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Multiview Constraints on Homographies

Lihi Zelnik-Manor and Michal Irani, Member, IEEE

Abstract—The image motion of a planar surface between two camera views is captured by a homography (a 2D projective
transformation). The homography depends on the intrinsic and extrinsic camera parameters, as well as on the 3D plane parameters.
While camera parameters vary across different views, the plane geometry remains the same. Based on this fact, we derive linear
subspace constraints on the relative homographies of multiple (> 2) planes across multiple views. The paper has three main
contributions: 1) We show that the collection of all relative homographies (homologies) of a pair of planes across multiple views, spans
a 4-dimensional linear subspace. 2) We show how this constraint can be extended to the case of multiple planes across multiple views.
3) We show that, for some restricted cases of camera motion, linear subspace constraints apply also to the set of homographies of a
single plane across multiple views. All the results derived in this paper are true for uncalibrated cameras. The possible utility of these
multiview constraints for improving homography estimation and for detecting nonrigid motions are also discussed.

Index Terms—Homographies, homologies, motion estimation, multiview analysis.

1 INTRODUCTION

OMOGRAPHY estimation is used for 3D analysis [18],

[10], [21], [25], [11], [7], [14], [17], [16], mosaicing [13],
camera calibration [26], [31], and more. The induced
homography between a pair of views depends on the
intrinsic and extrinsic camera parameters and on the
3D plane parameters [10]. While camera parameters vary
across different views, the plane geometry remains the
same. In this paper, we show how we can exploit this fact to
derive multiview linear subspace constraints on the relative
homographies of multiple (> 2) planes, and for restricted
cases of camera motion—on the collection of homographies
of a single plane.

Linear subspace constraints on homographies have been
previously derived by Shashua and Avidan [22]. They
showed that the collection of homographies of multiple
planes between a pair of views spans a 4-dimensional linear
subspace. This constraint, however, requires the number of
planes in the scene to be greater than 4. In this paper, we
obtain subspace constraints for scenes containing as little as
two planes (and often a single plane). Here, the need for
multiple planes in [22] is replaced by the need for multiple
views, which is often less restrictive. We first derive a
constraint for the relative homographies (homologies) of a
pair of planes over multiple (> 4) views (Section 2). This
constraint is then extended to a constraint on the relative
homographies of multiple planes across multiple views
(Section 3). We show how appropriate scaling of the
homographies leads to further reduction in the dimension-
ality of these subspaces (Section 4) and to an extension of
the multiplane constraint of [22] to a multiview multiplane
constraint (Section 5). We show that, for some cases of
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restricted camera motion, linear subspace constraints apply
also to the homographies of a single plane across multiple
views (Section 6).

Different video-related applications can benefit from
such multiview constraints. For example, many algorithms
based on planar homographies (e.g., [18], [21], [11], [28],
[17]) or on planar homologies (e.g., [23], [4]) rely on accurate
precomputation of these homographies (or homologies).
However, the image region corresponding to a planar
surface may be small. In such cases, the homography
estimation tends to be highly inaccurate [25] (i.e., when
applied to small image regions). Adding the multiview
subspace constraints presented in this paper as additional
constraints to existing homography estimation methods can
significantly improve the accuracy of the estimated homo-
graphies. Furthermore, violations of these multiview con-
straints can form additional cues for detecting nonrigid
motions (e.g., for moving object detection). We provide
empirical evaluations of these in Section 7.

All the results derived in this paper are true for
uncalibrated cameras. A preliminary version of this paper
appeared in [30].

1.1 Homographies—Basic Notations

First, we derive the basic homography notations which will
be used later in the paper. Let ¢ = (X,V,2)" and @' =
(X",Y", Z")" denote the 3D coordinates of a scene point with
respect to two different camera views. Let § = (x, y, 1)T and
q = (2, 1)T denote the homogeneous coordinates of its
projection point in the two images. We can write

§=0Q , =04, (1)
where = denotes equality up to a scale factor. C'and C’ are
3 x 3 matrices [10] which capture the camera’s internal
parameters and the projection.

Let 7 be a planar surface with a plane normal 7, then
ﬁT@ =1 for all points Q en (= Z—:, where n; is a unit
vector in the direction of the plane normal and d is the
distance of the plane from the first camera center). The
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transformation between the 3D coordinates of a scene point
Q € m, in the two views, can be expressed by

Q' =Gaq, (2)

where
G =R+1d’, (3)

R is the rotation matrix capturing the change of orientation
between the two cameras views, and # is the translation
between the two camera views. Therefore, the induced
transformation between the corresponding image points is

d = Aq, (4)
where
A=C'(R+t-7")C™! (5)

is the induced homography between the two views of the
plane 7. From (4), it is clear that, when A is computed from
image point correspondences, it can be estimated only up to
a scale factor. For more details, see [10].

2 MuLTIVIEW RANK-4 CONSTRAINTS
ON Two PLANES

In this section, we show that the induced relative image
motion between two planar surfaces over multiple frames
spans a low-dimensional (4-dimensional) linear subspace.
Let J be a “reference” image and let J',...,JI be F
other images of the same scene taken from different
views. Let 7, and 7, be two planar surfaces in the scene
with plane normals 7, and 7, respectively. Let Af and
Al denote their corresponding homographies' between
the reference image J and an image J/(f=1,...,F).
Composing the homography of 7, with the inverse of the
homography of 7, yields a “relative homography”:

H = (A AL (6)

This relative homography captures the induced relative
image motion between the two planes and is a “plane
homology” [20]. Some properties and invariants of planar
homologies have been discussed in [8] and used in [17], [4],
[23]. Here, we present a different set of constraints on
homologies. Using (5) and the Sherman-Morisson formula?
[19], it can be shown that, for rigidly moving planes 7, and
7, the matrix H/ has the form

H =1+ m"

- 1+ h ho hs (7)
= | hy 1+ hs he s
hr hg 1+ hy

where

1. The superscripts denote the image/frame index; the subscripts denote
the plane index.

2. For a square matrix A and two column vectors i, @, the Sherman-

A (T
Morrison formula gives (A + aw’) = A" - %
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1
ﬁfzc%’ T = (5, —mT)C,
1+ Rt
I is the 3 x 3 identity matrix, and ff , R/ are the camera
translation vector and the camera rotation matrix, respec-
tively (between the reference image J and the image J/). C
is the camera internal parameter matrix at the reference
view J. The matrix C7 (i.e., the calibration matrix of J7) is
eliminated by the composition. Note that & is only view-
dependent, (i.e., is common to all rigidly moving planes
between a pair of views J and J/), whereas 1 is only plane-
dependent, (i.e., is common to all views for a pair of planes

- and ).
A homology is a 2D projective transformation, which has

a fixed line and a separate fixed point. One can easily show
(see [4]) that ¢/ is the fixed point. This is actually the epipole
(up to a scale factor) of view J/ in image J. 1, which
corresponds to the difference of the two plane normals, is
actually the image of the intersection line between the two
planes 7, and 7, (again, up to a scale factor). This is the
fixed line of the homology H’. Therefore, the fixed point of
the homology H’ is a view-dependent property, while the

fixed line of the homology is a plane-dependent property.
We now proceed to derive multiview constraints on

homologies. Rearranging the components of the relative-
homography (3 x 3) matrix H/ in a single (9 x 1) column

vector h’, we can rewrite (7) as:

. =f
MzNw{ﬁ], (®)
4x1
where
w00
N = 0 m 0 i (9)
0 0 m i

and i} = [1,0,07, & = [0,1,07, & = [0,0,1]". In practice, i’
can be estimated only up to an unknown scale factor A/
because A/ and A/ are known only up to a scale factor (see
(4)). In other words, the computed relative homographies
(homologies), denoted by h_-Tf (We will henceforth denote by

~ all entities computed up to a scale factor), are

B =N (10)

We now consider multiple views J7/, f = 1... F. Since the
matrix A" depends only on plane normal parameters and on
the camera calibration of the reference view, it is common to
all views f =1...F. Hence, we can stack all the computed
relative homography vectors (homology vectors) in a 9 x F'
matrix H, where each column corresponds to a single image

view J/ (relative to the reference view .J):
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Hlogur = [f; h}}ng
Al 0
_ [ 1 —»F}
h IxF
Al 0
i [51 17F]
- 9x4 .
1 1
4xF 0 )\F

The dimensionality of the matrices on the right-hand
side of (11) implies that the matrix A is of rank 4 at most.?
Hence, the collection of all relative homographies (homo-
logies) of the two planes across all images, resides in a
4-dimensional linear subspace. This constraint is comple-
mentary to the constraint shown by Shashua and Avidan
[22]. There, it was shown that the collection of homo-
graphies of multiple (> 4) planes between a pair (= 2) of views,
spans a 4-dimensional linear subspace. In contrast, here we
derived a rank-4 constraint for the homologies of a pair (= 2)
of planes over multiple (> 4) views. Note that, even though
the two constraints have symmetric properties, they are not
dual in the Carlsson-Weinshall-duality sense [3]. The
“duality” here is in the homography parameter space and not
in the 3D space as in [3]. Simple switching of camera centers
and scene points in Shashua and Avidan’s constraints will
not lead to our constraints. Also, note that the multipleplane
constraint shown in [22] applies to plane homographies
whereas, the multiview constraint of (11) is restricted to
homologies of a pair of planes and does not apply to a
single plane homographies in the general case. In Section 5,
we further show how the constraint of [22] can be extended
to a multiview multiplane constraint on homographies.

Here, the dimension 4 derived can also be explained
geometrically: When imaging the same pair of planes from
multiple views, each new view adds 4 d.o.f. (degrees of
freedom): three for the epipole and one scale factor. A
similar geometric interpretation can also be given to the
rank-4 constraint in [22]: When multiple planes are imaged
from the same pair of views, each plane adds 4 degrees of
freedom: three for the line of intersection of the new plane
with an arbitrary reference plane (could also be the plane at
infinity) and one scale factor.

3 MuLTIviIEW RANK-4 CONSTRAINTS
ON MULTIPLE PLANES

Homographies are determined only up to a scale factor.
This scale factor differs for every pair of planes and for
every pair of views, i.e., they are both view dependent and
plane-dependent. Therefore, the extension of the fwo-plane
multiview factorization ((11) in Section 2), or the two-view
multiplane factorization [22] into a multiview multiplane
factorization is not straightforward. We next show how
the low-dimensionality linear subspace constraint can be
extended to a constraint on multiple-planes across multiple
views by enforcing these scale factors (denoted by \/) to be
a product of two scalars: one which is view-dependent and

3. In practice, the actual rank may be even lower than 4, e.g., in cases of
degenerate camera motion.

one which is plane-dependent. This can be done without
any calibration information, as explained below.

Let my,...,mp be P planar surfaces with normals
7, ...,7p, respectively. Let A{ yeens A{, be their correspond-
ing homography matrices between the reference view J and
each of the other views J/(f = 1...F). Let 7, be a reference
plane (e.g., could be chosen as the plane occupying the
largest image region in the reference 1mage) We assume
that the 3 x 3 homologies H(f LEp=1,...,P)
have been computed with respect to the reference plane
7, and the reference image J, and are each known only up
to a scale factor. We can then arb1trar1ly set one of the six
off-diagonal entries in each homology H to be equal to 1
(i.e., ha, hs, ha, he, h7, or hs; see (7)), and scale all the other
entries of the homology accordingly. This results in a new
(unknown) scale factor A/ for each homology, which is
guaranteed to be a bilinear product of two (unknown)
scalars:

N=al B, (12)

where of is view-dependent and f3, is plane—dependent (e.g.,
if we set hs to be 1, then hy = Mhs =1, ie, M = 5 and,
from (7), we get:

ot oot
Pohs é( My,
In other words, af—% and gp,T, where @ =
Pz
[, o, 0l]" and m, = [mm,m,,y,mw] ). Note that o/ is

common to all planes and 3, is common to all views.
Since all planar surfaces m, share the same 3D camera
motion between a pair of views, we can now extend (11)
to multiple planes to get

Hy
g=
_H_P 9PxF
[ 31 0 Ny
B ] |:1—)»1 1—)»F:|
: 1 1
- 4xF

L 0 Bp 9Px9P Np 9Px4 :
al 0

0 o FxF

(13)

The dimensionality of the matrices on the right-hand
side of (13) implies that the matrix G is of rank 4 at most.

This implies that when solving for the homographies, if
one of the six off-diagonal entries of the relative homo-
graphies (homologies) is consistently set to 1, we are
guaranteed that the collection of all relative homographies,
of all planes across all views, lies in a 4-dimensional linear
subspace. Note, however, that the multiview, multiplane
constraint has limited applicability because the required
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scaling of all the relative homographies is possible only
when at least one of the six off-diagonal entries is
consistently nonzero for all planes and for all views. An
example where this condition fails to exist is when there is
at least one view in which vy = 0 (the first component of the
epipole), another view in which vy =0 (the second
component of the epipole), and a third view in which vz =
0 (the third component of the epipole). (This, however,
rarely happens in short segments of real video sequences).
The two-plane constraint (Section 2), on the other hand, is
always applicable.

4 MuLTIVIEW RANK-3 CONSTRAINTS

In Section 3, the unknown scale factors )‘1}: were not
recovered, but were forced to be a bilinear product (12) of
a view-dependent scalar (af) and a plane dependent scalar
(6p). This allowed us to extend the multiview linear
subspace constraints to multiple planes. Next, we show
how this scale factor can actually be recovered (from
uncalibrated views), leading to different lower-dimensional
linear subspace constraints on the homologies parameters
of multiple planes across multiple views. Furthermore, it
enables extending the rank-4 constraint on homographies of
multiple planes between a pair of views [22] to a rank-4
constraint on homographies of multiple planes across multi-
ple views (Section 5).

From (7), we have Hf =I+&m "T . It is easy to see that,

for any vector @ L m,, we have ng:u, i.e., the true
(unknown) homology H/ has an eigenvalue 1. Because the
space of all vectors u L 11, is of dimension 2 (confined to
the plane perpendicular to ni,), the multiplicity of that
eigenvalue of HI{ is two (see also [27], [10], [24]). From (10),
we have H[{ = /\I{HI{ , which entails that the computed
(known) homology H 1{ has an eigenvalue A/ of multiplicity
2. Therefore, for each computed homology H[{, we can
compute its three eigenvalues and detect its eigenvalue A/
with multiplicity 2. If we then scale H / by that A/, we get
the true homology HI = 1 H Next, we subtract I from

each homology to get H H f — I and extend (11) to

Hlgur = [le hF}ng (14)
= [N}gx.‘s[ﬁl ﬁF]SxF
where
o |m, 0 0
N=|0 m, 0
0 0 m,

S

Equation (14) implies that the collection of all relative
homographies of two planes across all views (after scaling
and subtracting the identity) lies in a 3-dimensional linear
subspace.
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The extension to a constraint on homologies of multiple
planes across multiple views is now trivial:

H N1
=1 : (& ... &

N

(e}
|

]3><F' (15)

Hpeloper 9Px3

The dimensionality of the matrices on the right-hand side of
(15) implies that the matrix G is of rank 3 at most.

5 MuLTIVIEW CONSTRAINTS ON HOMOGRAPHIES
OF MULTIPLE PLANES

So far, we derived multiview linear subspace constraints
only on the parameters of homologies (relative homogra-
phies) of pairs of planes. Next, we show how we can derive
multiview linear subspace constraints on parameters of the
homographies of the individual planes.

Let A/ be the homography of plane p at view f (with
p=1...Pand f=1...F). This can be estimated only up to
an unknown scale factor v, e, A =1 AL

Unlike the case of homologres HI, where we could
uniquely recover the scale factors A/ (Section 4), in the
case of homographies AZJ;, the scale factor 'ysz cannot be
uniquely recovered. However, we can use the procedure
described in Section 4 in order to recover all the scale
factors {v/ }p , of all homographies corresponding to a
single view f up to a single consistent view-dependent scale
factor. This is shown next.

We arbitrarily choose a plane r to be a reference plane
and estimate all corresponding homologies H using (6).
Putting together (6) and (10), we get

Nf_lif

N 1A — T
1, = a4 =\ ],

=
From this, it can be easily seen that

7_;

=\,
A

»
We can recover the scale factor >\f of each homology using
the procedure described i 1n Sectron 4. Next, by dividing each
computed homography A by the recovered scale factor A/
of its corresponding homology H, 7 we get

V= ral
Ap - ’7,- Ap7
i.e., all homographies /lf at each view are now determined

up to a single view- dependent scale factor v/. Using (5), we
can write

Al = B+,

where B/ = 4/C/RC-!, &/ =~/C/t is the (scaled) epipole
and m, = "ZC 1 (See ( ) for notations). This leads to an
extension of the multiplane constraint of [22] to a multi-
plane multiview linear subspace constraint on the “normal-
ized” homographies A of the individual planes:
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ay ap
A f—
F F
L | dp 9FxP
[ ol 0 0 ]
4 - = o
b 0 o 0
0 0 ol (16)
.
m mp 4><P’
oF 00
A BT |
L 0 0 oF Jorxa

where d-; is the ninth Yffzctor corresponding to the 3 x 3
homography matrix A, and b/ is the ninth vector
corresponding to the 3 x 3 homography matrix B/. The
dimensionality of the matrices on the right-hand side of (16)
implies that the matrix A is of rank 4 at most. Hence, the
collection of all normalized homographies /1;; of all planes
across all views lies in a 4-dimensional linear subspace.
Note that, in the matrix A of (16), each column
corresponds to a single plane and each 9-row block
corresponds to a single view. The rank-4 constraint on
general homographies is useful only when each dimension
of the matrix A (9F x P) exceeds 4, i.e., when the number of
planes is larger than 4. This is in contrast to the subspace
constraints on the homologies ((11), (13), (14), (15)), where
each column corresponds to a view and each 9-row block
corresponds to a plane. The constraints on homologies are
therefore useful even for a single pair of planes as long as
the number of views is greater than 4, which is often less
restrictive than the requirement for multiple planes (> 4).

6 MuLTiviEW CONSTRAINTS ON A SINGLE PLANE

All the derived multiview subspace constraints (on homo-
logies or homographies) assumed that the scene contains at
least two planes. The derived subspace constraints are
useful when the dimensionality of the subspace (e.g., 4) is
significantly lower than the dimensionality of the original
space of homographies (i.e., 9). Such reduced-dimension
subspace constraints cannot be derived in general for
multiple views of a scene containing a single plane (ie.,
the 9 x F' matrix obtained by putting together all homo-
graphy vectors of that plane such that each column
corresponds to one view does not necessarily have a rank
lower than 9). This is because, for a general homography,
according to (5)

Al = CH(R +t/nTyC !
=CIRIC™! + (') (n"O7Y)
=B+ ufmT,

(17)

where Bf = C/RIC, uf = 't and mT = nfCL, Since,
in the uncalibrated case, B/ can vary from one view to
another in an unconstrained manner (e.g., each view can

have a different rotation matrix R and/or a different
calibration matrix C), this already spans a 9-dimensional
linear space (when putting all homography vectors in a
matrix where each column corresponds to a single view).
In the previous sections, we showed how, by looking at
the relative motion of a pair of planes, we can eliminate
all effects of rotation and changes in calibration (see (7)),
hence leaving only 4 degrees of freedom for each new
view, resulting in a rank-4 constraint on all “relative
homographies” (homologies).

However, for some restricted but common cases of
camera motion, one can still get linear subspace constraints
even for the case of a single plane. We first show a low-
dimensionality constraint for the case of pure translation
with fixed (but unknown) camera calibration (Section 6.1),
and then show a similar constraint for the case when small
camera rotation is also allowed (Section 6.2).

6.1 Pure Translation

Let 7 be a planar surface in the scene with plane normal 7.
Let A/ denote its corresponding homography between the
reference image J and an image J/ (f = 1,...,F). Assum-
ing the camera performs only translational motion and
assuming that the (unknown) camera calibration is fixed
across all views, (17) reduces to

Al =T+ ufmT. (18)

Note that 17t is only plane-dependent, (i.e., is common to all
views for the plane 7), whereas ul is only view-dependent
(here ul = Ct7, since C/ = C for all views). The homo-
graphy for the case of pure translation (18) has the same
algebraic structure as the “relative homography” in (17)
since, in both cases, the rotation is canceled. Nevertheless,
here we had to assume constant calibration for all views;
whereas, in the multiplane case, the calibration could vary
for each view. Here, on the other hand, we are examining
homographies of a single plane; whereas, there, we
examined homologies (relative homographies) of pairs of
planes.

Hence, the same rank-4 constraint that was derived in
Section 2 applies for the set of all homographies of a single
plane across multiple views, when there is no camera
rotation and the camera calibration is constant. Further-
more, this also implies that, for this restricted case, a rank-4
constraint applies directly to the collection of all homo-
graphies of multiple planes across multiple-views, as was true
for the homologies of multiple planes (This, of course,
requires the proper scale normalization as was done in
Section 3, only this time there is no need for a selected
reference plane).

6.2 Small Camera Rotation

Next, we show that subspace constraints on the homo-
graphies of a single plane can be derived when rotation is
also introduced, but is restricted to small angles. This,
however, increases the dimensionality from 4 to 7 (but is
still smaller than 9).

The small camera rotation assumption implies that the
rotation matrix R of (3) has the form [5]
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Fig. 1. A quantitative comparison of homology estimation with and without enforcing the multiview subspace constraint of (11). (a) Shows the image
(of floor tiles) from which the 19-frame sequence was synthetically generated with ground-truth known homologies. The tracked feature points are
marked in black crosses. The different regions-of-interest in which homography estimation was applied are marked by black curves. The numbers
correspond to the maximum distance between any two feature points within each region. (b) The graph displays the average error in homology
estimation of all frames in the sequence as a function of the size of the region of interest. The error for each 3 x 3 homology H is defined as:
| I —HgpnarrunH || - Where I is with the 3 x 3 identity matrix. The smaller the region is, the larger the initial error is (dashed curve). Enforcing the

multiview subspace constraint of (11) improves the accuracy, especially in small regions (solid curve).

1 —Q; QO
R=|9Q, 1 —Qx (19)
—Qy Qx 1

Now, assuming the calibration is fixed for all views, the
homography matrix Af has the form

A = OB + ATy (20)

Therefore,

ClAlC =R+ T (21)

Under these assumptions, each additional frame adds 7
new degrees of freedom: three translation parameters ),
three rotation parameters (2%, ., Qf), and 1 scale factor A/
(since A’ can be recovered only up to a scale factor).
Rearranging the components of the homography matrix A/
in a single (9 x 1) column vector af, we can rewrite (21) as

7
Mal = Non | &7 |, (22)
1
where
i 00 0 iy —ip i
N=|0 7 0 —iy 0 i iol, (23)
0 0 @ 4 —iy 0 s

i1, %0, 13 are as defined in (9), ﬁf = [Qﬁf, Q{/, QQ]T, and M is a
9 x 9 matrix which depends on the camera intrinsic
parameters (of C). Note that M is invertible.*

4. Proof: Let B= C7'AC. Since C~! and C are regular matrices, we get
that B = 0 iff A = 0. Rearranging the (3 x 3) matrix B into a (9 x 1) column
vector b, we get b= Ma. If M were singular, then 3@ # 0 such that
b= Md=0. This implies that the corresponding B =0, while the
corresponding A # 0. This, however contradicts the observation that B =
0 iff A =0, hence, M must be a nonsingular matrix.

Since the matrix A depends only on plane normal
parameters, it is common to all views f=1...F whose
homographies are estimated relative to the reference frame
J. Similarly, since the calibration is fixed, the matrix M is
also common to all views. We assume that the homo-
graphies flz = M AJ have been computed and are each
known up to a scale factor. Hence, we can stack all the
computed homography vectors in a 9 x F' matrix A, where
each column corresponds to a single image view J/ (relative
to the reference view J):

[A]QXF - [51 :F}ng
i i
= [M g W gz | ' a"
1 1 TxF
Al 0
0 A

FxF

The dimensionality of the matrices on the right-hand
side of (24) implies that the matrix A is of rank 7 at most.
Hence, the collection of all homographies of a plane across
all images (for the case of small camera rotation, arbitrary
translation, and fixed calibration) resides in a 7-dimensional
linear subspace.

7 EMPIRICAL EVALUATION

Next, we explore the utility of the derived multiview
constraints. The purpose here is to examine the strength and
potential uses of these constraints and not to propose a
particular algorithm.
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Fig. 2. Detection of nonrigid motion: (a), (b), and (c) Sample images from a sequence of 20 images, containing three different planes (the three
boxes). In the first nine images, all planes are static and only the camera moves, i.e., the planes move rigidly with respect to each other (Fig. 2a and
2b). In images 10 to 20, the right box moved relative to the other two planes (Fig. 2c). (d) Displays the results of nonrigid motion detection for the
case of two planes using (11). The relative homographies are estimated for the right box where the white box is used as a reference plane. The
graph shows the percentage of error for each rank of the relative-homographies matrix  of (11), once for the static scene (dashed curve) and once
for the dynamic scene (solid curve). (e) Displays results of nonrigid motion detection for the case of multiple planes using (13). The relative
homographies are estimated for the two brown boxes and the white box is used as a reference plane. The graph displays the percentage of error for
each of the relative-homographies matrix G of (13), once for the static scene and once for the moving object scene. In both cases, (d) and (e), the
error is practically zero at rank 4 for the static scene (dashed curve); whereas, for the dynamic scene, the rank 4 constraint is clearly violated (solid

curve). See text for more details.

7.1 Constrained Homography Estimation
Homography estimation techniques produce reliable homo-
graphy parameters when the planar surface captures a large
image region. However, they tend to be highly inaccurate
when applied to small image regions [25], as is often the
case in scenes with multiple planar surfaces. While each
independent homography computation is unreliable, all
relative homographies of all pairs of planes across all views,
must satisfy the multiview subspace constraints derived
above, i.e., they must all reside in a 4-dimensional (or even
smaller) linear subspace. These multiview constraints can
therefore be used as additional constraints to compensate
for insufficient spatial information, leading to more accurate
homography estimation. This is illustrated next for the
subspace constraints derived in (11).

Fig. 1 shows a quantitative comparison of homography
estimation with and without enforcing the multiview
subspace constraint of (11). A synthetic sequence was
generated by geometrically warping a reference image by

known ground truth homologies (The case of pure transla-
tion results in homologies even for a single plane. The
“reference plane” in this case is the plane at infinity. This is
further elaborated in Section 6.1. Feature points were
automatically selected in the reference image (marked
points in Fig. 1a) and were tracked using the KLT algorithm
[15], [2]. The homologies were estimated between the
reference image and each of the other images using Least-
Squares fit to the computed point correspondences. They
were then compared against the ground truth homologies
and the error for each 3 x 3 homology H was defined as
11 — Hg armanH ||, where I is the 3 x 3 identity matrix.
The experiment was repeated for varying region sizes, by
taking the feature points from within different regions of
interest (also marked in Fig. 1a). The smaller the region is,
the larger the error is (see dashed curve in Fig. 1b). All these
homologies where then stacked into a 9 x F' matrix H (see
(11)). The columns of H were then projected onto the closest
4-dimensional linear subspace. Enforcing the multiview
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Fig. 3. Constrained multiframe homography estimation. (a), (b), (c), (d), and (e) Sample frames from a sequence of 34 frames. Image (b) was used
as the reference frame. (f) Poor alignment resulting from bad two-frame homography estimation of the house region between the reference frame (b)
and frame (d). The frame was completely distorted because the house region is small and was significantly occluded by the road sign. (g) Shows the
same result overlayed on top of the reference image (b). (h) Good alignment as a result of applying the constrained multiframe homography
estimation. The house is now well aligned even though only a small portion of the house is visible (see overlay image (i)), while the rest of the image
is not distorted. The road sign is not aligned because it is at a different depth and displays accurate 3D parallax.

subspace constraint reduced the errors significantly for
small regions (see solid curve in Fig. 1b). As expected, when
the region is small, the improvement is more significant
than when it is large.

The subspace projection was done by applying SVD to
the matrix H of (11) and setting to zero all but the four
largest singular values. To guarantee uniform error in all
matrix entries before subspace projection and to further
condition the numerical process, we first applied coordinate
normalization similar to that suggested by Hartley [9].

7.2 Detecting Nonrigid Motion

The multiview subspace constraints on multiple planes are
true only for planes moving rigidly with respect to each
other. Planar surfaces with different 3D motions will not
necessarily comply with these constraints. This can be used
as an additional cue for detecting independently moving
objects.

Given two planar surfaces (m, and 7,), we can construct
the matrix H of their relative homographies (see (11)) and
examine its rank. If rank(H) > 4 (beyond reasonable noise),
then the two planes cannot be moving rigidly with respect
to each other. Note that this is a sufficient condition, but not
a necessary one. Fig. 2 displays a comparison of the rank of
the relative-homography matrix H, once constructed from
homographies of two rigidly moving planes, and once
constructed from homographies of two nonrigidly moving
planes. The sequence contains 20 images taken from
different view points and different orientations (Figs. 2a,
2b, and 2c). The scene contains three different planar
surfaces, which are rigid with respect to each other in
images 1 to 9 (Figs. 2a and 2b). In images 10-20, one of the
planes moved relative to the other two planes (the right box
in Fig. 2c). The graph in Fig. 2d shows the percentage of
residual error (“noise”) assuming different ranks of the
relative-homographies matrix H. The error is defined as

NSNS
i=rt+1 i=1

where S, are the singular values of H, r is the assumed
rank of H, and n is the total number of singular values.
The dashed curve shows the decay of error as a function
of the rank for the case of two rigid boxes (frames 1-9),
and the solid curve shows the decay of error as a
function of rank for the same two boxes when they move
nonrigidly (frames 10-20) The rank of H for the static
scene is clearly no more than 4; whereas, for the moving
plane case, it is well above 4.

Similarly, the multiplane, multiview subspace constraint
of (13) is also true only for static scenes and is violated in the
dynamic scene. Fig. 2e displays a comparison of the rank of
the relative-homography matrix G once constructed from
the homographies of the three rigidly moving planes and
once constructed from the homographies of the three
nonrigidly moving planes. The graph displays the percen-
tage of error for each possible rank of the relative-
homographies matrix of the three boxes for the static scene
subsequence and for the moving object subsequence. The
rank of G for the static scene is clearly no more than 4
(dashed curve); whereas, for the moving plane case, it is
well above 4 (solid curve).

7.3 Homography Estimation for a Single Plane

We have successfully developed and implemented an end-
to-end algorithm, which takes advantage of the multiview
subspace constraints on homographies of a single plane
across multiple views, for the simpler and more restricted
cases discussed in Section 6. Such assumptions are valid for
multiple consecutive frames in short video segments (where
the assumption of small camera rotation is still valid). The
algorithm we developed [29] combines the multiframe
linear subspace constraints with “direct” methods, leading
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to a simultaneous multiframe constrained homography estima-
tion algorithm directly from brightness variations across
multiple frames. We refer the reader to [29] for more details.
Fig. 3 shows a comparison of applying two-frame homo-
graphy estimation and multiframe constrained homography
estimation on small image regions, under the assumption of
instantaneous camera motion. The sequence contains
34 frames taken by a moving camera. Because the moving
camera is imaging the scene from a short distance, different
planar surfaces (e.g., the house, the road-sign, etc.) induce
different homographies. In frames where the house was not
occluded, the two-frame homography estimation (when
applied only to the house region) aligned the house region
reasonably well. However, in frames where only a small
portion of the house was visible (e.g., when the house was
partially occluded by the road-sign and was not fully in the
camera field of view), the quality of the alignment resulting
from two-frame homography estimation degraded drasti-
cally (see Figs. 3f and 3g). The alignment resulting from the
multiframe constrained homography estimation, on the
other hand, successfully aligned the house, even in frames
where only a small portion of the house was visible (see
Figs. 3h and 3i). For further details, see [29].

8 CONCLUDING REMARKS

In this paper, we showed that, for scenes containing
multiple (at least two) planes, multiview linear subspace
constraints on their homographies can be derived. Similar
constraints can also be derived for scenes containing a
single planar surface under restricted assumptions on
camera motion (which are usually valid in short video
sequences). We further showed that these constraints can
potentially be used to improve homography estimation of
existing algorithms and can serve as an additional cue for
detection of nonrigid motion.
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