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Abstract. In this paper we present an algorithm that estimates dense
planar-parallax motion from multiple uncalibrated views of a 3D scene.
This generalizes the “plane + parallax” recovery methods to more than
two frames. The parallax motion of pixels across multiple frames (relative
to a planar surface) is related to the 3D scene structure and the camera
epipoles. The parallax field, the epipoles, and the 3D scene structure
are estimated directly from image brightness variations across multiple
frames, without pre-computing correspondences.

1 Introduction

The recovery of the 3D structure of a scene and the camera epipolar-geometries
(or camera motion) from multiple views has been a topic of considerable research.
The large majority of the work on structure-from-motion (SFM) has assumed
that correspondences between image features (typically a sparse set of image
points) is given, and focused on the problem of recovering SEM based on this
input. Another class of methods has focused on recovering dense 3D structure
from a set of dense correspondences or an optical flow field. While these have
the advantage of recovering dense 3D structure, they require that the correspon-
dences are known. However, correspondence (or flow) estimation is a notoriously
difficult problem.

A small set of techniques have attempted to combine the correspondence
estimation step together with SFM recovery. These methods obtain dense cor-
respondences while simultaneously estimating the 3D structure and the camera
geometries (or motion) [3,11,13,16,15]. By inter-weaving the two processes, the
local correspondence estimation process is constrained by the current estimate of
(global) epipolar geometry (or camera motion), and vice-versa. These techniques
minimize the violation of the brightness gradient constraint with respect to the
unknown structure and motion parameters. Typically this leads to a significant



improvement in the estimated correspondences (and the attendant 3D structure)
and some improvement in the recovered camera geometries (or motion). These
methods are sometimes referred to as “direct methods” [3], since they directly
use image brightness information to recover 3D structure and motion, without
explicitly computing correspondences as an intermediate step.

While [3, 16, 15] recover 3D information relative to a camera-centered coordi-
nate system, an alternative approach has been proposed for recovering 3D struc-
ture in a scene-centered coordinate system. In particular, the “Plane+Parallax”
approach [14,11,13,7,9, 8], which analyzes the parallax displacements of points
relative to a (real or virtual) physical planar surface in the scene (the “refer-
ence plane”). The underlying concept is that after the alignment of the reference
plane, the residual image motion is due only to the translational motion of the
camera and to the deviations of the scene structure from the planar surface. All
effects of camera rotation or changes in camera calibration are eliminated by
the plane stabilization. Hence, the residual image motion (the planar-parallax
displacements) form a radial flow field centered at the epipole.

The “Plane+Parallax” representation has several benefits over the traditional
camera-centered representation, which make it an attractive framework for cor-
respondence estimation and for 3D shape recovery:

1. Reduced search space: By parametrically aligning a visible image struc-
ture (which usually corresponds to a planar surface in the scene), the search
space of unknowns is significantly reduced. Globally, all effects of unknown
rotation and calibration parameters are folded into the homographies used
for patch alignment. The only remaining unknown global camera parame-
ters which need to be estimated are the epipoles (i.e., 3 global unknowns
per frame; gauge ambiguity is reduced to a single global scale factor for all
epipoles across all frames). Locally, because after plane alignment the un-
known displacements are constrained to lie along radial lines emerging from
the epipoles, local correspondence estimation reduces from a 2-D search prob-
lem into a simpler 1-D search problem at each pixel. The 1-D search problem
has the additional benefit that it can uniquely resolve correspondences, even
for pixels which suffer from the aperture problem (i.e., pixels which lie on
line structures).

2. Provides shape relative to a plane in the scene: In many applications,
distances from the camera are not as useful information as fluctuations with
respect to a plane in the scene. For example, in robot navigation, heights
of scene points from the ground plane can be immediately translated into
obstacles or holes, and can be used for obstacle avoidance, as opposed to
distances from the camera.

3. A compact representation: By removing the mutual global component (the
plane homography), the residual parallax displacements are usually very



small, and hence require significantly fewer bits to encode the shape fluc-
tuations relative to the number of bits required to encode distances from
the camera. This is therefore a compact representation, which also supports
progressive encoding and a high resolution display of the data.

4. A stratified 2D-3D representation: Work on motion analysis can be roughly
classified into two classes of techniques: 2D algorithms which handle cases
with no 3D parallax (e.g., estimating homographies, 2D affine transforma-
tions, etc), and 3D algorithms which handle cases with dense 3D parallax
(e.g., estimating fundamental matrices, trifocal tensors, 3D shape, etc). Prior
model selection [17] is usually required to decide which set of algorithms to
apply, depending on the underlying scenario. The Plane+Parallax repre-
sentation provides a unified approach to 2D and 3D scene analysis, with
a strategy to gracefully bridge the gap between those two extremes [10].
Within the Plane+Parallax framework, the analysis always starts with 2D
estimation (i.e., the homography estimation). When that is all the informa-
tion available in the image sequence, that is where the analysis stops. The
3D analysis then gradually builds on top of the 2D analysis, with the gradual
increase in 3D information (in the form of planar-parallax displacements and
shape-fluctuations w.r.t. the planar surface).

[11,13] used the Plane+Parallax framework to recover dense structure rela-
tive to the reference plane from two uncalibrated views. While their algorithm
linearly solves for the structure directly from brightness measurements in two
frames, it does not naturally extend to multiple frames. In this paper we show
how dense planar-parallax displacements and relative structure can be recov-
ered directly from brightness measurements in multiple frames. Furthermore, we
show that many of the ambiguities existing in the two-frame case of [11,13] are
resolved by extending the analysis to multiple frames. Our algorithm assumes as
input a sequence of images in which a planar surface has been previously aligned
with respect to a reference image (e.g., via one of the 2D parametric estimation
techniques, such as [1,6]). We do not assume that the camera calibration in-
formation is known. The output of the algorithm is: (i) the epipoles for all the
images with respect to the reference image, (i) dense 3D structure of the scene
relative to a planar surface, and (iii) the correspondences of all the pixels across
all the frames, which must be consistent with (i) and (ii). The estimation process
uses the ezact equations (as opposed to instantaneous equations, such as in [4,
15]) relating the residual parallax motion of pixels across multiple frames to the
relative 3D structure and the camera epipoles. The 3D scene structure and the
camera epipoles are computed directly from image measurements by minimiz-
ing the variation of image brightness across the views without pre-computing a
correspondence map.



The current implementation of our technique relies on the prior alignment of
the video frames with respect to a planar surface (similar to other plane+parallax
methods). This requires that a real physical plane exists in the scene and is visi-
ble in all the video frames. However, this approach can be extended to arbitrary
scenes by folding in the plane homography computation also into the simultane-
ous estimation of camera motion, scene structure, and image displacements (as
was done by [11] for the case of two frames).

The remainder of the paper describes the algorithm and shows its perfor-
mance on real and synthetic data. Section 2 shows how the 3D structure relates
to the 2D image displacement under the plane+parallax decomposition. Sec-
tion 3 outlines the major steps of our algorithm. The benefits of applying the
algorithm to multiple frames (as opposed to two frames) are discussed in Sec-
tion 4. Section 5 shows some results of applying the algorithm to real data.
Section 6 concludes the paper.

2 The Plane+Parallax Decomposition

The induced 2D image motion of a 3D scene point between two images can be
decomposed into two components [9,7,10,11,13,14,8,2]: (i) the image motion
of a reference planar surface II (i.e., a homography), and (ii) the residual image
motion, known as “planar parallax”. This decomposition is described below.

To set the stage for the algorithm described in this paper, we begin with the
derivation of the plane+parallax motion equations shown in [10]. Let p = (z,y,1)
denote the image location (in homogeneous coordinates) of a point in one view
(called the “reference view”), and let p’ = (z',y’, 1) be its coordinates in another
view. Let B denote the homography of the plane IT between the two views. Let
B! denote its inverse homography, and B~'3 be the third row of B~!. Let
Pw = (Tw,Yu,1) = ];3%1:;’,, namely, when the second image is warped towards
the first image using the inverse homography B~!, the point p’ will move to the
point p., in the warped image. For 3D points on the plane IT, p,, = p, while for
3D points which are not on the plane, p,, # p. It was shown in [10] that!:

p'—p=p —Pw)+ (Pw—Dp)
and
Pw — P = _’Y(t3p'w - t) (]-)

where v = H/Z represents the 3D structure of the point p, where H is the per-
pendicular distance (or "height”) of the point from the reference plane IT, and

! The notation we use here is slightly different than the one used in [10]. The change
to projective notation is used to unify the two separate expressions provided in [10],
one for the case of a finite epipole, and the other for the case of an infinite epipole.



Z is its depth with respect to the reference camera. All unknown calibration pa-
rameters are folded into the terms in the parenthesis, where ¢ denotes the epipole
in projective coordinates and t3 denotes its third component: t = (¢, t2, t3).

In its current form, the above expression cannot be directly used for estimat-
ing the unknown correspondence p,, for a given pixel p in the reference image,
since p,, appears on both sides of the expression. However, p,, can be eliminated
from the right hand side of the expression, to obtain the following expression:

(tsp — ). (2)

Pw—P:—l_'_,th

This last expression will be used in our direct estimation algorithm.

3 Multi-Frame Parallax Estimation

Let {®;}_; be [+ 1 images of a rigid scene, taken using cameras with unknown
calibration parameters. Without loss of generality, we choose @, as a reference
frame. (In practice, this is usually the middle frame of the sequence). Let IT be
a plane in the scene that is visible in all [ images (the “reference plane”). Using
a technique similar to [1, 6], we estimate the image motion (homography) of IT
between the reference frame $, and each of the other frames ¢; (j=1,...,1).
Warping the images by those homographies {B]-}gz1 yields a new sequence of
[ images, {I; };zl, where the image of IT is aligned across all frames. Also, for
the sake of notational simplicity, let us rename the reference image to be I, i.e.,
I = &y. The only residual image motion between reference frame I and the
warped images, {I;}\_,, is the residual planar-parallax displacement pJ, — p
(j = 1..1) due to 3D scene points that are not located on the reference plane I7.
This residual planar parallax motion is what remains to be estimated.

Let u? = (u’/,v7) denote the first two coordinates of pJ — p (the third

coordinate is 0). From Eq. (2) we know that the residual parallax is:

o))
vl 1+t |ty — 1
where the superscripts j denote the parameters associated with the jth frame.
In the two-frame case, one can define a@ = H_”W, and then the problem
posed in Eq. (3) becomes a bilinear problem in « and in ¢ = (¢1,2,¢3). This
can be solved using a standard iterative method. Once « and ¢ are known,
can be recovered. A similar approach was used in [11] for shape recovery from
two-frames. However, this approach does not extend to multiple (> 2) frames,
because « is not a shape invariant (as it depends on ¢3), and hence varies from
frame to frame. In contrast, v is a shape invariant, which is shared by all image
frames. Our multi-frame process directly recovers v from multi-frame brightness
quantities.



The basic idea behind our direct estimation algorithm is that rather than
estimating [ separate u? vectors (corresponding to each frame) for each pixel,
we can simply estimate a single v (the shape parameter), which for a particular
pixel, is common over all the frames, and a single #J = (¢,, 5, t3) which for each
frame I; is common to all image pixels. There are two advantages in doing this:

1. For n pixels over [ frames we reduce the number of unknowns from 2nl to
n + 31

2. More importantly, the recovered flow vector is constrained to satisfy the
epipolar structure implicitly captured in Eq. (2). This can be expected to
significantly improve the quality of the recovered parallax flow vectors.

Our direct estimation algorithm follows the same computational framework
outlined in [1] for the quasi-parametric class of models. The basic components of
this framework are: (i) pyramid construction, (ii) iterative estimation of global
(motion) and local (structure) parameters, and (iii) coarse-to-fine refinement.
The overall control loop of our algorithm is therefore as follows:

1. Construct pyramids from each of the images I; and the reference frame 1.

2. Initialize the structure parameter + for each pixel, and motion parameter tJ
for each frame (usually we start with v = 0 for all pixels, and £ = (0,0,1)%
for all frames).

3. Starting with the coarsest pyramid level, at each level, refine the structure
and motion using the method outlined in Section 3.1.

4. Repeat this step several times (usually about 4 or 5 times per level).

5. Project the final value of the structure parameter to the next finer pyramid
level. Propagate the motion parameters also to the next level. Use these as
initial estimates for processing the next level.

6. The final output is the structure and the motion parameters at the finest
pyramid level (which corresponds to the resolution of the input images) and
the residual parallax flow field synthesized from these.

Of the various steps outline above, the pyramid construction and the projec-
tion of parameters are common to many techniques for motion estimation (e.g.,
see [1]), hence we omit the description of these steps. On the other hand, the
refinement step is specific to our current problem. This is described next.

3.1 The Estimation Process

The inner loop of the estimation process involves refining the current values of
the structure parameters v (one per pixel) and the motion parameters t# (3
parameters per frame). Let us denote the “true” (but unknown) values of these
parameters by 7(z,y) (at location (x,y) in the reference frame) and t7. Let
uw? (z,y) = (u/,v?) denote the corresponding unknown true parallax flow vector.



Let 7., tJ,ud denote the current estimates of these quantities. Let 6y = v — .,
§t3 = (6t],6t3,6t5) = t9 —tJ, and §ud = (6u’, 6v7) = u? —ud. These § quantities
are the refinements that are estimated during each iteration.

Assuming brightness constancy (namely, that corresponding image points
across all frames have a similar brightness value)?, we have:

I(z,y) = Lj(z?,y7) = Li(z + v,y +v7) = Li(z + ul + 6w,y + vl + 6v7)
For small §u? we make a further approximation:
I(x — b’y — 6v7) = Ij(x +ul,y +vl).
Expanding [ to its first order Taylor series around (z,y) :
I(x — 6u?,y — 6v7) = I(z,y) — L.6u? — 1,60

where I, I, denote the image intensity derivatives for the reference image (at
pixel location (z,y)). From here we get the brightness constraint equation:

Li(z +ul,y +0)) m I(x,y) — Louw’ — I,60
Or:
Li(x +ul,y +vl) — I(2,y) + L6w + I,6v" ~0
Substituting dud = u? — ui yields:
Li(e +ul,y +0]) = I(z,y) + L —ul) + I,(v) —v]) = 0
Or, more compactly:
I (z,y) + Lw’ + I,v" =0 (4)

where
I (,y) € Lz +ul,y +v2) — I(z,y) — Ll — I,v!

If we now substitute the expression for the local parallax flow vector u? given
in Eq. (3), we obtain the following equation that relates the structure and motion
parameters directly to image brightness information:

I (2,y) + 220 (Lo - ) + Lty 1)) ~ 0 (5)

We refer to the above equation as the “epipolar brightness constraint”.

2 Note that over multiple frames the brightness will change somewhat, at least due to
global illumination variation. We can handle this by using the Laplacian pyramid
(as opposed to the Gaussian pyramid), or otherwise pre-filtering the images (e.g.,
normalize to remove global mean and contrast changes), and applying the brightness
constraint to the filtered images.



Each pixel and each frame contributes one such equation, where the un-
knowns are: the relative scene structure v = y(z,y) for each pixel (z,y), and
the epipoles # for each frame (j = 1,2,...,1). Those unknowns are computed in
two phases. In the first phase, the “Local Phase”, the relative scene structure, -,
is estimated separately for each pixel via least squares minimization over mul-
tiple frames simultaneously. This is followed by the “Global Phase”, where all
the epipoles 7 are estimated between the reference frame and each of the other
frames, using least squares minimization over all pixels. These two phases are
described in more detail below.

Local Phase In the local phase we assume all the epipoles are given (e.g.,
from the previous iteration), and we estimate the unknown scene structure ~y
from all the images. v is a local quantity, but is common to all the images
at a point. When the epipoles are known (e.g., from the previous iteration),
each frame I; provides one constraint of Eq. (5) on v. Therefore, theoretically,
there is sufficient geometric information for solving for v. However, for increased
numerical stability, we locally assume each + is constant over a small window
around each pixel in the reference frame. In our experiments we used a 5 x 5
window. For each pixel (z,y), we use the error function:

VRSV (f;(l 1)+ (L(the — ) + I, (55 - ) )

7 (&,9)eWin(z,y)

where v = y(z,y), IT = I](%,9), I. = 1.(%,9), I, = I,(Z,9), and Win(z,y) is a
5x5 window around (z,y). Differentiating Err(y) with respect to v and equating
it to zero yields a single linear equation that can be solved to estimate y(z,y).
The error term Err(y) was obtained by multiplying Eq. (5) by the denominator
(1+ fytg) to yield a linear expression in . Note that without multiplying by the
denominator, the local estimation process (after differentiation) would require
solving a polynomial equation in v whose order increases with ! (the number of
frames). Minimizing Err(y) is in practice equivalent to applying weighted least

squares minimization on the collection of original Eqgs. (5), with weights equal
1

147.t)

is the estimate of the shape at pixel (z,y) from the previous iteration) to the

to the denominators. We could apply normalization weights (where 7.

linearized expression, in order to assure minimization of meaningful quantities
(as is done in [18]), but in practice, for the examples we used, we found it was
not necessary to do so during the local phase. However, such a normalization
weight was important during the global phase (see below).

Global Phase In the global phase we assume the structure 7 is given (e.g.,
from previous iteration), and we estimate for each image I; the position of its



epipole #/ with respect to the reference frame. We estimate the set of epipoles
{#} by minimizing the following error with respect each of the epipoles:

Ere(@) Y (W) [+ 8) + 7 (L~ £) + 1,5 - )])
(z,y)

(7)
where I, = I.(z,y),I, = I,(%,y),I] = I](z,y),y = ¥(z,y). Note that, when
~v(x,y) are fixed, this minimization problem decouples into a set of separate in-
dividual minimization problems, each a function of one epipole #J for the jth
frame. The inside portion of this error term is similar to the one we used above
for the local phase, with the addition of a scalar weight W;(z,y). The scalar
weight is used to serve two purposes. First, if Eq. (7) did not contain the weights
W;(x,y), it would be equivalent to a weighted least squares minimization of
Eq. (5), with weights equal to the denominators (1 + (z,y)t}). While this pro-
vides a convenient linear expression in the unknown #7, these weights are not
physically meaningful, and tend to skew the estimate of the recovered epipole.
Therefore, in a fashion similar to [18], we choose the weights W;(z,y) to be
1+ 'y(a:,y)t%’c)’l, where the v is the updated estimate from the local phase,
whereas the t?’;,c is based on the current estimate of ¢ (from the previous itera-
tion).

The scalar weight also provides us an easy way to introduce additional ro-
bustness to the estimation process in order to reduce the contribution of pixels
that are potentially outliers. For example, we can use weights based on residual
misalignment of the kind used in [6].

4 Multi-Frame vs. Two-Frame Estimation

The algorithm described in Section 3 extends the plane+parallax estimation
to multiple frames. The most obvious benefit of multi-frame processing is the
improved signal-to-noise performance that is obtained due to having a larger
set of independent samples. However, there are two additional benefits to multi-
frame estimation: (i) overcoming the aperture problem, from which the two-frame
estimation often suffers, and (ii) resolving the singularity of shape recovery in
the vicinity of the epipole (we refer to this as the epipole singularity).

4.1 Eliminating the Aperture Problem

When only two images are used as in [11,13], there exists only one epipole. The
residual parallax lies along epipolar lines (centered at the epipole, see Eq. (3)).
The epipolar field provides one line constraint on each parallax displacement,
and the Brightness Constancy constraint forms another line constraint (Eq. (4)).



When those lines are not parallel, their intersection uniquely defines the parallax
displacement. However, if the image gradient at an image point is parallel to the
epipolar line passing through that point, then its parallax displacement (and
hence its structure) can not be uniquely determined. However, when multiple
images with multiple epipoles are used, then this ambiguity is resolved, because
the image gradient at a point can be parallel to at most one of the epipolar lines
associated with it. This observation was also made by [4, 15].

To demonstrate this, we used a sequence composed of 9 images (105 x 105
pixels) of 4 squares (30 x 30 pixels) moving over a stationary textured background
(which plays the role of the aligned reference plane). The 4 squares have the same
motion: first they were all shifted to the right (one pixel per frame) to generate
the first 5 images, and then they were all shifted down (one pixel per frame) to
generate the next 4 images. The width of the stripes on the squares is 5 pixels.
A sample frame is shown in Fig. 1.a (the fifth frame).

The epipoles that correspond to this motion are at infinity, the horizontal
motion has an epipole at (c0,52.5], and the vertical motion has an epipole at
[52.5, 00). The texture on the squares was selected so that the spatial gradients of
one square are parallel to the direction of the horizontal motion, another square
has spatial gradients parallel to the direction of the vertical motion, and the two
other squares have spatial gradients in multiple directions. We have tested the
algorithm on three cases: (i) pure vertical motion, (ii) pure horizontal motion,
and (iii) mixed motions.

Fig. 1.b is a typical depth map that results from applying the algorithm to
sequences with purely vertical motion. (Dark grey corresponds to the reference
plane, and light grey corresponds to elevated scene parts, i.e., the squares). The
structure for the square with vertical bars is not estimated well as expected,
because the epipolar constraints are parallel to those bars. This is true even
when the algorithm is applied to multiple frames with the same epipole.

Fig. 1.c is a typical depth map that results from applying the algorithm to
sequences with purely horizontal motion. Note that the structure for the square
with horizontal bars is not estimated well.

Fig. 1.d is a typical depth map that results from applying the algorithm to
multiple images with mixed motions (i.e., more than one distinct epipole). Note
that now the shape recovery does not suffer from the aperture problem.

4.2 Epipole Singularity

From the planar parallax Eq. (3), it is clear that the structure v cannot be
determined at the epipole, because at the epipole: téx — t{ =0 and téy — té =
0. For the same reason, the recovered structure at the wvicinity of the epipole
is highly sensitive to noise and unreliable. However, when there are multiple

10
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Fig. 1. Resolving aperture problem: (a) A sample image, (b) Shape recovery for pure

vertical motion. Ambiguity along vertical bars, (c) Shape recovery for pure horizontal
motion. Ambiguity along horizontal bars, (d) Shape recovery for a sequence with mixed
motions. No ambiguity.

epipoles, this ambiguity disappears. The singularity at one epipole is resolved
by information from another epipole.

To test this behavior, we compared the results for the case with only one
epipole (i.e., two-frames) to cases with multiple epipoles at different locations.
Results are shown in Fig. 2. The sequence that we used was composed of images
of a square that is elevated from a reference plane and the simulated motion
(after plane alignment) was a looming motion (i.e., forward motion). Fig. 2.a,b,c
show three sample images from the sequence. Fig. 2.d shows singularity around
the epipole in the two-frame case. Figs. 2.e;h,i,j show that the singularity at
the epipoles is eliminated when there is more than one epipole. Using more
images also increases the signal to noise ratio and further improves the shape
reconstruction.

5 Real World Examples

This section provides experimental results of applying our algorithm to real world
sequences. Fig. 3 shows an example of shape recovery from an indoor sequence
(the “block” sequence from [11]). The reference plane is the carpet. Fig. 3.a
shows one frame from the sequence. Fig. 3.b shows the recovered structure.
Brighter grey levels correspond to taller points relative to the carpet. Note the
fine structure of the toys on the carpet.

Fig. 4 shows an example of shape recovery for a sequence of five frames (part
of the flower garden sequence). The reference plane is the house. Fig. 4.a shows
the reference frame from the sequence. Fig. 4.b shows the recovered structure.
Note the gradual change of depth in the field.

Fig. 5 shows an example of shape recovery for a sequence of 5 frames. The
reference plane is the flat region in front of the building. Fig. 5.a show one

11
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Fig. 2. Resolving epipole singularity in case of multiple epipoles. (a-c) sample images
from a 9-frame sequence with multiple epipoles, (d,f) shape recovery using 2 images
(epipole singularity exist in this case), (e,g) using 3 images with 2 different epipoles,
(h,k) using 5 images with multiple epipoles, (i,1) using 7 images with multiple epipoles,
(j,m) using 9 images with multiple epipoles. Note that epipole singularity disappears
once multiple epipoles exist. (f,g,k,l,m) show an enlarge view of the depth image at the
vicinity of the epipoles. The box shows the region where the epipoles are. For visibility
purposes, different images are shown at different scales. For reference, coordinate rulers

are attached to each image. 12



(b)

Fig. 3. Blocks sequence. (a) one frame from the sequence. (b) The recovered shape
(relative to the carpet). Brighter values correspond to taller points.

(b)

Fig. 4. Flower-garden sequence. (a) one frame from the sequence. (b) The recovered
shape (relative to the facade of the house). Brighter values correspond to points farther
from the house.

13



frame from the sequence. Fig. 5.b shows the recovered structure. The brightness
reflects the magnitude of the structure parameter v (brighter values correspond
to scene points above the reference plane and darker values correspond to scene
points below the reference plane). Note the fine structure of the stairs and the
lamp-pole. The shape of the building wall is not fully recovered because of lack
of texture in that region.

(b)

Fig. 5. Stairs sequence. (a) one frame from the sequence. (b) The recovered shape
(relative to the ground surface just in front of the building). Brighter values correspond
to points above the ground surface, while darker values correspond to points below the
ground surface.

6 Conclusion

We presented an algorithm for estimating dense planar-parallax displacements
from multiple uncalibrated views. The image displacements, the 3D structure,
and the camera epipoles, are estimated directly from image brightness variations
across multiple frames. This algorithm extends the two-frames plane+parallax
estimation algorithm of [11,13] to multiple frames. The current algorithm re-
lies on prior plane alignment. A natural extension of this algorithm would be
to fold the homography estimation into the simultaneous estimation of image
displacements, scene structure, and camera motion (as was done by [11] for two
frames).
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