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Abstract

We show that the set of all �ow��elds in a se�
quence of frames imaging a rigid scene resides in a low�
dimensional linear subspace� Based on this observa�
tion� we develop a method for simultaneous estimation
of optical��ow across multiple frames� which uses these
subspace constraints� The multi�frame subspace con�
straints are strong constraints� and replace commonly
used heuristic constraints� such as spatial or temporal
smoothness� The subspace constraints are geometri�
cally meaningful� and are not violated at depth discon�
tinuities� or when the camera�motion changes abruptly�
Furthermore� we show that the subspace constraints on
�ow��elds apply for a variety of imaging models� scene
models� and motion models� Hence� the presented ap�
proach for constrained multi�frame �ow estimation is
general� However� our approach does not require prior
knowledge of the underlying world or camera model�

Although linear subspace constraints have been used
successfully in the past for recovering �D information
�e�g�� ��	
�� it has been assumed that �D correspon�
dences are given� However� correspondence estimation
is a fundamental problem in motion analysis� In this
paper� we use multi�frame subspace constraints to con�
strain the �D correspondence estimation process itself�
and not for �D recovery�

� Introduction

This paper presents an approach for simultaneous
estimation of optical��ow across multiple frames� Op�
tical �ow �or correspondence�� estimation is usually
applied to local image patches� Small regions� how�
ever� carry very little information �this is known as the
aperture problem��� and the optical �ow estimates
obtained are hence noisy and�or partial� To overcome
this problem� spatial smoothness constraints are em�
ployed �e�g�� ���� �� ��
�� However� these smoothness
constraints are heuristic� and are violated especially at
depth discontinuities� For a review and comparison of
several of these optical �ow techniques see ��
� Tempo�
ral smoothness constraints have also been introduced
��
� These� however� are violated when the camera mo�
tion changes abruptly�

Other methods overcome the aperture problem by
applying global model constraints ��� 	� �� ��� ��� �� �
�
This allows the use of large analysis windows �often
the entire image�� which do not su�er from lack of lo�
cal information� These techniques� however� assume an
a�priori restricted model of the world or of the camera
motion� For example� ���� �� �
 assume a planar �or
very distant� world� ��� 	� ��
 assume a �D world with
dense �D parallax� and will fail when applied to distant
or planar worlds �which form a singular case for these
algorithms�� ��
 reviews a hierarchy of such global mo�
tion models� While these methods perform well when
the restricted model assumptions are applicable� they
fail when these are violated�

Also� most methods for correspondence��ow estima�
tion have been restricted to pairs of frames �or three
frames ���
�� With the rare exception of �	
� most
methods that use information from multiple frames
rely on temporal smoothness� The resulting estimates
are hence noisy and are over�smoothed�� In con�
trast� �	
 exploits geometric consistency across multiple
frames� but relies on prior knowledge that the under�
lying model is a �D world with dense �D parallax�

In this paper we develop an approach for simul�
taneously estimating correspondences across multiple
frames by using information from all the frames� with�
out assuming prior model selection� Our approach is
based on the observation that the set of all �ow��elds
across multiple frames �that image the same scene�
reside in a low�dimensional linear subspace� This is
true despite the fact that di�erent frames in the im�
age sequence are obtained with di�erent camera mo�
tions� The subspace constraints provide the addi�
tional constraints needed to resolve the ambiguity in
image regions that su�er from the aperture problem�
This is done without resorting to spatial or temporal
smoothness� As opposed to smoothness constraints�
the subspace constraints are geometrically meaningful�
and are not violated at depth discontinuities or when
camera�motion changes abruptly�

Linear subspace constraints have been used success�
fully in the past for recovering �D information from
known �D correspondences �e�g�� ��	� �
�� In contrast�



we use multi�frame linear subspace constraints to con�
strain the �D correspondence estimation process itself�
without recovering any �D information� Furthermore�
we show that for a variety of world models �e�g�� planar
world vs� general �D world� and a variety of camera
models �e�g� orthographic vs� perspective cameras un�
dergoing instantaneous motion� give rise to subspaces
of very similar low dimensionalities� Because we em�
ploy subspace constraints based on the subspace di�
mensionality alone� these constraints can be used with�
out prior knowledge of the underlying world or camera
model�

In Sect� � we show that the set of all �ow��elds
across multiple frames �that image the same rigid
scene� reside in a low�dimensional linear subspace�
This is shown for a variety of motion models� scene
models� and imaging models� In Sect� � we extend the
multi�frame subspace constraints to apply directly to
image brightness quantities� These are then incorpo�
rated in Sect� � into a simultaneous multi�point multi�
frame �ow algorithm� which takes advantage of the
low�dimensionality subspace constraints within the es�
timation process itself� We conclude with some exper�
imental results showing the bene�ts of the multi�frame
constrained estimation�

� Subspace Constraints on Flow�Fields
Let I�� ���� IF denote a sequence of F frames taken

by a moving camera with arbitrary �D motions� All
frames are of the same size� and contain N pixels� Let
I denote the reference frame in the sequence� i�e�� the
frame with respect to which all �ow��elds will be es�
timated �e�g�� the middle frame of the sequence�� Let
�uij � vij� denote the displacement of pixel �xi� yi� from

the reference frame I to frame Ij �i � ���N � j � ���F��
Let U and V denote two F � N matrices constructed
from the displacements of all the image points across
all frames�

U �

�
���

u��� u��� ���� uN�

u��� u��� ���� uN�

�

�

�

u�F � u�F � ���� uNF

�
��� V �

�
���

v��� v��� ���� vN�

v��� v��� ���� vN�

�

�

�

v�F � v�F�����vNF

�
���
���

Each row in these matrices corresponds to a single
frame� and each column corresponds to a single point�

��� Ranks for Various World� Motion� and
Camera Models

We next show that although the matrices U and
V are large� their ranks are very small� In particu�
lar� we identify the ranks of the following two matri�

ces�
h
U

V

i
�F�N

�i�e�� U and V are stacked vertically��

and �U V�
F��N

�i�e�� U and V are stacked horizon�

tally�� We show that these matrices have low ranks

under many di�erent conditions� In the following sec�
tions we explain how to use these low�rank constraints
in order to constrain the estimated �ow� At no point
will we need to recover any �D quantities or camera
motion� The �D analysis in this section is used only
for deriving the upper bounds on the ranks of these ma�
trices�

It can be shown that the collection of all points
across all views lie in a low�dimensional variety ���
�
Under full perspective projection and discrete views�
this variety is non�linear� However� there are two cases
in which this variety is linear� �i� when an a�ne� cam�
era ���
 is used �i�e�� weak�perspective� or orthographic
projection�� This model is valid when the �eld of view
is very small� and the depth �uctuations in the scene
are small relative to the overall depth� �ii� when an
instantaneous motion model is used �e�g�� ���
�� This
model is valid when the camera rotation is small and
the forward translation is small relative to the depth�
The instantaneous model is a good approximation of
the motion over short video segments� as the camera
does not gain large motions in short periods of time� In
some cases� such as airborne video� this approximation
is good also for very long sequences� The instantaneous
model is most relevant for this paper� as we are using
short video segments for the �ow analysis� Choosing
the reference frame as the middle frame extends the
applicability of the model to twice as many frames�

We have derived the linear subspace �rank� con�
straints for these two cases� both for a general �D scene
as well as for a planar scene� Due to lack of space� we
detail the rank derivation only for one case� and pro�
vide only the �nal derived ranks for the other cases�
The omitted derivations can be found in ���
�

A �D scene point �Xi� Yi� Zi� is observed at

pixel �xi� yi� in the reference frame I � Let �tj �

�tXj � tY j � tZj� denote the camera translation between

frame I and frame Ij � and let ��j � ��Xj ��Y j ��Zj�

denote the camera rotation between the two frames�

I� Instantaneous motion� general �D scene�

Under the instantaneous motion assumptions� the �D
displacement of a pixel �xi� yi� from I to Ij is�h

uij
vij

i
� �

Zi

�
ftXj � tZjxi

f

fj

ftY j � tZjyi
f

fj

�
��

�

�Xj

fj
xiyi ��Y jf �

�Y j

fj
xi

�
��Zjyi � xi���

f

fj
�

�

�Xj

fj
y�
i
� �Xjf �

�Y j

fj
xiyi ��Zjxi � yi���

f

fj
�

	

���
where f� fj are the focal lengths of frames I� Ij �

respectively� Eq� ��� is a straightforward rederivation
of the instantaneous motion model of ���
 for the case
of changing focal length�



�I�a� Varying focal length ��D scene��

uij and vij can be rewritten as a bilinear product�h
uij
vij

i
���

�

h
�MU �j
�MV �j

i
���

Pi ���
� where�

Pi � � � xi yi
�
Zi

xi
Zi

yi
Zi

x�i y�i �xiyi� � T �

is a point�dependent component �i � ���N�� and

�MU �j �



�f�Y j �� � f

fj
� � �Zj ftXj �

f

fj
tZj �

�Y j

fj
� �

�Xj

fj

�
�MV �

j
�



�f�Xj �Zj ��� f

fj
� ftY j � �

f

fj
tZj � �

�Xj

fj

�Y j

fj

�
are frame�dependent components �j � ���F�� i�e�� de�
pends only on the camera motion and the focal
length of that frame� Therefore� all �ow vectors of all
points across all frames can be expressed as a bilinear
product of matrices�h

U

V

i
��F�N�

�

h
MU

MV

i
��F���

P
���N �

���

where the i�th column of P is the vector Pi� and the
j�th row of MU and MV are the vectors �MU �j and

�MV �j � respectively� Therefore� rank�
h
U

V

i
� � ��

Similarly� we can analyze the rank of �UV� �
�uij vij ���� � Mj

���

�
�PX �

i
�PY �

i


���

where�

Mj �



�Xj

fj

�Y j

fj
f�Xj f�Y j �Zj ftXj ftY j

f

fj
tZj ��� f

fj
�

�
is a frame�dependent component� and
�PX�

i
� ��xiyi x�i � � � yi

�
Zi

� �
xi
Zi

xi�
T

�PY �
i
� ��y�i xiyi � � � xi � �

Zi
�

yi
Zi

yi�
T

are point�dependent components� This leads to�

�UV� �F��N� �M �F��� �PXPY� ����N� ���

where the i�th column of PX and PY are �PX �i and
�PY �i� respectively� and the j�th row of M is Mj �

To summarize� when both the focal length and the
camera motion change across the sequence� then�

rank��UV�� � � and rank�
h
U

V

i
� � ��

�I�b� Constant focal length ��D scene��

When the camera motion changes but the focal
length remains constant across the sequence �but not
assumed to be known�� �j fj � f � then the ranks of

these matrices are lower ���
�

rank��UV�� � � and rank�
h
U

V

i
� � 	�

II� Instantaneous motion� planar scene�

When the scene is planar� then in the perspective case

��
� �
Zi

� ��� �xi�� �yi� Substituting this expression

into Eq� ��� and regrouping the terms leads to simpler
bilinear forms with the following rank constraints ���
�
�I�a� Constant focal length �planar scene��

rank�
h
U

V

i
� � � and rank��UV�� � �

�II�b� Varying focal length �planar scene��

rank�
h
U

V

i
� � � and rank��UV�� � 	�

III� A�ne camera � �D scene�
��	� ��
 showed that in the case of an a�ne camera�
the corresponding image points across all image frames
lie in a ��dimensional linear subspace �and with some
additional manipulation� it can be reduced to ��� The
derivation of subspace constraints for optical �ow is
very similar� leading to the following rank constraints�

rank�
h
U

V

i
� � � and rank��UV�� � 	�

IV� A�ne camera� planar scene�

rank�
h
U

V

i
� � � and rank��UV�� � ��

Remarks� We showed that when the camera motion
changes across the sequence �and possibly also the focal
length�� then the ranks of these matrices for a wide va�
riety of models are all within a small range �� ��� and
are signi�cantly lower than the actual size of these ma�
trices �F��N and �F�N�� We will use these rank con�
straints alone to constrain the �ow estimation� No �D
information will be recovered in this process� Further�
more� the actual rank of these matrices may be even
lower than the derived theoretical upper bounds� e�g��
in cases when the camera motion is degenerate �e�g��
uniform� across the sequence� As will be explained in
Sect� ���� our algorithm automatically detects the ac�
tual underlying ranks� directly from image brightness
quantities� prior to computing the �ow� This implies
that the rank constraint can be applied to a sequence
of frames without the need to a�priori determine the
underlying model� or its degeneracies�

� Subspace Constraints on Image

Brightness

The straightforward way to take advantage of the
subspace constraints is to �rst compute inter�frame
�ow �elds using an existing two�frame �ow estimation
technique� and then project the collection of all these
�ow �elds into the appropriate lower dimensional sub�
space� However� there are two problems with this two�
stage approach� �i� all �ow�vectors are treated equally�
without regard to their reliability� and �ii� the �ow�
�elds resulting from the unconstrained two�frame �ow
estimation ��rst step� may contain �ow�vectors which
are so erroneous� that the subspace projection will not
su�ce to correct them� Moreover� if a signi�cant num�
ber of �ow vectors is severely corrupted� these may
severely damage all other �ow�vectors�

To avoid these two problems� we propose a one�stage
approach for applying the low�dimensionality subspace
constraints directly to measurable image quantities



even during the �ow estimation process itself� This
approach implicitly leads to con�dence�weighted sub�
space projection of the data� in accordance with the
amount of local image structure at each pixel� In
particular� we derive two di�erent brightness subspace
constraints� �i� a multi�point multi�frame point�based
constraint� which is based on the brightness constancy
equation �Sect� ����� and �ii� a multi�point multi�frame
region�based constraint� which is based on the Lucas 	
Kanade formulation �Sect� ����� The bene�ts of using
these constraints is explained in Sect� ��

��� The Generalized Brightness Con�
stancy Constraint

Let �xi� yi� be a pixel in the reference frame I � whose
corresponding pixel in another frame Ij is �xi�uij � yi�

vij�� The Brightness Constancy Equation� which is de�
�ned on a single pixel between two frames� states that�
Ij�xi� yi� � I�xi�uij � yi�vij�� For very small �uij � vij��
this equation can be linearized as� uij � Ixi � vij � Iyi �
Itij � �� where Ixi � Iyi are the spatial derivatives of

the reference frame I at pixel �xi� yi�� and Itij is the

temporal derivative� Itij � �Ij�xi� yi�� I�xi� yi���

However� in practice� �uij � vij� may not be small�
especially when dealing with multiple frames� To in�
crease its range of applicability to larger �uij � vij�� the

linearization can be applied within an iterative �coarse�

to��ne� re�nement process ��
� Let �u�ij � v
�
ij� be the

current estimate of �uij � vij� during an iterative estima�

tion process� Let �uij � uij�u�ij and �vij � vij�v�ij �

The Brightness Constancy Equation can be rewritten
as� Ij�xi � u�ij � yi � v�ij� � I�xi � �uij � yi � �vij��

Assuming small ��uij ��vij�� this equation can be
linearized as�
�uijIxi ��vijIyi � �Ij�xi�u

�
ij � yi�v

�
ij��I�xi� yi�� � �

Because the subspace constraints are de�ned on the
displacements �uij � vij� and not on the increments �see
Sect� ��� we substitute the expression for ��uij ��vij��
leading to the following form of the brightness
constancy equation� which we will use�

uij � Ixi � vij � Iyi � �I�t ij � ���

where�
I�t ij � �Ij�xi�u

�
ij � yi�v

�
ij��I�xi� yi��u

�
ijIxi�v

�
ijIyi��

Eq� ��� provides a single line constraint on the two un�
knowns uij � vij � and hence does not su�ce for uniquely
determining the unknown displacement of a single pixel
between two frames�

Let I�� ���� IF be a sequence of frames� as de�ned
in Sect� �� The collection of all Brightness Constancy
Constraints �Eq� ���� of all image points across all im�
age frames can be compactly written in a single matrix

form as��
U V


�F��N�

�

�
FX

FY

�
��N�N�

� FT �F�N�
���

where FX and FY are N �N diagonal matrices with
the spatial x� and y� derivatives of the reference frame
I in their diagonal�

FX �

�
���

Ix� � ��� �
� Ix� ��� �

�

�

�

� � ��� IxN

�
��� FY �

�
���

Iy� � ��� �
� Iy� ��� �

�

�

�

� � ��� IyN

�
���

and FT is an F�N matrix of the temporal derivatives
�of all image points across all frames� estimated at the
current stage of the iterative process� namely�

FT �

�
����

�I�t ��
�I�t ��

��� �I�t N�

�I�t ��
�I�t ��

��� �I�t N�
�

�

�

�I�t �F
�I�t �F

��� �I�t NF

�
����

The matrices FX� FY� and FT� contain only mea�
surable image quantities� The matrices U and V con�
tain all the unknown displacements� Note that all �ow�
vectors corresponding to a single scene point share the
same spatial derivatives Ixi � Iyi �as these are computed
in the reference frame I � and are independent of the
other frame j�� However� their temporal derivatives
Itij do vary from frame to frame �and in every itera�

tion�� We refer to the multi�point multi�frame Eq� ���
as the the Generalized Brightness Constancy Equation�

Note that when no additional information on �UV�

is used� then Eq� ��� is no more than the collection
of all the individual two�frame brightness constancy
equations of Eq� ���� However� this matrix formulation
allows us to apply rank constraints directly to measur�
able image quantities� For example� rank��UV�� � r
implies that rank�FT� � r� We can therefore apply the
rank constraint directly to the data matrix FT prior
to solving for the displacements U and V� This for�
mulation� as well as the one which is next described
in Sect� ���� form the basis for our direct multi�point
multi�frame algorithm� which is described in Sect� ��

��� The Generalized Lucas � Kanade
Constraint

Lucas and Kanade ���
 extended the pixel�based
brightness constancy constraints of Eq� ��� to a local
region�based constraint� by assuming a uniform dis�
placement in very small windows �typically � � � or
�� ��� Then� for each pixel �xi� yi�� they solve for its
displacement vector �uij � vij� by minimizing the follow�
ing local error measure E�uij � vij� within its neighbor�

hood �window� Wi�

E�uij � vij� �
X
k�Wi

�uij � Ixk � vij � Iyk � I�t kj �
�



�The Lucas and Kanade equation was slightly modi�ed
to �t our iterative notation�� Di�erentiating the error
E�uij � vij� with respect to uij and vij � and setting these
derivatives to zero� yields a set of two linear equations
in the two unknown displacement components �uij � vij�
for each pixel�

�uij vij 
��� �

�
ai bi
bi ci

�
���

� �gijhij 
��� ���

ai� bi� ci� gij � hij are measurable image quantities�

ai �
P

k�Ixk �
�� bi �

P
k�Ixk � Iyk �� ci �

P
k�Iyk �

��

gij � �
P

k�Ixk � I
�
tkj �� hij � �

P
k�Iyk � I

�
tkj ��

ai� bi� ci are computed in the reference image I � and are
independent of j� gij � hij depend on both�

Eq� ��� provides two equations on the two unknowns
uij � vij � as opposed to Eq� ���� which provides only one�
This is because of the uniform�displacement assump�
tion within the local windows� While this assumption
imposes a type of local smoothness constraint� it only
a�ects the accuracy of the �ow estimation within the
small window� but does not propagate these errors to
other image regions �as opposed to global smoothness
�e�g�� ���
��� The vector �uij � vij� therefore has a unique

solution when the coe�cient matrix
h

ai bi
bi ci

i
is not sin�

gular �e�g�� for corners and textured areas�� For image
regions� where the local information is insu�cient �e�g��
edges�� the matrix will be singular� In these regions the
�ow vector �uij � vij� cannot be uniquely determined
even by the Lucas � Kanade algorithm� Under Gaus�

sian noise assumptions� the matrix
h

ai bi
bi ci

i
in Eq� ���

can be shown to be the posterior inverse covariance
matrix of the estimated �ow vector �uij � vij��

Now� considering multiple�points over multiple�
frames� As in the case of the Generalized Brightness
Constancy Equation ���� all the �ow�vectors �uij � vij�

from a reference pixel �xi� yi� in I to all other frames
Ij �j � ���F� share the same coe
cient �inverse co�

variance� matrix
h

ai bi
bi ci

i
in their two�frame Lucas �

Kanade constraints �Eq� ����� Hence� all the Lucas �
Kanade constraints on all points �i � ���N� across all
frames �j � ���F� can be compactly written in a single
matrix form as��

U V


�F��N�

�

h
A B

B C

i
��N��N�

�
�
G H


�F��N�

���
where U and V are as de�ned in Eq� ���� The three
N�N diagonal matrices A� B� C are constructed from
the coe�cient values ai� bi� ci� respectively�

A �

�
���

a� � ��� �
� a� ��� �

�

�

�

� � ��� aN

�
��� B �

�
���

b� � ��� �
� b� ��� �

�

�

�

� � ��� bN

�
���

C �

�
���

c� � ��� �
� c� ��� �

�

�

�

� � ��� cN

�
���

The two F�N matricesG andH are constructed from
the values gij � hij �

G �

�
���

g�� g�� ��� gN�

g�� g�� ��� gN�

�

�

�

g�F g�F ��� gNF

�
��� H �

�
���

h�� h�� ��� hN�

h�� h�� ��� hN�

�

�

�

h�F h�F ��� hNF

�
���

We refer to the multi�point multi�frame Eq� �	� as the
the Generalized Lucas 	 Kanade Equation�

When no additional information on �UV� is used�
then Eq� �	� is no more than the collection of all the
individual two�frame equations of Eq� ���� However�
as before� if we know that rank��UV�� � r� it entails
that rank��G H�� � r� Since �G H� is a matrix
constructed from known measurable image quantities�
applying the rank constraint to it prior to solving for
�U V� will constrain the �ow estimation process itself�
The interpretation of this operation is explained below�

Con�dence Weighted Subspace Projection�

Note that applying the rank constraint to �G H�

is in fact equivalent to applying the rank constraint
directly to the �ow�vector matrix �U V�� but after
�rst weighting the individual �ow vectors �uij � vij�
with their corresponding individual inverse covariance

matrices
h

ai bi
bi ci

i
� This means that more reliable

�ow�vectors will have more in�uence in the subspace
projection process� while less reliable vectors will have
smaller in�uence� Applying the rank constraint to
�G H� therefore has the e�ect of con�dence�weighted
subspace projection of all the �ow�vectors prior to
computing them� This is used to constrain the �ow
estimation process itself in Sect� ��

� Multi�Frame Multi�Point Algorithm

Let r� and r� denote the ranks of �UV� and
h
U

V

i
�

respectively� We utilize the brightness subspace con�
straints� of Eqs� ��� and �	� in two ways�

��� Noise Reduction in Image Measurements�

The measurement matrices FT and �GH� are projected

onto lower�rank matrices �FT and
�
�G �H


of rank r�� We

know that r� � � �see Sect� ����� but in practice� the
actual rank of these matrices may be even lower than
the theoretical upper bound of �� The actual rank
can be automatically detected from these measurement
matrices� as explained in Sect� ����

The rank�reduction process inhibits noisy measure�
ments in the measurement matrices� It can be directly



�a� �b� �c�

�d� �e�

Figure �� Real image sequence �the NASA coke�can sequence�� �a� One frame from a ���frame sequence of a forward moving camera

in a 	D scene
 �b� Flow �eld generated with the two�frame Lucas � Kanade algorithm
 Note the errors in the right hand side where

there is depth discontinuity �pole in front of sweater� as well as the aperture problem
 �c� The �ow �eld for the corresponding frame

generated by the multi�frame constrained algorithm
 Note the good recovery of �ow in those regions
 �d�e� The �ow magnitudes at

every pixel
 This display provides a higher resolution display of the error
 Note the clear depth discontinuities in the multi�frame �ow

image
 The �ow values on the coke can are very small because the camera FOE is in that area


applied to �GH�� Alternatively� since temporal deriva�
tives Itij are typically the most noisy image measure�

ments �because of misalignment errors and subpixel
interpolation�� the rank reduction can be �rst applied
to FT� This step gives more accurate temporal deriva�
tives� These noise�reduced temporal derivatives can
then be used to compute �GH� using Eq� ���� �GH� is

then further projected onto a lower�rank matrix
�
�G �H


�

This corresponds to applying con�dence�weighted sub�
space projection on the �ow vectors prior to computing
them �see Sect� �����

Now that local noisy measurements have been inhib�
ited via the global subspace constraints� we proceed to
computing an initial estimate 	U� V�
 for all �ow vec�

tors by solving�
�
U� V�


�
�
�G �H


�

h
A B

B C

i�
�where M� denotes the pseudo�inverse of a matrix
M�� Note that because of the diagonal structure of

A�B�C� the matrix
h
A B

B C

i�
consists of the indi�

vidual pseudo�inverse matrices
h

ai bi
bi ci

i�
� This step

therefore yields accurate �ow for pixels with enough
local image structure �i�e�� pixels whose inverse covari�
ance matrix is non�singular�� For other pixels� it ac�
curately estimates only the component of the �ow in
the direction of the gradient� which is the normal �ow

�because pseudo�inverse estimation yields the solution
with smallest norm�� This is addressed next�

��� Eliminating the Aperture Problem

We use the rank constraint on
h
U

V

i
to determine the

missing components of �ow vectors at pixels with in�

su�cient local image structure� rank�
h
U

V

i
� � r� im�

plies that there is a decomposition�h
U

V

i
��F�N�

�K
��F�r��

� L
�r��N�

�

h
KU

KV

i
� L ���

where KU and KV are the upper and lower halves
of the matrix K� The columns of K form a basis

which spans the subspace of all columns of
h
U

V

i
� The

columns of L are the coe�cients in the linear combi�
nation� This decomposition is of course not unique�
However� if there are more than r� pixels whose corre�
spondences across all frames can be reliably computed�
then these �ow vectors could be used to generate a ba�

sis K� The
h
U�

V�

i
computed in the previous step� give

accurate �ow vectors for pixels whose local inverse co�

variance matrix
h

ai bi
bi ci

i
is well conditioned� These

�ow vectors are used to generate a basis K� Once
a basis has been computed� the number of unknowns
shrink from the original number of �FN unknown un�
constrained displacements to Nr� unknowns� which are



�a� �b� �c�

�d� �e�

Figure �� Synthetic sequence with ground truth � a quantitative comparison� �a� One out of a ���frame sequence
 The sequence

was synthetically generated by applying a set of 	�D consistent homographies to warp a single image
 This provides ground truth on

the �ow
 �b�c� Error maps showing magnitudes of errors between the ground truth �ow and the computed �ow �eld
 �b� shows

errors for the two�frame Lucas � Kanade algorithm
 �c� shows errors for the multi�frame constrained algorithm for the corresponding

frame
 Brighter values correspond to larger errors
 �d� A histogram of the errors in both �ow �elds
 Flow values at image boarders

were ignored
 In the multi�frame method almost all errors are smaller than �
� pixel and all are smaller than �
� pixel
 In the

two�frame method most �ow vectors have an error of at least �
� pixel
 �e� The image regions for which the errors in the two�frame

method exceeded �
� pixel
 These as expected correspond to areas which su�er from the aperture problem
 The subspace constrained

algorithm accurately recovered the �ow even in those regions


the unknown components of L� Note that both U and
V share the same coe�cients L� Hence� for �ow vec�
tors with only one known �ow�component �e�g�� the
normal��ow�� the other component can be uniquely de�
termined via this decomposition �which is not true in
the equivalent decomposition of �UV��� Plugging the
decomposition of Eq� ��� into Eq� ��� leads to a set of
FN linear equations in the Nr� unknowns�

�KUL KVL� �

h
FX
FY

i
� �FT� ����

This set of equations is overconstrained if the number
of frames F is larger than r� �where r� is the lowest of
the actual rank and the theoretical upper bound��

Similarly� plugging the decomposition of Eq� ��� into
Eq� �	� leads to an alternative set of linear equations�
with twice as many equations ��FN equations� in the
same Nr� unknowns�

�KUL KVL� �

h
A B
B C

i
�
�
�G �H


� ����

This set of equations is thus overconstrained if the

number of frames F is larger than �
�r�� Each of

the two abovementioned options has its advantages�
Eq� ���� is numerically more stable �because of the lo�
cal con�dence�weighted averaging over the small ����
or ���� windows from the Lucas � Kanade algorithm�

and because there are twice as many equations�� but
this bene�t comes with the price of lower spatial reso�
lution in the �ow recovery� On the other hand� Eq� ����
provides half as many equations� but allows for higher
spatial resolution of �ow recovery� as it does not use
the small window averaging� In the current implemen�
tation of our algorithm we used Eq� ����� We now
summarize the algorithm�

��� The multi�point multi�frame algorithm�

	� Construct a Gaussian pyramid for all image frames�


� For each iteration in each pyramid level do�
�a� Compute matrices A�B�C�G�H�

�b� Project 	G H
 onto lower�rank �r�� matrix
�
�G �H


�

�c� Compute an initial �ow estimate 	U� V�
��
U� V�


�
�
�G �H


�

h
A B

B C

i�
�

�d� Compute an r��dimensional basis K from the
columns of

�
U�

V�


�e� Linearly solve for the unknown matrix L using
either Eq� ���� �Generalized Brightness Constancy�
or ���� �Generalized Lucas	Kanade�� This step re�
covers the missing components of normal��ow vectors
and produces more accurate �ow estimates �U and �V�



�� Keep iterating to re�ne �U and �V�

Step �b� reduces noise in the measurements� while
steps �d� and �e� eliminate the aperture problem�
When the algorithm is applied to two frames� and steps
�b���d���e� are skipped� it reduces to an iterative coarse�
to��ne version of the Lucas	Kanade algorithm ���
Step �a� can be preceded by projecting the matrix FT

onto a lower�rank matrix �FT� as discussed in Sect� ����
This step is not yet incorporated in our current imple�
mentation �hence omitted from the algorithm�� but is
expected to further reduce the noise in the measure�
ment matrix 	G H
 prior to its own rank�reduction�

Automatic Rank Detection�
Step �b� projects matrices onto lower�rank matrices�
as de�ned in Sect� ���� In practice� the actual rank
of these matrices� with some allowed noise tolerance�
may be even lower than the theoretical upper bound r�
�e�g�� in cases of degenerate camera motions or scene
structures�� We automatically detect the actual rank of
these matrices� LetM be a k� l matrix� with a known
upper bound r on its rank� and an actual rank rM
�rM � r�� The rank reduction �i�e�� subspace projec�
tion� ofM is done by applying Singular Value Decom�
position to M� We check for the existence of a lower
rank r� � r such that �

Pm

i�r��� �
�
i ���

Pm

i�� �
�
i � � 	�

where m is the number of eigenvalues� m � min�k� l��
and 	 allows for some noise tolerance �we use 	 � ����
rM is set to be min�r� r��� All singular values other
than the rM largest ones are then set to zero� and the
matrices produced in the SVD step are re�composed�

yielding a matrix �M of rank rM �which is closest toM
in the Frobenius norm�� Step �d� uses the same SVD
procedure to estimate a spanning basis K�

Results�
Figs� � and � show comparisons of the multi�frame con�
strained algorithm with an iterative coarse�to��ne ver�
sion of the two�frame Lucas � Kanade algorithm� The
latter is computed by using our multi�frame algorithm
�see Sect� ����� but without applying the subspace pro�
jection steps �b���d���e�� This allows us to isolate the
e�ects of subspace projection on the accuracy of the
�ow estimation� The comparison is done both for real
data� as well as for synthetic data with ground truth�
For further details regarding the experiments and the
results� see �gure captions�
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