
x and y positional errors in the features are uncorrelated and identically distributed. But this is rarely the case in
real data. Uncertainty in feature position depends on the underlying spatial intensity structure in the image, which
has strong directionality to it. Hence, the proper measure to minimize is covariance-weighted squared-error (or the
Mahalanobis distance). In this paper, we describe a new approach to covariance-weighted factorization, which can
factor noisy feature correspondences with high degree of directional uncertainty into structure and motion. Our
approach is based on transforming the raw-data into a covariance-weighted data space, where the components of
noise in the different directions are uncorrelated and identically distributed. Applying SVD to the transformed data
now minimizes a meaningful objective function in this new data space. This is followed by a linear but suboptimal
second step to recover the shape and motion in the original data space. We empirically show that our algorithm gives
very good results for varying degrees of directional uncertainty. In particular, we show that unlike other SVD-based
factorization algorithms, our method does not degrade with increase in directionality of uncertainty, even in the
extreme when only normal-flow data is available. It thus provides a unified approach for treating corner-like points
together with points along linear structures in the image.
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1. Introduction

Factorization is often used for recovering 3D shape
and motion from feature correspondences across mul-
tiple frames (Tomasi and Kanade, 1992; Poelman
and Kanade, 1997; Quan and Kanade, 1996; Shapiro,
1995; Sturm and Triggs, 1996; Oliensis, 1999; Oliensis
and Genc, to appear). Singular Value Decomposition
(SVD) directly obtains the global minimum of the
total (orthogonal) least-squares error (Van Huffel and
Vandewalle, 1991; Kanatani, 1996) between the noisy

data and the bilinear model involving motion of the
camera and the 3D position of the points (shape). This
is in contrast to iterative non-linear optimization meth-
ods which may converge to a local minimum. However,
SVD assumes that the noise in the x and y positions
of features are uncorrelated and have identical distri-
butions. But, it is rare that positional errors of feature
tracking algorithms are uncorrelated in their x and y co-
ordinates. Quality of feature matching depends on the
spatial variation of the intensity pattern around each
feature. This affects the positional inaccuracy both in
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Figure 1. Directional uncertainty indicated by ellipse. (a) Uncer-
tainty of a sharp corner point. The uncertainty in all directions is
small, since the underlying intensity structure shows variation in
multiple directions. (b) Uncertainty of a point on a flat curve, almost
a straight line. Note that the uncertainty in the direction of the line
is large, while the uncertainty in the direction perpendicular to the
line is small. This is because it is hard to localize the point along the
line.

the x and in the y components in a correlated fashion.
This dependency can be modeled by directional un-
certainty (Anandan, 1989) (which varies from point to
point, as is shown in Fig. 1).

When the uncertainty in a feature position is
isotropic, but different features have different vari-
ances, then scalar-weighted SVD can be used to min-
imize a weighted squared error measure (e.g., Aguiar
and Moura, 1999). However, under directional uncer-
tainty noise assumptions (which is the case in reality),
the error minimized by SVD is no longer meaningful.
The proper measure to minimize is the covariance-
weighted error (the Mahalanobis distance). Kanatani
(1996) and others (e.g., Leedan and Meer, 2000;
Ben-Ezra et al., 2000; Matei and Meer, 2000; Morris
et al., 1999; Morris and Kanade, 1998) have stressed
the need to use Mahalanobis distance in various vi-
sion related estimation problems when the noise is
data-dependent. However, most of the work on fac-
torization of multiframe correspondences that uses
SVD has not incorporated directional uncertainty (e.g.,
see Tomasi and Kanade, 1992; Poelman and Kanade,
1997; Aguiar and Moura, 1999; Sturm and Triggs,
1996).

The techniques that have incorporated directional
uncertainty and minimized the Mahalanobis distance
have not used the power of SVD to obtain a global
minimum. For example, Morris and Kanade (1998)
and Morris et al. (1999) have suggested a unified ap-
proach for recovering the 3D structure and motion from
point and line features, by taking into account their di-
rectional uncertainty. However, they solve their objec-
tive function using an iterative non-linear minimization
scheme. The line factorization algorithm of Quan and

Kanade (1996) is SVD-based. However, it requires a
preliminary step of 2D projective reconstruction, which
is necessary for rescaling the line directions in the im-
age before further factorization can be applied. This
step is then followed by three sequential SVD mini-
mization steps, each applied to different intermediate
results. This algorithm requires at least seven different
directions of lines.

In this paper we present a new approach to factoriza-
tion, which introduces directional uncertainty into the
SVD minimization framework. The input is the noisy
positions of image features and their inverse covari-
ance matrices which represent the uncertainty in the
data. Following the approach of Irani (2002), we write
the image position vectors as row vectors, rather than
as column vectors as is typically done in factorization
methods. This allows us to use the inverse covariance
matrices to transform the input position vectors into
a new data space (the “covariance-weighted space”),
where the noise is uncorrelated and identically dis-
tributed. In the new covariance-weighted data space,
corner points and points on lines all have the same re-
liability, and their new positional components are un-
correlated. (This is in contrast with the original data
space, where corner points and points on lines had dif-
ferent reliability, and their x and y components were
correlated.)

Once the data is thus transformed, we can apply SVD
factorization to the covariance-weighted data. This is
equivalent to minimizing the Mahalanobis distance
in the original data space. However, the covariance-
weighted data space has double the rank of the orig-
inal data space. An additional suboptimal linear min-
imization step is needed to obtain the correct rank in
the original data space. Despite this suboptimal linear
step, the bulk of the rank reduction occurs during the
preceding SVD step, leading to very good results in
practice.

More importantly, our approach allows the recovery
of 3D motion for all frames and the 3D shape for all
points, even when the uncertainty of point position is
highly elliptic (for example, point on a line). It can
handle reliable corner-like point correspondences and
partial correspondences of points on lines (e.g., normal
flow), all within a single SVD-like framework. In fact,
we can handle extreme cases when the only image data
available is normal flow.

Irani (2002) used confidence-weighted subspace
projection directly on spatio-temporal brightness
derivatives, in order to constrain multi-frame
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correspondence estimation. The confidences she used
encoded directional uncertainty associated with each
pixel. That formulation can be seen a special case of
the covariance-weighted factorization presented in
this paper.

Our approach thus combines the powerful SVD fac-
torization technique with a proper treatment of direc-
tional uncertainty in the data. Different input features
can have different directional uncertainties with dif-
ferent ellipticities (i.e., different covariance matrices).
However, our algorithm is still slightly suboptimal.
Furthermore, our approach does not allow for arbi-
trary changes in the uncertainty of a single feature over
multiple frames. We are currently able to handle the
case where the change in the covariance matrices of
all of the image features can be modeled by a global
2D affine transformation, which varies from frame to
frame.

The rest of the paper is organized as follows:
Section 2 contains a short review of SVD factoriza-
tion and formulates the problem for the case of direc-
tional uncertainty. Section 3 describes the transition
from the raw data space, where noise is correlated and
non-uniform, to the covariance-weighted data space,
where noise is uniform and uncorrelated, giving rise
to meaningful SVD subspace projection. Section 4 ex-
plains how the covariance-weighted data can be fac-
tored into 3D motion and 3D shape. Section 5 extends
the solution presented in Sections 3 and 4 to a more
general case when the directional uncertainty of a point
changes across views. Section 6 provides experimental
results and empirical comparison of our factorization
method to other common SVD factorization methods.
Section 7 concludes the paper. A shorter version of this
paper appeared in Irani and Anandan (2000).

2. Problem Formulation

2.1. SVD Factorization

A set of P points are tracked across F images
with coordinates {(u′

f p, v
′
f p) | f = 1, . . . , F, p =

1, . . . , P}. The point coordinates are transformed to
object-centered coordinates by subtracting their cen-
troid. Namely, (u′

f p, v
′
f p) is replaced by (u f p, v f p) =

(u′
f p − ū f , v

′
f p − v̄ f ) for all f and p, where ū f and

v̄ f are the centroids of point positions in each frame:
ū f = 1

P

∑
p u′

f p, v̄ f = 1
P

∑
p v′

f p.
Two F × P measurement matrices U and V are con-

structed by stacking all the measured correspondences

as follows:

U =


u11 · · · u1P

...
...

uF1 · · · uFP

, V =


v11 · · · v1P

...
...

vF1 · · · vFP

.

(1)

It was shown (Tomasi and Kanade, 1992; Poelman and
Kanade, 1997; Shapiro, 1995) that when the camera is
an affine camera (i.e., orthographic, weak-perspective,
or paraperspective), and when there is no noise, then
the rank of the 2F × P matrix W = [

U
V

]
is 3 or less,

and can be factored into a product of a motion matrix
M and a shape matrix S, i.e., W = MS, where:

M =
[

MU

MV

]
2F×3

, S = [s1, . . . , sP ]3×P ,

MU =


mT

1

...

mT
F


F×3

, MV =


nT

1

...

nT
F


F×3

. (2)

The rows of M encode the motion for each frame (ro-
tation in the case of orthography), and the columns of
S contain the 3D position of each point in the recon-
structed scene.

In practice, the measured data is usually corrupted
by noise. The standard approach is to model this noise
as an additive stochastic random variable E f p with a
Gaussian probability density function. Thus the noisy
measured position vector (u f p v f p)T is modeled as:

[
u f p

v f p

]
=

[
mT

f sp

nT
f sp

]
+ E f p. (3)

When E f p is modeled as an isotropic Gaussian random
variable with a fixed variance σ 2, i.e., ∀ f ∀p E f p ∼
N (0, σ 2 I2×2), then the maximum likelihood estimate
is obtained by minimizing the squared error:

ErrSVD(M, S) =
∑
f,p

ET
f pE f p = ‖W − MS‖2

F (4)

where ‖ · ‖F denotes the Frobenius norm. The global
minimum to this non-linear problem is obtained by per-
forming Singular Value Decomposition (SVD) on the
measurement matrix: W = A�BT , and setting to zero
all but the three largest singular values in �, to get a
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noise-cleaned matrix Ŵ = A�̂BT . The recovered mo-
tion and shape matrices M̂ and Ŝ are then obtained by:
M̂ = A�̂1/2, and Ŝ = �̂1/2 B. Note that M̂ and Ŝ are
defined only up to an affine transformation.

2.2. Scalar Uncertainty

The model in Section 2.1 (as well as in Tomasi and
Kanade (1992)) weights equally the contribution of
each point feature to the final shape and motion matri-
ces. However, when the noise E f p is isotropic, but with
different variances for the different points {σ 2

p | p =
1, . . . , P}, then E f p ∼ N (0, σ 2

p I2×2). In such cases,
applying SVD to the weighted-matrix Wσ = Wσ−1,
where σ−1 = diag(σ−1

1 , . . . , σ−1
P ), will minimize the

correct error function:

Errweighted-SVD(M, S)

=
∑ ET

f pE f p

σ 2
p

= ‖(W − MS)σ‖F

= ‖Wσ − MSσ‖F (5)

where Sσ = Sσ−1. Applying SVD-factorization to Wσ

will give M̂ and Ŝσ , from which Ŝ = Ŝσσ can be
recovered. This approach is known as weighted-SVD
or weighted-factorization (Aguiar and Moura, 1999).

2.3. Directional Uncertainty

So far we have assumed that the noise in u f p is uncor-
related with the noise in v f p. In real image sequences,
however, this is not the case. The uncertainty in the dif-
ferent components of the location estimate of an image
feature will depend on the local image structure. For
example, a corner point p will be tracked with high
reliability both in u f p and in v f p, while a point p on a
line will be tracked with high reliability in the direction
of the gradient (“normal flow”), but with low reliability
in the tangent direction (see Fig. 1). This leads to non-
uniform correlated noise in u f p and v f p. We model the
correlated noise E f p by: E f p ∼ N (0, Q−1

f p ) where Q f p

is the 2 × 2 inverse covariance matrix of the noise at
point p in image-frame f (see Fig. 2). The covariance
matrix determines an ellipse whose major and minor
axes indicate the directional uncertainty in the location
(u f p v f p)T of a point p in frame f (see Fig. 1, as well
as Morris and Kanade (1998) for some examples).1

Figure 2. The inverse covariance matrix Q (and its square root
matrix C) are defined by the orientation of the uncertainty ellipse
and the degree of uncertainty along the major and minor axes.

Assuming that the noise at different points is inde-
pendent, then the maximum likelihood solution is ob-
tained by finding matrices M and S which minimize
the following objective function:

Err(M, S) =
∑
f,p

(
ET

f p Q f pE f p
)

(6)

where:

E f p =
[

u f p − mT
f sp

v f p − nT
f sp

]
.

Equation (6) implies that in the case of directional un-
certainty, the metric that we want to use in the mini-
mization is the Mahalanobis distance. When the noise
in each of the data points is isotropic (as might be the
case at a set of corner points), Q f p are of the form λI2×2

and the error reduces to the Frobenius (least-squares)
norm of Eq. (5). This is the distance minimized by the
standard SVD process, and is only meaningful when
data consists entirely of points with isotropic noise.

Morris and Kanade (1998) have addressed this prob-
lem and suggested an approach to recovering M and
S which is based on minimizing the Mahalanobis dis-
tance. However, their approach uses an iterative non-
linear minimization scheme. In the next few sections
we present our approach to SVD-based factorization,
which minimizes the Mahalanobis error. Our approach
combines the benefits of SVD-based factorization for
getting a good solution, with the proper treatment of
directional uncertainty. However, unlike (Morris and
Kanade, 1998), our approach cannot handle arbitrary
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changes in covariance matrices of a single feature over
multiple frames. It can only handle frame-dependent
2D affine deformations of the covariance matrices
across different views (see Section 5).

3. From the Raw-Data Space
to the Covariance-Weighted Space

In this section we show how by transforming the noisy
data (i.e., correspondences) from the raw-data space to
a new covariance-weighted space, we can minimize the
Mahalanobis distance defined in Eq. (6), while retain-
ing the benefits of SVD minimization. This transition
is made possible by rearranging the raw feature posi-
tions in a slightly modified matrix form: [U | V ]F×2P ,
namely the matrices U and V stacked horizontally (as
opposed to vertically in W = [

U
V

]
, which is the stan-

dard matrix form used in the traditional factorization
methods (see Section 2.1)). This modified matrix repre-
sentation is necessary to introduce covariance-weights
into the SVD process, and was originally proposed by
Irani (2002).

For simplicity, we start by investigating the simpler
case when the directional uncertainty of a point does
not change over time (i.e., frames), namely, when the
2 × 2 inverse covariance matrix Q f p of a point p is
frame-independent: ∀ f Q f p ≡ Q p. Later, in Section
5, we will extend the approach to handle the case when
the covariance matrices undergo frame-dependent 2D-
affine changes. Because Q p is positive semi-definite, its
eigenvalue decomposition has the form Q p = 	
	T ,
where 	2×2 is a real orthonormal matrix, and 
2×2 =
diag(λmax, λmin). Also, λmax = 1

σ 2
min

and λmin = 1
σ 2

max
,

where σmax and σmin are the standard deviations of the
uncertainty along the maximum and minimum uncer-
tainty directions (see Fig. 2). Let C p = 	


1
2 and

[α f p β f p]1×2 = [u f p v f p]1×2C p2×2 . Therefore, α f p is
the component of [u f p v f p] in the direction of the
highest certainty (scaled by its certainty), and β f p is
the component in the direction of the lowest certainty
(scaled by its certainty) (see Fig. 3).

For example, in the case of a point p which lies on
a line, α f p would correspond to the component in the
direction perpendicular to the line (i.e., the direction
of the normal flow), and β f p would correspond to the
component in the direction tangent the line (the direc-
tion of infinite uncertainty). In the case of a perfect
line (i.e., zero certainty in the direction of the line),
then β f p = 0. When the position of a point can be
determined with finite certainty in both directions (e.g.,

Figure 3. Using the notation from Fig. 2, [u v] is projected onto
the major and minor axes of the ellipse via the rotation matrix 	.
Each component is then scaled by its appropriate uncertainty using√


. This provides the covariance-weighted vector [α β], where α is
the component in the direction of the highest certainty, and β is the
component in the direction of the lowest certainty.

for corner points), then C p is a regular matrix. Other-
wise, when there is infinite uncertainty in at least one
direction (e.g., as in lines or uniform image regions),
then C p is singular.

Let αp, βp, u p and vp be four F × 1 vectors corre-
sponding to a point p across all frames:

αp =


α1p

...

αFp

, βp =


β1p

...

βFp

,

u p =


u1p

...

uFp

, vp =


v1p

...

vFp


then

[αp βp]F×2 = [u p vp]F×2 C p2×2 . (7)

Let α and β be two F × P matrices:

α =


α11 · · · α1P

...
...

αF1 · · · αFP


F×P

and

β =


β11 · · · β1P

...
...

βF1 · · · βFP


F×P

(8)
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then, according to Eq. (7):

[α |β]F×2P = [U | V ]F×2PC2P×2P (9)

where C is a 2P×2P matrix, constructed from all 2×2
matrices C p = [

cp1 cp2cp3 cp4

]
(p = 1, . . . , P), as follows:

C =



c11 0 c12 0
. . .

. . .
0 cP1 0 cP2

c13 0 c14 0
. . .

. . .
0 cP3 0 cP4


2P×2P

. (10)

Note that matrix α contains the components of all
point positions in their directions of highest certainty,
and β contains the components of all point positions
in their directions of lowest certainty. These directions
vary from point to point and are independent. Further-
more, α f p and β f p are also independent, and the noise
in those two components is now uncorrelated.

Let R denote the rank of W = [
U
V

]
2F×P (when W

is noiseless, and the camera is an affine camera, then
R ≤ 3; see Section 2.1). A review of different ranks R
for different camera and world models can be found in
Irani (2002). Then the rank of U and the rank of V is
each at most R. Hence, the rank of [U | V ]F×2P is at
most 2R (for an affine camera, in the absence of noise,
2R ≤ 6). Therefore, according to Eq. (9), the rank of
[α |β] is also at most 2R.

The problem of minimizing the Mahalanobis dis-
tance of Eq. (6) can be restated as follows: Given noisy
positions {(u f p v f p)T | f = 1, . . . , F , p = 1, . . . , P},
find new positions {(û f p v̂ f p)T | f = 1, . . . , F , p =
1, . . . , P} that minimize the following error function:

Err({(û f p v̂ f p)T })

=
∑
f ,p

[(u f p − û f p) (v f p − v̂ f p)]Q f p

[
u f p − û f p

v f p − v̂ f p

]
.

(11)

Because Q f p = Q p = C pCT
p , we can rewrite this error

term as:

=
∑
f ,p

([(u f p − û f p) (v f p − v̂ f p)]C p)

· ([(u f p − û f p) (v f p − v̂ f p)]C p)T

= ‖[U − Û | V − V̂ ]C‖2
F

= ‖[U | V ]C − [Û | V̂ ]C‖2
F

= ‖[α |β] − [α̂ | β̂]‖2
F (12)

where [Û | V̂ ] is the F × 2P matrix containing all the
{û f p,v̂ f p}, and [α̂ | β̂] = [Û | V̂ ]C .

Note, however, that in order to be a physically valid
solution, Û and V̂ must satisfy the constraint[

Û

V̂

]
=

[
M̂U

M̂V

]
Ŝ, (13)

for some motion matrices M̂U , M̂V , and shape matrix
Ŝ, i.e.,

[Û
V̂

]
is a rank-R matrix. Hence,

[α̂ | β̂]F×2P = [M̂U Ŝ | M̂V Ŝ]C

= [M̂U | M̂V ]F×2R

[
Ŝ 0

0 Ŝ

]
2R×2P

C2P×2P .

(14)

Thus,

Minimizing the Mahalanobis distance of Eq. (11)
subject to Eq. (13) is equivalent to finding the
rank-2R matrix [α̂ | β̂] closest to [α |β] in the
Frobenius norm of Eq. (12) subject to Eq. (14).

4. Factoring Shape and Motion

In this section, we describe our algorithm to solve the
constrained optimization problem posed at the end of
Section 3. Our algorithm consists of two steps:

Step 1: Project the covariance-weighted data
[α |β] = [U | V ]C onto a 2R-dimensional subspace

(i.e., a rank-2R matrix) [α̂ | β̂] using SVD-based
subspace projection. This step is guaranteed to
obtain the closest 2R-dimensional subspace because
of the global optimum property of SVD.

This first step, although performs bulk of the
projection of the noisy data from a high-dimensional
space (the smaller of F and 2P) to a much smaller
2R dimensional subspace (e.g., for an affine camera
2R ≤ 6), it does not guarantee the tighter rank R
constraint of Eq. (13). To enforce this constraint, we
perform a second step of the algorithm as described
below.

Step 2: Starting with the matrix [α̂ | β̂] obtained after
Step 1, if C were an invertible matrix, then we could
have recovered [Û | V̂ ] by: [Û | V̂ ] = [α̂ | β̂]C−1,
and then proceeded with applying standard SVD to[Û

V̂

]
to impose the rank-R constraint and recover M̂

and Ŝ. However, in general C is not invertible (e.g.,
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because of points with high aperture problem).
Imposing the rank-R constraint on Û = M̂U Ŝ and
V̂ = M̂V Ŝ must therefore be done in the [α̂ | β̂]
space (i.e., without inverting C). As it was shown
in Eq. (14):

[α̂ | β̂]F×2P=[M̂U Ŝ | M̂V Ŝ]C

=[M̂U | M̂V ]F×2R

[
Ŝ 0

0 Ŝ

]
2R×2P

C2P×2P .

Not every decomposition of [α̂ | β̂] contains a
shape matrix of the form

[Ŝ 0
0 Ŝ

]
. We try to find

a decomposition of this form that is the closest
approximation to the given [α̂ | β̂].

Because [α̂ | β̂]F×2P is a rank-2R matrix, it can
be written as a bilinear product of an F × 2R matrix
H and a 2R × 2P matrix G:

[α̂ | β̂]F×2P = HF×2RG2R×2P . (15)

This decomposition is not unique. For any invertible
2R × 2R matrix D, [α̂ | β̂] = (HD−1)(DG) is also
a valid decomposition. We seek a matrix D which
will bring DG into a form

DG =
[

S 0
0 S

]
C (16)

where S is an arbitrary R × P matrix. This is a linear
system of equations in the unknown components
of S and D. In general, this system does not have
an exact solution (if it did, we would have an exact
decomposition of [α̂ | β̂] into the correct form). We
therefore solve Eq. (16) in a least-squares sense to
obtain Ŝ and D̂. The final shape and motion matrices
are then obtained as: Ŝ and [M̂U | M̂V ] := HD̂−1

respectively. For more details on how Ŝ and D̂ are
recovered from DG, see Appendix A.

Our algorithm thus consists of two stpes. The first
step, which performs the bulk of the optimization task
(by taking the noisy high-dimensional data into the
Rank-2R subspace) is optimal. The second step is lin-
ear but suboptimal.2 The optimal Rank-R solution to
the original problem is not likely to lie within the Rank-
2R subspace computed in Step 1 of our algorithm. Al-
though our algorithm is suboptimal, our empirical re-
sults presented in Section 6 indicate that our two-step
algorithm accurately recovers the motion and shape,
while taking into account varying degrees of directional
uncertainty.

5. Frame-Dependent Directional Uncertainty

So far we have assumed that all frames share the same
2 × 2 inverse covariance matrix Q p for a point p, i.e.,
∀ f Q f p ≡ Q p and thus C f p ≡ C p. This assumption,
however, is very restrictive, as image motion induces
changes in these matrices. For example, a rotation in the
image plane induces a rotation on C f p (for all points p).
Similarly, a scaling in the image plane induces a scaling
in C f p, and so forth for skew in the image plane. (Note,
however, that a shift in the image plane does not change
C f p.)

The assumption ∀ f C f p ≡ C p was needed in order
to obtain the separable matrix form of Eq. (9), thus de-
riving the result that the rank of [α |β] is at most 2R.
Such a separation can not be achieved for inverse co-
variance matrices Q f p which change arbitrarily and in-
dependently. However, a similar result can be obtained
for the case when all the inverse covariance matrices
of all points change over time in a “similar way”.

Let {Q p | p = 1, . . . , P} be “reference” inverse co-
variance matrices of all the points (in Section 5.2 we
explain how these are chosen). Let {C p | p = 1, . . . , P}
be defined such that C pCT

p = Q p (C p is uniquely de-
fined by the eigenvalue decomposition, same as defined
in Section 3). In this section we show that if there ex-
ist 2 × 2 “deformation” matrices {A f | f = 1, . . . , F}
such that:

∀p, ∀ f : C f p = A f C p, (17)

then the approach presented in Sections 3 and 4 still
applies.

Such 2 × 2 matrices {A f } can account for global 2D
affine deformations in the image plane (rotation, scale,
and skew). Note that while C f p is different in every
frame f and at every point p, they are not arbitrary.
For a given point p, all its 2×2 matrices C f p across all
views share the same 2×2 reference matrix C p (which
captures the common underlying local image structure
and degeneracies in the vicinity of p), while for a given
frame (view) f , the matrices C f p of all points within
that view share the same 2×2 “affine” deformation A f

(which captures the common image distortion induced
on the local image structure by the common camera
motion). Of course, there are many scenarios in which
Eq. (17) will not suffice to model the changes in the
inverse covariance matrices. However, the formulation
in Eq. (17) does cover a wide range of scenarios, and
can be used as a first-order approximation to the actual
changes in the inverse-covariance matrices in the more



108 Anandan and Irani

general case. In Section 5.2 we discuss how we choose
the matrices {C p} and {A f }.

We next show that under the assumptions of
Eq. (17), the rank of [α | β] is still at most 2R. Let
[α f p β f p]1×2 = [u f p v f p]1×2C f p2×2

(this is the same
definition as in Section 3, only here we use C f p instead
of C p). Then:

[α f p β f p] = [u f p v f p]A f C p = [ũ f p ṽ f p]C p

(18)

where [ũ f p ṽ f p] = [u f p v f p]A f . Let Ũ be the matrix
of all ṽ f p and Ṽ be the matrix of all ṽ f p. Because C p

is shared by all views of the point p, then (just like in
Eq. (9)):

[α |β] = [Ũ | Ṽ ]C

where C is the same 2P × 2P matrix defined in
Section 3. Therefore the rank of [α |β] is at most the
rank of [Ũ | Ṽ ]. We still need to show that the rank
of [Ũ | Ṽ ] is at most 2R (at most 6). According to the
definition of ũ f p and ṽ f p:[

ũ f p

ṽ f p

]
2×1

= AT
f2×2

[
u f p

v f p

]
2×1

= AT
f2×2

[
mT

f

nT
f

]
2×R

spR×1 .

(19)

Let

A f =
[

a f 1 a f 2

a f 3 a f 4

]
2×2

,

then [
Ũ

Ṽ

]
2F×P

= A2F×2F

[
Mu

Mv

]
2F×R

SR×P

where:

A2F×2F =



a11 0 a13 0
. . .

. . .
0 aF1 0 aF3

a12 0 a14 0
. . .

. . .
0 aF2 0 aF4


(20)

This implies that the rank of
[

Ũ
Ṽ

]
is at most R, and

therefore the rank of [Ũ | Ṽ ] is at most 2R. Therefore,
the rank of [α |β] is at most 2R even in the case of
“affine-deformed” inverse covariance matrices.

5.1. The Generalized Factorization Algorithm

The factorization algorithm summarized in Section 4.1
can be easily generalized to handle the case of affine-
deformed directional uncertainty. Given matrices
{A f | f = 1, . . . , F} and {C p | p = 1, . . . , P}, such
that C f p = A f C p, then the algorithm is as follows:

Step 0: For each point p and each frame f compute:[
ũ f p

ṽ f p

]
2×1

= AT
f2×2

[
u f p

v f p

]
2×1

(21)

Steps 1 and 2: Use the same algorithm (Steps 1 and
2) as in Section 4.1 (with the matrices {C p | p =
1, . . . , P}), but apply it to the matrix [Ũ | Ṽ ] instead
of [U | V ]. These two steps yield the matrices Ŝ, M̃V ,
and M̃V , where

[
m̃T

f

ñT
f

]
2×R

= AT
f2×2

[
m̂T

f

n̂T
f

]
2×R

. (22)

Step 3: Recover M̂U and M̂V by solving for all
frames f :[

m̂T
f

n̂T
f

]
2×R

= (
AT

f

)−1
2×2

[
m̃T

f

ñT
f

]
2×R

. (23)

5.2. Choosing the Matrices Af and C p

Given a collection of inverse covariance matrices,
{Q f p | f = 1, . . . , F , p = 1, . . . , P}, Eq. (17) is not
guaranteed to hold. However, we will look for the op-
timal collection of matrices {A f | f = 1, . . . , F} and
{C p | p = 1, . . . , P} such that the error

∑
f,p ‖C f p −

A f C p‖ is minimized (where C f pCT
f p = Q f p). These

matrices {A f } and {C p} can then be used in the gener-
alized factorization algorithm of Section 5.1.

Let E be a 2F × 2P matrix which contains all the
individual 2 × 2 matrices {C f p | f = 1, . . . , F , p =
1, . . . , P}:

E =

C11 · · · C1P
... · · · ...

CF1 · · · CFP


2F×2P

. (24)

When all the C f p’s do satisfy Eq. (17), then the rank
of E is 2, and it can be factored into the following two
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rank-2 matrices:

E =

 A1
...

AF


2F×2

[C1 | · · · | CN ]2×2P . (25)

When the entries of E (the matrices {C f p}) do not
exactly satisfy Eq. (17), then we recover an optimal
set of { Â f } and {Ĉ p} (and hence Ĉ f p = Â f Ĉ p), by
applying SVD to the 2F × 2P matrix E , and setting
to zero all but the two highest singular values. Note
that {A f } and {Cp} are determined only up to a global
2 × 2 affine transformation.

The technique described above assumes that the in-
verse covariance matrix Q f p can be uniquely decom-
posed in the form C f pCT

f p. While this is true for points
when the uncertainty is elliptic (i.e., the matrix Q f p

has unequal eigenvalues), C f p is not unique when the
uncertainty is isotropic (i.e., the eigenvalues are equal).
This situation requires further exploration, but our cur-
rent solution is to simply not include the isotropic points
in E , and recover the frame-dependent affine transfor-
mations A f purely from the elliptic data. These can
then be used to recover the Cp for all data including the
isotropic points.

6. Experimental Results

This section describes our experimental evaluation of
the covariance weighted factorization algorithm de-
scribed in this paper. We have applied the algorithm
to synthetically generated data with ground truth, as
well as to real data.

Using the synthetically generated data we demon-
strate two key properties of this algorithm: (i) that its
factorization of multi-frame position data into shape
and motion is accurate regardless of the degree of
ellipticity in the uncertainty of the data—i.e., whether
the data consists of “corner-like” points, “line-like”
points (i.e., points that lie on linear image structures),
or both, and (ii) that in particular, the shape recovery
is completely unhampered even when the positional
uncertainty of a feature point along one direction is
very large (even infinite, such as in the case of pure
normal flow).3 We also contrast its performance
with two “bench-marks”—regular SVD (with no
uncertainty taken into account; see Section 2.1) and
scalar-weighted SVD, which allows a scalar (isotropic)
uncertainty (see Section 2.2). We obtain a quantitative
comparison of the different methods against ground
truth under varying conditions.

We have also applied the algorithm to real data, to
show that it can be used to recover dense 3D shape from
real image sequences.

6.1. Experiments with Synthetic Data

In our experiments, we randomly generated 3D points
and affine motion matrices to create ground-truth
positional data of multiple features in multiple frames.
We then added elliptic Gaussian noise to this data. We
varied the ellipticity of the noise to go gradually from
being fully circular to highly elliptic, up to the extreme
case when the uncertainty at each point is infinite in
one of the directions.

Specifically, we varied the shape of the uncer-
tainty ellipse by varying the ellipticity parameter rλ =√

λmax/λmin where λmax and λmin are the eigenvalues
of the inverse covariance matrix Q (see Section 3). In
the first set of experiments, the same value rλ was used
for all the points for a given run of the experiment. The
orientation of the ellipse for each point was chosen in-
dependently at random. In addition, we included a set
of trials in which λmin = 0 (rλ = ∞) for all the points.
This corresponds to the case when only “normal flow”
information is available (i.e., infinite uncertainty along
the tangential direction).

We ran 20 trials for each setting of the parameter rλ.
For each trial of our experiment, we randomly created
a cloud of 100 3D-points, with uniformly distributed
coordinates. This defined the ground-truth shape ma-
trix S. We randomly created 20 affine motion matrices,
which together define the ground-truth motion matrix
M . The affine motion matrices were used to project
each of the 100 points into the different views, to gen-
erate the noiseless feature positions.

For each trial run of the experiment, for each point
in our input dataset, we randomly generated image po-
sitional noise with directional uncertainty as specified
above. The noise in the direction of λmax (the least un-
certain direction) varied between 1% and 2% of the
standard deviation of feature positions, whereas the
noise in the direction of λmin (the most uncertain di-
rection), varied between 1% and 30% of the standard
deviation of feature positions. For each point p in frame
f , the generated noise vector ε f p was added to the true
position vector (u f p v f p)T to create the noisy input
matrices U and V .

The noisy input data was then fed to three algorithms:
the covariance-weighted factorization algorithm de-
scribed in this paper, the regular SVD algorithm, and
the scalar-weighted SVD algorithm, for which the
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Figure 4. Plots of error in motion and shape w.r.t. ground truth for all three algorithms (Covariance-weighted SVD, scalar-weighted SVD,
regular SVD). (a, b) Plots for the case when all points have the same elliptical uncertainty rλ, which is gradually increased (a = motion error,
b = shape error). (c, d) Plots for the case when half of the points have fixed circular uncertainty, and the other half have varying elliptical
uncertainty (c = motion error, d = shape error). The displayed shape error in this case is the computed error for the group of elliptic points (the
“bad” points).

scalar-weight at each point was chosen to be equal to√
λmax ∗ λmin (which is equivalent to taking the deter-

minant of the matrix C f p at each point). Each algori-
thm outputs a shape matrix Ŝ and a motion matrix M̂ .
These matrices were then compared against the ground-
truth matrices S and M :

eS = ‖S − ŜN ‖
‖S‖ eM = ‖M − M̂ N ‖

‖M‖
where ŜN and M̂ N are Ŝ and M̂ after transforming them
to be in the same coordinate system as S and M . These
errors were then averaged over the 20 trials for each
setting of the ellipticity parameter rλ.

Figure 4(a) and 4(b) display the errors in the recov-
ered motion and shape for all three algorithms as a

function of the degree of ellipticity in the uncertainty
rλ = √

λmax/λmin. In this particular case, the behavior
of regular SVD and scalar-weighted SVD is very simi-
lar, because all points within a single trial (for a partic-
ular finite rλ), have the same confidence (i.e., the same
scalar-weight rλ). Note how the error in the recovered
shape and motion increases rapidly for the regular SVD
and for the scalar-weighted SVD, while the covariance-
weighted SVD consistently retains very high accuracy
(i.e., very small error) in the recovered shape and mo-
tion. The error is kept low and uniform even when the
elliptical uncertainty is infinite (rλ = ∞; i.e., when
only normal-flow information is available). This point
is out of the displayed range of this graph, but is visually
displayed (for a similar experiment) in Fig. 5.
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Figure 5. Reconstructed shape of the cube by the Covariance-weighted SVD (top row) vs. the regular SVD (bottom row). For visibility sake,
only 3 sides of the cube are displayed. The quality of shape reconstruction of the covariance weighted factorization method does not degrade
with the increase in the degree of ellipticity, while in the case of regular SVD, it degrades rapidly.

In the second set of experiments, we divided the
input set of points into two equal subsets of points.
For one subset, we maintained a circular uncertainty
through all the runs (i.e., for those points rλ = 1),
while for the other subset we gradually varied the
shape of the ellipse in the same manner as in the
previous experiment above (i.e., for those points rλ

is varied from 1 to ∞). In this case, the quality of
the motion reconstruction for the scalar-weighted SVD
showed comparable results (although still inferior) to
the covariance-weighted SVD (see Fig. 4(c)), and sig-
nificantly better results than the regular SVD. The rea-
son for this behavior is that “good” points (with rλ = 1)
are weighted highly in the scalar-weighted SVD (as op-
posed to the regular SVD, where all points are weighted
equally). However, while the recovered shape of the
circularly symmetric (“good”) points is quite accurate
and degrades gracefully with noise, the error in shape
for the “bad” elliptical points (points with large rλ)
increases rapidly with the increase of rλ, both in the
scalar-weighted SVD and in the regular SVD. The er-
ror in shape for this group of points (i.e., half of the
total number of points) is shown in Fig. 4(d). Note

how, in contrast, the covariance-weighted SVD main-
tains high quality of reconstruction both in the motion
and in shape.

In order to visualize the results (i.e., visually
compare the shape reconstructed by the different
algorithms for different types of noise), we repeated
these experiments, but this time instead of applying
it to a random shape, we applied it to a well defined
shape—a cube. We used randomly generated affine
motion matrices to determine the positions of 726
cube points in 20 different views, then corrupted them
with random noise as before. Sample displays of the
reconstructed cube by covariance-weighted algorithm
vs. the regular SVD algorithm are shown in Fig. 5
for three interesting cases: case of circular Gaussian
noise rλ = 1 for all the points (first column of Fig. 5),
case of elliptic Gaussian noise with rλ = 20 (second
column of Fig. 5), and the case of pure “normal flow”,
when λmin = 0 (rλ = ∞) (third column of Fig. 5). (For
visibility sake, only 3 sides of the cube are displayed).
The covariance-weighted SVD (top row) consistently
maintains high accuracy of shape recovery, even in the
case of pure normal-flow. The shape reconstruction
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obtained by regular SVD (bottom row), on the other
hand, degrades severely with the increase in the
degree of elliptical uncertainty. Scalar-weighted SVD
reconstruction was not added here, because when all
the points are equally reliable, then scalar-weighted
SVD coincides with regular-SVD (see Fig. 4(b)), yet
it is not defined for the case of infinite uncertainty
(because then all the weights are equal to zero).

6.2. Experiments with Real Data

Methods that recover 3D shape and motion using SVD-
based factorization usually rely on careful selection of
feature points which can be reliably matched across all
images. This limits the 3D reconstruction to a small set
of points (usually corner points).

One of the benefits of the covariance-weighted fac-
torization presented in this paper is that it can handle
data with any level of ellipticity and directionality in
their uncertainty, ranging from reliable corner points

Figure 6. Dense shape recovery from a real sequence using covariance-weighted factorization. (a, b, c) Three out of seven images obtained by
a hand-held camera. The camera moved forward in the first few frames and then moved sideways in the remaining frames. (This is the “block”
sequence from Kumar et al. (1994)). (d, e, f ) The recovered shape relative to the ground plane (see text) displayed from three different viewing
angles.

to points on lines or curves, to points where only nor-
mal flow information is available. In other words, given
dense flow-fields and the directional uncertainty asso-
ciated with each pixel (those can be estimated from the
local intensity derivatives), a dense 3D shape can be re-
covered using the covariance-weighted factorization.

Such an example is shown in Fig. 6. A scene was
imaged by a hand-held camera. The camera moved for-
ward in the first few frames and then moved sideways in
the remaining frames (this is the “block” sequence from
Kumar et al. (1994)). Because the scene was imaged
from a short distance and with a relatively wide field-of-
view, the original sequence contained strong projective
effects. Therefore, the multi-frame correspondences
span a non-linear variety (Anandan and Avidan, 2000),
i.e., they do not reside in a low-dimensional linear sub-
space (as opposed to the case of an affine camera).
All factorization methods assume that the correspon-
dences reside in a linear subspace. Therefore, in order
to eliminate this non-linearity, the sequence was first
aligned with respect to the ground plane (the carpet).
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The plane alignment removes most of the projective
effects (which are captured by the plane homography),
and the residual planar-parallax displacements can be
well approximated by a linear subspace with very low
dimensionality (Irani, 2002; Oliensis and Genc, 2001).
For more details see Appendix B.

We used seven images of the “block sequence”
and aligned them with respect to the ground plane
(the carpet). We computed a dense parallax displace-
ment field between one of the frames (the “reference
frame”) and each of the other six frames using a multi-
scale (coarse-to-fine) Lucas & Kanade flow algorithm
(1981). This algorithm produces dense and noisy cor-
respondences. The algorithm also computes a 2 × 2
inverse-covariance matrix at each pixel based on the
local spatial image derivatives. We use these inverse-
covariance matrices along with the noisy estimated
dense correspondences as input to our covariance-
weighted factorization algorithm.4 The recovered 3D
structure is shown in Fig. 6.

Note that unlike most standard factorization meth-
ods, which obtain only a “point cloud reconstruction”
(i.e., the 3D structure of a sparse collection of highly
distinguishable image features), our approach can re-
cover a dense 3D shape. No careful prior feature extrac-
tion is necessary. All pixels are treated within a single
framework according to their local image structure, re-
gardless of whether they are corner points, points along
lines, etc.

7. Conclusion

In this paper we have introduced a new algorithm for
performing covariance-weighted factorization of mul-
tiframe correspondence data into shape and motion.
Unlike the regular SVD algorithms which minimize the
Frobenius norm error in the data, or the scalar-weighted
SVD which minimizes a scalar-weighted version of
that norm, our algorithm minimizes the covariance
weighted error (or the Mahalanobis distance). This is
the proper measure to minimize when the uncertainty
in feature position is directional. Our algorithm trans-
forms the raw input data into a covariance-weighted
data space, and applies SVD in this transformed data
space, where the Frobenius norm now minimizes a
meaningful objective function. This SVD step projects
the covariance-weighted data to a 2R-dimensional sub-
space. We complete the process with an additional sub-
optimal linear estimation step to recover the rank R
shape and motion estimates.

A fundamental advantage of our algorithm is that it
can handle input data with any level of ellipticity in
the directional uncertainty—i.e., from purely circular
uncertainty to highly elliptical uncertainty, even includ-
ing the case of points along lines where the uncertainty
along the line direction is infinite. It can also simulta-
neously use data which contains points with different
levels of directional uncertainty. We empirically show
that our algorithm recovers shape and motion accu-
rately, even when the more conventional SVD algo-
rithms perform poorly. However, our algorithm cannot
handle arbitrary changes in the uncertainty of a single
feature over multiple frames (views). It can only ac-
count for frame dependent 2D affine deformations in
the covariance matrices.

Appendix A: Recovering S and M

In this appendix we explain in detail how to obtain
the decomposition of DG into the matrix structure de-
scribed in Eq. (16), and thus solve for S and D.

Eq. (16) states that:

DG =
[

S 0
0 S

]
C

Let the four P × P quadrants of the 2P ×2P matrix C
be denoted by the four diagonal matrices C1, C2, C3,
C4:

C =
[

C1 C2

C3 C4

]
2P×2P

.

Similarly, let D = [D1 D2
D3 D4

]
2R×2R

and G = [G1 G2
G3 G4

]
2R×2P

.
Then we get the following four matrix equations:

D1G1 + D2G3 = SC1

D1G2 + D2G4 = SC2

D3G1 + D4G3 = SC3

D3G2 + D4G4 = SC4.

(26)

These equations are linear in the unknown matrices D1,
D2, D3, D4 and S. This set of equations can, in princi-
ple, be solved directly as a huge linear set of equations
with 4R2 + RP unknowns. But there are relatively few
global unknowns (the 4R2 elements of D) and a huge
number of independent local unknowns (the RP un-
known elements of the matrix S, which are the shape
components of the individual P image points. This may
accumulate to hundreds of thousands of unknowns).
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Instead of directly solving this huge system of lin-
ear equations, we can solve this system much more
efficiently by doing the following: Using the fact that
C1, C2, C3, C4 are diagonal (hence commute with each
other), we can eliminate S and obtain the following
three linearly independent matrix equations in the four
unknown R × R matrices D1, D2, D3, D4.

D1(G1C2 − G2C1) + D2(G3C2 − G4C1) = 0

D3(G1C4 − G2C3) + D4(G3C4 − G4C3) = 0 (27)

D1(G1C3) + D2(G3C3) − D3(G1C1) − D4(G3C1) = 0.

This homogeneous set of equations is highly overde-
termined (3RP equations in 4R2 unknowns, where
R � P). It can be linearly solved to obtain the unknown
Di ’s. Note that the choice of Di ’s is not unique. This
is because S is not unique, and can only be determined
up to an R × R affine transformation. To solve for
D, the R eigenvectors of the R smallest eigenvalues of
the normal equations associated with the homogeneous
system in Eq. (27) were used.

Now that D has been recovered, we proceed to es-
timate M̂ and Ŝ. Recovering the motion is straight-
forward: [M̂U | M̂V ] = HD−1 where H is defined in
Eq. (15). To recover the shape Ŝ, we can proceed in
two ways: We can either linearly solve Eq. (16), or else
linearly solve Eq. (14). Equation (14) goes back to the
cleaned up input measurement data with the appropri-
ate covariance-weighting, and is therefore preferable to
Eq. (16), which uses intermediate results. Note how-
ever, that since the columns of S are independent of
each other, the constraint from Eq. (14) can be used to
solve for the values of S on a point-by-point basis using
only local information, as shape is a local property. So
once again, we resort to a very small set of equations
for recovering each component of S.

Appendix B: Factorization of Planar
Parallax Displacements

In the real experiment of Fig. 6 in Section 6.2
we applied the covariance-weighted factorization to
the residual planar-parallax displacements after plane
alignment. To make the paper self contained, we briefly
rederive here the linear subspace approximation of
planar-parallax displacements. For more details on
the “Plane + Parallax” decomposition see Irani et al.
(1998), Irani and Anandan (1996), Irani et al. (1999),
Kumar et al. (1994), Sawhney (1994), Shashua and

Navab (1994), Irani et al. (1997), Criminisi et al. (1998)
and Triggs (2000). For more details on the linear sub-
space approximation of planar-parallax displacements
see Irani (2002) and Oliensis and Genc (2001).

Let � be an arbitrary planar surface in the scene,
which is visible in all frames. After plane alignment
the residual planar-parallax displacements between the
reference frame and any other plane-aligned frame f
( f = 1, . . . , F) are (see Kumar et al. (1994) and Irani
et al. (1999)):[

µ f p

ν f p

]
= − γp

1 + γpεZ f

(
εZ f

[
u p

vp

]
−

[
εU f

εV f

])
(28)

where (u p, vp) are the coordinates of a pixel in the ref-
erence frame, γp = Hp

Z p
represents its 3D structure, Hp

is the perpendicular distance (or “height”) of the point i
from the reference plane �, and Z p is its depth with re-
spect to the reference camera. (εU f , εV f , εZ f ) denotes
the camera translation up to a (unknown) projective
transformation (i.e., the scaled epipole in projective
coordinates). The above formulation is true both for
the calibrated case as well as for the uncalibrated case.
The residual image motion of Eq. (28) is due only to the
translational part of the camera motion, and to the de-
viations of the scene structure from the planar surface.
All effects of rotations and of changes in calibration
within the sequence are captured by the homography
(e.g., see Irani and Anandan, 1996; Irani et al., 1999;
Triggs, 2000). The elimination of the homography (via
image warping) reduces the problem from the general
uncalibrated unconstrained case to the simpler case of
pure translation with fixed (unknown) calibration.

Although the original sequence may contain large
rotations and strong projective effects, resulting in a
non-linear variety, this non-linearity is mostly captured
by the plane homography. The residual planar-parallax
displacements can be approximated well by a linear
subspace with very low dimensionality.

When the following relation holds:

γpεZ f � 1 (29)

then Eq. (28) reduces to:[
µ f p

ν f p

]
= −γp

(
εZ f

[
u p

vp

]
−

[
εU f

εV f

])
, (30)

which is bilinear in the motion and shape. The condition
in Eq. (29) (γpεZ f = Hp

Z p
εZ f � 1), which gave rise to
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the bilinear form of Eq. (30), is satisfied if at least one
of the following two conditions holds:

Either: (i) Hp � Z p, namely, the scene is shallow (i.e.,
the distance Hp of the scene point from the reference
plane � is much smaller than its distance Z p from
the camera. This condition is usually satisfied if the
plane lies within the scene, and the camera is not too
close to it),

Or: (ii) εZ f � Z p, namely, the forward translational
motion of the camera is small relative to its distance
from the scene, which is often the case within short
temporal segments of real video sequences.

We next show that the planar-parallax displacements
of Eq. (30) span a low-dimensional linear subspace (of
rank at most 3). Equation (30) can be rewritten as a
bilinear product:[

µ f p

ν f p

]
2×1

=
[

m f

n f

]
2×3

sp
3×1

where

sp = [γp −γpu p −γpvp]T

is a point-dependent column vector (p = 1, . . . , P),
and

m f = [
εU f εZ f 0

]
n f = [

εV f 0 εZ f

]
are frame-dependent row vectors ( f = 1, . . . , F).
Therefore, all planar parallax displacements of all
points across all (plane-aligned) frames can be ex-
pressed as a bilinear product of matrices:[

µ
ν

]
2F×P

=
[

MU

MV

]
2F×3

S3×P (31)

Equation (31) implies that rank
([µ

ν

])
≤ 3. Note that

this rank constraint was derived for point displacements
(as opposed to point positions).

A similar approach to factorization of translational
motion after cancelling the rotational component can be
found in Oliensis (1999) and Oliensis and Genc (2001).
A different approach to factorization of planar parallax
displacements can be found in Triggs (2000). The lat-
ter approach is a rank 1 factorization and makes no ap-
proximations to the parallax displacements. However,

it assumes prior computation of the projective depths
(scale factors) at each point.
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Notes

1. When directional uncertainty is used, the centroids {ū f } and
{v̄ f } defined in Section 2.1, are the covariance-weighted
means in frame f : ū f = (

∑
p Q f p)−1 ∑

p(Q f pu f p) and v̄ f =
(
∑

p Q f p)−1 ∑
p(Q f pv f p). Note that the centering the data in

this fashion adds a weak correlation between all the data points.
This is true for all factorization algorithms that employ this strat-
egy, including ours. However, we ignore this issue in this paper,
since our main focus is the extension of the standard SVD algo-
rithms to handle directional uncertainty.

2. This is analogous to the situation described by Tomasi and Kanade
(1992), where the orthogonality constraint on the motion matrix
is imposed in a suboptimal second step following the optimal
SVD-based subspace projection step.

3. The fact that we can recover structure and motion purely from
normal flow may be a bit counter intuitive. However, it is evi-
dent that the motion for any pair of frames implicitly provides an
epipolar line constraint, while the normal flow for a point pro-
vides another line constraint. The intersection of these two lines
uniquely defines the position of the point and its corresponding
shape. However, the epipolar line is unknown, and in two views
there are not enough constraints to uniquely recover the shape
and the motion from normal flow. When three or more views are
available and the camera centers are not colinear, there is an ad-
equate set of normal flow constraints to uniquely determine all
the (epipolar) lines (and the motion of the cameras) and the shape
of all points. This has been previously demonstrated for iterative
techniques in Hanna and Okamoto (1993), Stein and Shashua
(2000), and Irani et al. (1999). In particular, Stein and Shashua
(2000) also prove that under general conditions, for the case of
three frames the structure and motion can be uniquely recovered
from normal flow. The method proposed in our paper also com-
bines normal-flow constraints with implicit epipolar constraints
(captured by the motion matrix M) to provide dense structure
and motion, but in a non-iterative way using global SVD-based
minimization.

4. The covariance weighted factorization algorithm can be equally
applied to pixel displacements as to point positions, since both
reside in low-dimensional linear subspaces (see Appendix B).
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