Multi-Frame Optical Flow Estimation Using Subspace Constraints

Michal Irani
Dept. of Computer Science and Applied Math
The Weizmann Institute of Science
76100 Rehovot, Israel

Abstract

We show that the set of all flow-fields in a se-
quence of frames imaging a rigid scene resides in a low-
dimensional linear subspace. Based on this observa-
tion, we develop a method for simultaneous estimation
of optical-flow across multiple frames, which uses these
subspace constraints. The multi-frame subspace con-
straints are strong constraints, and replace commonly
used heuristic constraints, such as spatial or temporal
smoothness. The subspace constraints are geometri-
cally meaningful, and are not violated at depth discon-
tinuities, or when the camera-motion changes abruptly.
Furthermore, we show that the subspace constraints on
flow-fields apply for a variety of imaging models, scene
models, and motion models. Hence, the presented ap-
proach for constrained multi-frame flow estimation is
general. However, our approach does not require prior
knowledge of the underlying world or camera model.

Although linear subspace constraints have been used
successfully in the past for recovering 3D information
(e.g., [18]), it has been assumed that 2D correspon-
dences are given. However, correspondence estimation
is a fundamental problem in motion analysis. In this
paper, we use multi-frame subspace constraints to con-
strain the 2D correspondence estimation process itself,
and not for 3D recovery.

1 Introduction

This paper presents an approach for simultaneous
estimation of optical-flow across multiple frames. Op-
tical flow (or “correspondence”) estimation is usually
applied to local image patches. Small regions, how-
ever, carry very little information (this is known as the
“aperture problem”), and the optical flow estimates
obtained are hence noisy and/or partial. To overcome
this problem, spatial smoothness constraints are em-
ployed (e.g., [10, 1, 15]). However, these smoothness
constraints are heuristic, and are violated especially at
depth discontinuities. For a review and comparison of
several of these optical flow techniques see [2]. Tempo-
ral smoothness constraints have also been introduced
[5]. These, however, are violated when the camera mo-
tion changes abruptly.

Other methods overcome the aperture problem by
applying global model constraints [7, 8, 3, 11, 17, 6, 4].
This allows the use of large analysis windows (often
the entire image), which do not suffer from lack of lo-
cal information. These techniques, however, assume an
a-priori restricted model of the world or of the camera
motion. For example, [11, 6, 4] assume a planar (or
very distant) world. [7, 8, 17] assume a 3D world with
dense 3D parallax, and will fail when applied to distant
or planar worlds (which form a singular case for these
algorithms). [3] reviews a hierarchy of such global mo-
tion models. While these methods perform well when
the restricted model assumptions are applicable, they
fail when these are violated.

Also, most methods for correspondence/flow estima-
tion have been restricted to pairs of frames (or three
frames [17]). With the rare exception of [8], most
methods that use information from multiple frames
rely on temporal smoothness. The resulting estimates
are hence noisy and are “over-smoothed”. In con-
trast, [8] exploits geometric consistency across multiple
frames, but relies on prior knowledge that the under-
lying model is a 3D world with dense 3D parallax.

In this paper we develop an approach for simul-
taneously estimating correspondences across multiple
frames by using information from all the frames, with-
out assuming prior model selection. Our approach is
based on the observation that the set of all flow-fields
across multiple frames (that image the same scene)
reside in a low-dimensional linear subspace. This is
true despite the fact that different frames in the im-
age sequence are obtained with different camera mo-
tions. The subspace constraints provide the addi-
tional constraints needed to resolve the ambiguity in
image regions that suffer from the aperture problem.
This is done without resorting to spatial or temporal
smoothness. As opposed to smoothness constraints,
the subspace constraints are geometrically meaningful,
and are not violated at depth discontinuities or when
camera-motion changes abruptly.

Linear subspace constraints have been used success-
fully in the past for recovering 3D information from
known 2D correspondences (e.g., [18, 9]). In contrast,



we use multi-frame linear subspace constraints to con-
strain the 2D correspondence estimation process itself,
without recovering any 3D information. Furthermore,
we show that for a variety of world models (e.g., planar
world vs. general 3D world) and a variety of camera
models (e.g, orthographic vs. perspective cameras un-
dergoing instantaneous motion) give rise to subspaces
of very similar low dimensionalities. Because we em-
ploy subspace constraints based on the subspace di-
mensionality alone, these constraints can be used with-
out prior knowledge of the underlying world or camera
model.

In Sect. 2 we show that the set of all flow-fields
across multiple frames (that image the same rigid
scene) reside in a low-dimensional linear subspace.
This is shown for a variety of motion models, scene
models, and imaging models. In Sect. 3 we extend the
multi-frame subspace constraints to apply directly to
image brightness quantities. These are then incorpo-
rated in Sect. 4 into a simultaneous multi-point multi-
frame flow algorithm, which takes advantage of the
low-dimensionality subspace constraints within the es-
timation process itself. We conclude with some exper-
imental results showing the benefits of the multi-frame
constrained estimation.

2 Subspace Constraints on Flow-Fields

Let Iy,...,Ir denote a sequence of F frames taken
by a moving camera with arbitrary 3D motions. All
frames are of the same size, and contain A pixels. Let
I denote the reference frame in the sequence, i.e., the
frame with respect to which all flow-fields will be es-
timated (e.g., the middle frame of the sequence). Let
(usj,vi;) denote the displacement of pixel (z;,y;) from
the reference frame I to frame I; (i = 1.v, j = 1..7).
Let U and V denote two # x & matrices constructed
from the displacements of all the image points across
all frames:

UL, UL, ooy UNL V11,0215 05 UN'L

UL, UR2, ey UN2 V12,022, -0y VN2
U= V=

ULF, URF s ooy UN'F VIF, V2F ... o F

(1)

Each row in these matrices corresponds to a single

frame, and each column corresponds to a single point.

2.1 Ranks for Various World, Motion, and
Camera Models

We next show that although the matrices U and

V are large, their ranks are very small. In particu-

lar, we identify the ranks of the following two matri-
U

ces: |——

[ v :|2.”F></\/’

and [U|V],. ., (e, U and V are stacked horizon-

tally). We show that these matrices have low ranks

(i.e., U and V are stacked vertically),

under many different conditions. In the following sec-
tions we explain how to use these low-rank constraints
in order to constrain the estimated flow. At no point
will we need to recover any 3D quantities or camera
motion. The 3D analysis in this section is used only
for deriving the upper bounds on the ranks of these ma-
trices.

It can be shown that the collection of all points
across all views lie in a low-dimensional variety [19)].
Under full perspective projection and discrete views,
this variety is non-linear. However, there are two cases
in which this variety is linear: (i) when an “affine” cam-
era [16] is used (i.e., weak-perspective, or orthographic
projection). This model is valid when the field of view
is very small, and the depth fluctuations in the scene
are small relative to the overall depth. (ii) when an
instantaneous motion model is used (e.g., [13]). This
model is valid when the camera rotation is small and
the forward translation is small relative to the depth.
The instantaneous model is a good approximation of
the motion over short video segments, as the camera
does not gain large motions in short periods of time. In
some cases, such as airborne video, this approximation
is good also for very long sequences. The instantaneous
model is most relevant for this paper, as we are using
short video segments for the flow analysis. Choosing
the reference frame as the middle frame extends the
applicability of the model to twice as many frames.

We have derived the linear subspace (rank) con-
straints for these two cases, both for a general 3D scene
as well as for a planar scene. Due to lack of space, we
detail the rank derivation only for one case, and pro-
vide only the final derived ranks for the other cases.
The omitted derivations can be found in [12].

A 3D scene point (X;,Y;,Z;) is observed at
pixel (z;,y;) in the reference frame I. Let t; =
(txj,tyj,tz;) denote the camera translation between

frame I and frame I;, and let Q; = (Qx,,;,Qz;)
denote the camera rotation between the two frames.

I. Instantaneous motion, general 3D scene:

Under the instantaneous motion assumptions, the 2D
displacement of a pixel (z;,y;) from I to I is:

wij 1 4 fth—thwi%
ol | =7 P
1J Tty tZJyzf.
Qx Qy,-] f
[ *T_jmiyi‘}'Qij‘FT_jmiQ*Qiji‘i‘mi(l*f_j) ]
L
£

- ;jjyiz*QXjf+%miyi+Qiji+yi(1* )
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where f, f; are the focal lengths of frames I, %,

respectively. Eq. (2) is a straightforward rederivation

of the instantaneous motion model of [13] for the case
of changing focal length.



(I.a) Varying focal length (3D scene):
u;; and v;; can be rewritten as a bilinear product:

Ujj o (MU) 2
[ v,']j- LXl = [ (Mv);- LXOPZ ox1» Where,
Po=(1 = v o % % of vy} (wy))7,

is a point-dependent component (i = 1..n), and

_ f f Qy Qx
(My); = (_fQYj (= 57) —Qz; fix; — 371z, 0 = 0 — —+
Qx - Qv .
— f f X 4 Y .
(MV)]-— (7fQXj QZ]' (17E) fty]-O 7f_]-th 0 — f]'j TJ)

are frame-dependent components (j = 1..7), i.e., de-
pends only on the camera motion and the focal
length of that frame. Therefore, all flow vectors of all
points across all frames can be expressed as a bilinear
product of matrices:

My }

[%] (fo:/\/[ My )

where the i-th column of P is the vector P;, and the
j—th row of My and My are the vectors (My); and

(My);, respectively. Therefore, rank([%]) < 9.

Similarly, we can analyze the rank of [UJV] :
(uij vij)ixz = Mj | o [(Px),- (Py)i] where,

Qyx -
Mj:( XJ

P

(9XN)

(2F x9)

IxX2
Qy ;
£

7; fQx; fQy; Qz; ftx; fty;
is a frame-dependent component, and
(Px); = (—ziyi 2 0 1 0 -zt x)"
(Py)i:(—y? z;ys —1 0 z; 0 ZL, —;—’; y,-)T
are point-dependent components. This leads to:

[Uv] (Fxz2n) = M (#x9) [Px[Pv] (9%2N) (4)
where the i-th column of Px and Py are (Px); and
(Py ), respectively, and the j—th row of M is M.

|
—Yi zZ;

To summarize, when both the focal length and the
camera motion change across the sequence, then:

rank([UV]) <9 and rank( [%}) <09.

(I.b) Constant focal length (3D scene):

When the camera motion changes but the focal
length remains constant across the sequence (but not
assumed to be known), Vj f; = f, then the ranks of
these matrices are lower [12]:

rank([UV]) < 6 and rank( [%]) <8.

II. Instantaneous motion, planar scene:

When the scene is planar, then in the perspective case
[3]: ZL =a+ 0 x;+7-y;. Substituting this expression
into Eq. (2) and regrouping the terms leads to simpler
bilinear forms with the following rank constraints [12]:

(I.a) Constant focal length (planar scene):
rank( [L]) < 6 and rank([U[V]) <6

\Y%

f f
f_].th (1 — f_)

J

)

)

(I1.b) Varying focal length (planar scene):
rank( [%]) < 6 and rank([UjV]) < 8.

ITI. Affine camera — 3D scene:

[18, 16] showed that in the case of an affine camera,
the corresponding image points across all image frames
lie in a 4-dimensional linear subspace (and with some
additional manipulation, it can be reduced to 3). The
derivation of subspace constraints for optical flow is
very similar, leading to the following rank constraints:

rank([%] ) <4 and rank([UV]) < 8.

IV. Affine camera, planar scene:

rank([%] ) <3 and rank([UV]) < 6.

Remarks: We showed that when the camera motion
changes across the sequence (and possibly also the focal
length), then the ranks of these matrices for a wide va-
riety of models are all within a small range (< 9), and
are significantly lower than the actual size of these ma-
trices (Fx 27 and 2F x 7). We will use these rank con-
straints alone to constrain the flow estimation. No 3D
information will be recovered in this process. Further-
more, the actual rank of these matrices may be even
lower than the derived theoretical upper bounds, e.g.,
in cases when the camera motion is degenerate (e.g.,
uniform) across the sequence. As will be explained in
Sect. 4.3, our algorithm automatically detects the ac-
tual underlying ranks, directly from image brightness
quantities, prior to computing the flow. This implies
that the rank constraint can be applied to a sequence
of frames without the need to a-priori determine the
underlying model, or its degeneracies.

3 Subspace Constraints on

Brightness

The straightforward way to take advantage of the
subspace constraints is to first compute inter-frame
flow fields using an existing two-frame flow estimation
technique, and then project the collection of all these
flow fields into the appropriate lower dimensional sub-
space. However, there are two problems with this two-
stage approach: (i) all flow-vectors are treated equally,
without regard to their reliability, and (i) the flow-
fields resulting from the unconstrained two-frame flow
estimation (first step) may contain flow-vectors which
are so erroneous, that the subspace projection will not
suffice to correct them. Moreover, if a significant num-
ber of flow vectors is severely corrupted, these may
severely damage all other flow-vectors.

To avoid these two problems, we propose a one-stage
approach for applying the low-dimensionality subspace
constraints directly to measurable image quantities

Image



even during the flow estimation process itself. This
approach implicitly leads to confidence-weighted sub-
space projection of the data, in accordance with the
amount of local image structure at each pixel. In
particular, we derive two different brightness subspace
constraints: (i) a multi-point multi-frame point-based
constraint, which is based on the brightness constancy
equation (Sect. 3.1), and (ii) a multi-point multi-frame
region-based constraint, which is based on the Lucas &
Kanade formulation (Sect. 3.2). The benefits of using
these constraints is explained in Sect. 4.

3.1 The Generalized Brightness
stancy Constraint

Con-

Let (x;,y;) be a pixel in the reference frame I, whose
corresponding pixel in another frame I is (z;+ui;, yi +
v35). The Brightness Constancy Equation, which is de-
fined on a single pixel between two frames, states that:
Ii(zi,y:) = I(x;—uij, yi—vij). For very small (w;j,vsj),
this equation can be linearized as: w;j - I, +vs; - Iy, +
I;; = 0, where I, I,, are the spatial derivatives of
the reference frame I at pixel (z;,¥;), and Iy;; is the
temporal derivative: I;;; = (I;(xs,ys) — I(x4s,s))-

However, in practice, (ui;,vi;) may not be small,
especially when dealing with multiple frames. To in-
crease its range of applicability to larger (u;j,v;i;), the
linearization can be applied within an iterative (coarse-
to-fine) refinement process [3]. Let (ul;,v);) be the
current estimate of (u;;,v;;) during an iterative estima-
tion process. Let Au;; = u;; —u?j and Av;; = v;; —v?j.
The Brightness Constancy Equation can be rewritten
as: Ij(z; + udy,yi + v) = I(x; — Auij,yi — Avgy).
Assuming small (Aw;j, Av;j), this equation can be
linearized as:
Aui]-lzl. + A’Uijlyi + (Ij (CCZ'-F’U,?]-, yH-’U?j)—I(.Ti, yl)) =0
Because the subspace constraints are defined on the
displacements (u;;,v;;) and not on the increments (see
Sect. 2), we substitute the expression for (Au,;, Av;;),
leading to the following form of the brightness
constancy equation, which we will use:

wij - Loy +vig -y, = =1, (5)

i

where,

Itoij = (Ij (wi+u?j) yi_H)?j)_I(xi) yi)_u?jIwi _v?jIyz )
Eq. (5) provides a single line constraint on the two un-
knowns u;;,v;;, and hence does not suffice for uniquely
determining the unknown displacement of a single pixel
between two frames.

Let Iy,...,Ir be a sequence of frames, as defined
in Sect. 2. The collection of all Brightness Constancy
Constraints (Eq. (5)) of all image points across all im-
age frames can be compactly written in a single matriz

form as:

Fx
[U|V](F><2N).|:FY:|
(2N X N)

where Fx and Fy are &~ X & diagonal matrices with
the spatial z- and y- derivatives of the reference frame
I in their diagonal:

=Fr (FXN) (6)

L, 0 . 0 Iy, 0 . 0

0 L, .. O 0 Iy .. 0O
Fx = : Fy = )

0o 0 L, 0o 0 I,y

and F is an 7 X & matrix of the temporal derivatives
(of all image points across all frames) estimated at the
current stage of the iterative process, namely:

_10 _70 _0
t11 t 21 t N1
_ 70 _ 70 _ 10
t12 t 22 t N2
Fr =
0 0 0
s Iy “inr

The matrices Fx, Fy, and Fr, contain only mea-
surable image quantities. The matrices U and V con-
tain all the unknown displacements. Note that all low-
vectors corresponding to a single scene point share the
same spatial derivatives I,,, I, (as these are computed
in the reference frame I, and are independent of the
other frame j). However, their temporal derivatives
I;;; do vary from frame to frame (and in every itera-
tion). We refer to the multi-point multi-frame Eq. (6)
as the the Generalized Brightness Constancy Equation.

Note that when no additional information on [UV]
is used, then Eq. (6) is no more than the collection
of all the individual two-frame brightness constancy
equations of Eq. (5). However, this matrix formulation
allows us to apply rank constraints directly to measur-
able image quantities. For example, rank([UV]) < r
implies that rank(Fr) < r. We can therefore apply the
rank constraint directly to the data matrix Fr prior
to solving for the displacements U and V. This for-
mulation, as well as the one which is next described
in Sect. 3.2, form the basis for our direct multi-point
multi-frame algorithm, which is described in Sect. 4.
3.2 The Generalized Lucas & Kanade

Constraint

Lucas and Kanade [14] extended the pixel-based
brightness constancy constraints of Eq. (5) to a local
region-based constraint, by assuming a uniform dis-
placement in very small windows (typically 3 x 3 or
5 x 5). Then, for each pixel (z;,y;), they solve for its
displacement vector (u;;, v;;) by minimizing the follow-
ing local error measure E(u;;,v;;) within its neighbor-
hood (window) W;:

E(uij,vig) = Y (wij - Loy +vij - Iy +17,)°
keW;



(The Lucas and Kanade equation was slightly modified
to fit our iterative notation). Differentiating the error
E(u;;,v;;) with respect to u;; and v;;, and setting these
derivatives to zero, yields a set of two linear equations
in the two unknown displacement components (u;;, v;;)
for each pixel:

Ao I U

2x2

a;, bs, ¢i, gij, hij are measurable image quantities:

a; = Zk(lzk)Q’ b; = Ek(ITk ’ ka)v Ci = Ek(lyk)Qa

gij = _Ek(‘[wk 'Iotkj)v hij = _Ek(ka 'Iotkj)'

a;, b;, c; are computed in the reference image I, and are
independent of j. g;;, h;; depend on both.

Eq. (7) provides two equations on the two unknowns
U4, Vij, as opposed to Eq. (5), which provides only one.
This is because of the uniform-displacement assump-
tion within the local windows. While this assumption
imposes a type of local smoothness constraint, it only
affects the accuracy of the flow estimation within the
small window, but does not propagate these errors to
other image regions (as opposed to global smoothness
(e.g., [10])). The vector (ui;,v;;) therefore has a unique

[uij vij]1><2 ’ [

a; b;

b; c;
gular (e.g., for corners and textured areas). For image
regions, where the local information is insufficient (e.g.,
edges), the matrix will be singular. In these regions the
flow vector (ui;,v;;) cannot be uniquely determined
even by the Lucas & Kanade algorithm. Under Gaus-

solution when the coefficient matrix [ ] is not sin-

sian noise assumptions, the matrix [ P i’ ] in Eq. (7)

can be shown to be the posterior inverse covariance
matriz of the estimated flow vector (u.j;, vij).

Now, considering multiple-points over multiple-
frames. As in the case of the Generalized Brightness
Constancy Equation (6), all the flow-vectors (u;;, vij;)
from a reference pixel (z;,y;) in I to all other frames
I; (j = 1..F) share the same coefficient (inverse co-

a; b;

o ] in their two-frame Lucas &

Kanade constraints (Eq. (7)). Hence, all the Lucas &
Kanade constraints on all points (i = 1..n) across all
frames (j = 1..F) can be compactly written in a single
matrix form as:

[U|v](fx2/\r)-[%'%] :[G|H](fx2/\/)

(2N xX2N)

(8)
where U and V are as defined in Eq. (1). The three
N X N diagonal matrices A, B, C are constructed from
the coefficient values a;, b;, ¢;, respectively:

variance) matric [

ay 0 0 by 0 0
0 as 0 0 bo

(=}

0 0 e an 0 0 e bar

c1 0 0

0 Cc2 0
C =

0 0 e CN

The two Fx & matrices G and H are constructed from
the values g;;, hj:

g11 g21 .. gN1 h11 ho1 ... han1

912 g22 ... gN2 hiz  h22 ...  hn2
G = . H = .

91F  g2F - INF hiz  her ... hnxrF

We refer to the multi-point multi-frame Eq. (8) as the
the Generalized Lucas € Kanade Equation.

When no additional information on [UJV] is used,
then Eq. (8) is no more than the collection of all the
individual two-frame equations of Eq. (7). However,
as before, if we know that rank([UV]) < r, it entails
that rank([G|H]) < r. Since [G]|H] is a matrix
constructed from known measurable image quantities,
applying the rank constraint to it prior to solving for
[U]| V] will constrain the flow estimation process itself.
The interpretation of this operation is explained below.

Confidence Weighted Subspace Projection:

Note that applying the rank constraint to [G|H]
is in fact equivalent to applying the rank constraint
directly to the flow-vector matrix [U|V], but after
first weighting the individual flow vectors (uij;,vi;)
with their corresponding individual inverse covariance

matrices [ IS i’ ] This means that more reliable

flow-vectors will have more influence in the subspace
projection process, while less reliable vectors will have
smaller influence. Applying the rank constraint to
[G |H] therefore has the effect of confidence-weighted
subspace projection of all the flow-vectors prior to
computing them. This is used to constrain the flow
estimation process itself in Sect. 4.

4 Multi-Frame Multi-Point Algorithm
Let r; and r2 denote the ranks of [U[V] and [%} ,

respectively. We utilize the “brightness subspace con-
straints” of Eqs. (6) and (8) in two ways:

4.1 Noise Reduction in Image Measurements:

The measurement matrices Fr and [GH] are projected
onto lower-rank matrices Fr and [GH] of rank 1. We
know that r; < 9 (see Sect. 2.1), but in practice, the
actual rank of these matrices may be even lower than
the theoretical upper bound of 9. The actual rank
can be automatically detected from these measurement
matrices, as explained in Sect. 4.3.

The rank-reduction process inhibits noisy measure-
ments in the measurement matrices. It can be directly



Figure 1: Real image sequence (the NASA coke-can sequence).

(a) One frame from a 27-frame sequence of a forward moving camera

in a 3D scene. (b) Flow field generated with the two-frame Lucas & Kanade algorithm. Note the errors in the right hand side, where

there is depth discontinuity (pole in front of sweater), as well as the aperture problem. (c) The flow field for the corresponding frame

generated by the multi-frame constrained algorithm. Note the good recovery of flow in those regions. (d,e) The flow magnitudes at

every pixel. This display provides a higher resolution display of the error. Note the clear depth discontinuities in the multi-frame flow

image. The flow values on the coke can are very small, because the camera FOE is in that area.

applied to [GH]. Alternatively, since temporal deriva-
tives Iy;; are typically the most noisy image measure-
ments (because of misalignment errors and subpixel
interpolation), the rank reduction can be first applied
to Fr. This step gives more accurate temporal deriva-
tives. These noise-reduced temporal derivatives can
then be used to compute [GH] using Eq. (7). [GH] is
then further projected onto a lower-rank matrix [GF].
This corresponds to applying confidence-weighted sub-
space projection on the flow vectors prior to computing
them (see Sect. 3.2).

Now that local noisy measurements have been inhib-
ited via the global subspace constraints, we proceed to
computing an initial estimate [Uo | Vo] for all flow vec-

tors by solving: [ Uo|Vo | =[ G|H ][ 11; 2 ]+

(where M™ denotes the pseudo-inverse of a matrix
M). Note that because of the diagonal structure of

N
A, B, C, the matrix [ g 2 ] consists of the indi-

b 1 .
vidual pseudo-inverse matrices [ I i’f ] This step

therefore yields accurate flow for pixels with enough
local image structure (i.e., pixels whose inverse covari-
ance matrix is non-singular). For other pixels, it ac-
curately estimates only the component of the flow in
the direction of the gradient, which is the normal flow

(because pseudo-inverse estimation yields the solution
with smallest norm). This is addressed next.
4.2 Eliminating the Aperture Problem

We use the rank constraint on [L} to determine the

v
missing components of flow vectors at pixels with in-

sufficient local image structure. rank( [%]) =ry im-

plies that there is a decomposition:
U Ky ]
—_— =K oy L - = |: -L (9)
A\ FxA) (2F xr3) (ro XN) Kv

where Ky and K, are the upper and lower halves
of the matrix K. The columns of K form a basis

which spans the subspace of all columns of [%] . The

columns of L are the coefficients in the linear combi-
nation. This decomposition is of course not unique.
However, if there are more than 7o pixels whose corre-
spondences across all frames can be reliably computed,
then these flow vectors could be used to generate a ba-

sis K. The [ Yo } computed in the previous step, give

Vo
accurate flow vectors for pixels whose local inverse co-
variance matrix [ ‘; g ] is well conditioned. These
i ci

flow vectors are used to generate a basis K. Once
a basis has been computed, the number of unknowns
shrink from the original number of 277 unknown un-
constrained displacements to A2 unknowns, which are
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Figure 2: Synthetic sequence with ground truth — a quantitative comparison. (a) One out of a 10-frame sequence. The sequence
was synthetically generated by applying a set of 3-D consistent homographies to warp a single image. This provides ground truth on
the flow. (b,c) Error maps showing magnitudes of errors between the ground truth flow and the computed flow field. (b) shows
errors for the two-frame Lucas & Kanade algorithm. (c) shows errors for the multi-frame constrained algorithm for the corresponding
frame. Brighter values correspond to larger errors. (d) A histogram of the errors in both flow fields. Flow values at image boarders
were ignored. In the multi-frame method almost all errors are smaller than 0.2 pixel, and all are smaller than 0.5 pixel. In the
two-frame method, most flow vectors have an error of at least 0.5 pixel. (e) The image regions for which the errors in the two-frame

method exceeded 1.0 pixel. These, as expected, correspond to areas which suffer from the aperture problem. The subspace constrained

algorithm accurately recovered the flow even in those regions.

the unknown components of L. Note that both U and
V share the same coefficients L. Hence, for flow vec-
tors with only one known flow-component (e.g., the
normal-flow), the other component can be uniquely de-
termined via this decomposition (which is not true in
the equivalent decomposition of [U[V]). Plugging the
decomposition of Eq. (9) into Eq. (6) leads to a set of
FN linear equations in the ATy unknowns:

KoL | KvL] - [ Ei ] =Fr. (10)

This set of equations is overconstrained if the number
of frames 7 is larger than ro (where 7y is the lowest of
the actual rank and the theoretical upper bound).

Similarly, plugging the decomposition of Eq. (9) into
Eq. (8) leads to an alternative set of linear equations,
with twice as many equations (27N equations) in the
same N7y unknowns:

roL kvl [gle] =l em].  ay

This set of equations is thus overconstrained if the
number of frames F is larger than 1r,. Each of
the two abovementioned options has its advantages:
Eq. (11) is numerically more stable (because of the lo-
cal confidence-weighted averaging over the small (3 x 3

or 5x 5) windows from the Lucas & Kanade algorithm,

and because there are twice as many equations), but
this benefit comes with the price of lower spatial reso-
lution in the flow recovery. On the other hand, Eq. (10)
provides half as many equations, but allows for higher
spatial resolution of flow recovery, as it does not use
the small window averaging. In the current implemen-
tation of our algorithm we used Eq. (11). We now
summarize the algorithm.

4.3 The multi-point multi-frame algorithm:

1. Construct a Gaussian pyramid for all image frames.

2. For each iteration in each pyramid level do:
(a) Compute matrices A, B, C, G, H.
(b) Project [G | H] onto lower-rank (r1) matrix [&

(c) Compute an initial flow estimate [Uo | Vo:
+
[ valve ] = [ 61 ] [412]
(d) Compute an ry-dimensional basis K from the

columns of [ "jg ]

(e) Linearly solve for the unknown matrix L using
either Eq. (10) (Generalized Brightness Constancy)
r (11) (Generalized LucaséKanade). This step re-
covers the missing components of normal-flow vectors
and produces more accurate flow estimates U and V.



3. Keep iterating to refine U and V.

Step (b) reduces noise in the measurements, while
steps (d) and (e) eliminate the aperture problem.
When the algorithm is applied to two frames, and steps
(b),(d),(e) are skipped, it reduces to an iterative coarse-
to-fine version of the LucaséKanade algorithm [3].
Step (a) can be preceded by projecting the matrix Fp

onto a lower-rank matrix FT, as discussed in Sect. 4.1.
This step is not yet incorporated in our current imple-
mentation (hence omitted from the algorithm), but is
expected to further reduce the noise in the measure-
ment matrix [G | H] prior to its own rank-reduction.
Automatic Rank Detection:

Step (b) projects matrices onto lower-rank matrices,
as defined in Sect. 2.1. In practice, the actual rank
of these matrices, with some allowed noise tolerance,
may be even lower than the theoretical upper bound r;
(e.g., in cases of degenerate camera motions or scene
structures). We automatically detect the actual rank of
these matrices: Let M be a k x [ matrix, with a known
upper bound r on its rank, and an actual rank 7/
(rpg < ). The rank reduction (i.e., subspace projec-
tion) of M is done by applying Singular Value Decom-
position to M. We check for the existence of a lower
rank r' < r such that (3272, A7)/ (30im, Af) < e,
where m is the number of eigenvalues: m = min(k, 1),
and e allows for some noise tolerance (we use € = 1%).
ry s set to be min(r,r'). All singular values other
than the rjs largest ones are then set to zero, and the
matrices produced in the SVD step are re-composed,

yielding a matrix M of rank (which is closest to M
in the Frobenius norm). Step (d) uses the same SVD
procedure to estimate a spanning basis K.

Results:

Figs. 1 and 2 show comparisons of the multi-frame con-
strained algorithm with an iterative coarse-to-fine ver-
sion of the two-frame Lucas & Kanade algorithm. The
latter is computed by using our multi-frame algorithm
(see Sect. 4.3), but without applying the subspace pro-
jection steps (b),(d),(e). This allows us to isolate the
effects of subspace projection on the accuracy of the
flow estimation. The comparison is done both for real
data, as well as for synthetic data with ground truth.
For further details regarding the experiments and the
results, see figure captions.
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