
Regenerative Morphing

Eli Shechtman1,3 Alex Rav-Acha2 Michal Irani2 Steve Seitz3,4

1Adobe Systems 2Weizmann Institute of Science 3University of Washington 4Google

Abstract

We present a new image morphing approach in which the
output sequence is regenerated from small pieces of the two
source (input) images. The approach does not require man-
ual correspondence, and generates compelling results even
when the images are of very different objects (e.g., a cloud
and a face). We pose the morphing task as an optimiza-
tion with the objective of achieving bidirectional similarity
of each frame to its neighbors, and also to the source im-
ages. The advantages of this approach are 1) it can operate
fully automatically, producing effective results for many se-
quences (but also supports manual correspondences, when
available), 2) ghosting artifacts are minimized, and 3) dif-
ferent parts of the scene move at different rates, yielding
more interesting (and less robotic) transitions.

1. Introduction
Image morphing is a popular visual effect in which one

image is transformed into another. It has been explored
since late 80’s both in the research community and in the
movie industry and today is a common tool with many
commercial solutions. Traditional morphing methods [18,
3, 6, 11, 15] combine a geometric warp and an intensity
blend. The warping step requires a dense correspondence;
this is problematic because of 1) the need for a tedious
manual annotation (in most cases), and 2) artifacts are
created where the correspondence does not exist (e.g., due
to occlusions), or where they are not consistent with the
warping model (e.g., complex motion).

In this work we revisit the morphing task and propose
a new approach, which we call regenerative morphing, in
which the output sequence is regenerated from small pieces
of the source images. In many cases, we show compelling
morphs without the need for any correspondences. Two
such examples are shown in (Fig. 1). In the first, a cloud
is morphed into a face and in the second one flower bouquet
is transformed into another. Note the complexity of these
examples as there is barely any visual similarity between
the face and the cloud, and the difference in color, layout
and quantity of flowers in the second. In both cases, our

Figure 1. Regenerative morphing results of a cloud into a face,
and one flower bouquet into another. Both are fully automatic.
In the first example, it is hard to define (even manually) a set
of correspondences between the source images, as required by
traditional morphing. The resulting morphs evolve smoothly
from one source image to the other without loosing their sharp
appearance. Note the non-trivial transitions: facial features (eyes,
mouth) deform and merge into close-by similar cloud patterns,
and similar flowers move towards each other while merging in a
seamless way.

method manages to automatically move, deform and blend
locally the visual content of the two images in a compelling
way to generate a visually pleasing transform. When user-
provided correspondences are available, they can be easily
incorporated to provide additional constraints and further
improve the transitions.

One common goal of any morphing method is that the
output is temporally coherent. However common morph-
ing artifacts (“ghosting” and blurriness due to blending, and
fold-overs and “holes” due to warping failure) can be per-
fectly temporally coherent. What makes these artifact dis-
turbing is their visual appearance - often it is some local
region which looks unnatural, i.e., is not representative of
the content in the source images. Our key observation is
that a good morph should be not only temporally coherent
but should also be visually similar to either of the sources
at every local region within the morph sequences. Imposing
such source similarity across the output sequence will sup-
press generation of artifacts that do not exist in the sources.
Moreover, unlike traditional morphing where artifacts in the
inner frames are treated indirectly by fixing or adding more
correspondences (when possible) to the source images, con-

1



straining local similarity on each inner frame to the sources,
directly addresses such artifacts.

We pose morphing as an optimization problem with
an objective function that captures both source similarity
and temporal coherence. Our optimization framework is
inspired by recent example-based methods [17, 10, 16, 2]
that showed impressive image and video synthesis results
for related problems such as retargeting, reshuffling, hole-
filling and texture synthesis. The objective functions used in
these methods capture the local similarity of the synthesized
output to the input, based on similarities between small
overlapping image patches at multiple scales.

In particular we build upon the bidirectional similarity
(BDS) method [16] that posed the problem of image sum-
marization as a maximization of a bidirectional similarity
function between the input and output. This concept is par-
ticulary useful for the morphing task since by requiring that
each patch at every frame is similar to a source patch (called
“coherence” in [16]) we get good coverage of all regions in
the frames (no “holes”), avoid artifacts and can gracefully
handle occlusions (a patch need appear in only one of the
sources). By requiring patches in the sources to exist in the
output sequence (called “completeness”), and by control-
ling the relative contributions of patches from each source
we can control the degree of similarity of the in-between
frames to the sources. Temporal coherence is achieved
by encouraging bidirectional similarity between each frame
and its neighboring frames. In this work we introduce gen-
eralizations of bidirectional similarity to multiple sources
as well as to relative similarity (a frame is α-similar to one
source and (1 − α)-similar to the second). Using these no-
tions we construct an objective function that captures the
two properties of a good morph - source similarity and tem-
poral coherence, and propose an iterative patch-sampling
based algorithm to optimize it.

Regenerative Morphing can be applied to various sce-
narios, ranging from interpolation of views of rigid objects
(also called view interpolation [6, 15, 9, 8]), to interpolat-
ing views of non-rigidly moving objects [14], to morphing
between totally different images with no clear correspon-
dences. In many cases of interest, compelling morphs can
be generated fully automatically. In other cases, we show
that adding a few manual points further improves results,
and outperforms prior morphing tools with the same man-
ual correspondences. One nice property of our morphing
approach is that different parts of the objects move non-
linearly and at varying rates, resulting in more interesting
and less “robotic” looking motions.

2. Morphing as an example-based optimization
Morphing problem definition Given two source (input)
images, S1 and S2, the goal is to generate a sequence of
N − 1 target (in-between) frames - {Tn}N−1

1 (where we

Figure 2. Notations and schematic representation of the morphing
objective. We want local similarities between each frame Tn to the
two neighboring frames Tn−1 and Tn+1 (Temporal Coherence), as
well as to the two sources S1 and S2 (Source Similarity).

define T0 := S1 and TN := S2). Such a sequence should
have the following two properties:

1. Temporal Coherence - the changes across the sequence
should be temporally smooth. This is a necessary re-
quirement for any morphing method but not a suffi-
cient one as it does not supply enough constraints on
how the visual content should evolve. For example
a simple “cross-dissolve” (with the typical “ghosting”
artifacts) or a sequence that gets gradually blurry to-
wards the middle frame, can both be considered tem-
porally coherent.

2. Source Similarity - every region in every frame should
be similar to some region in either of the sources. This
will prevent the appearance of the sequence from devi-
ating too much from the source images, thus avoiding
artifacts like loss of detail or generation of new content
(such as “ghosting”). In addition, we want the similar-
ity to gradually change from one source image to the
other.

We transform these two requirements into the following
unified objective function:

EMorph(T1, ..., TN−1) =
ESourceSim(T1, ..., TN−1) + βETempCoher(T1, ..., TN−1)(1)

Intuitively, ETempCoher is used to achieve temporal
smoothness of appearance as well as smoothness of motion,
therefore it should require similarity of all local regions in
Tn to close-by regions in Tn−1 and Tn+1. ESourceSim has
two goals: First, each frame Tn should be composed of lo-
cal regions that are similar to regions in either S1 or S2 or
both, and second, to have a continuous control over the rel-
ative similarity to each of the sources so it can be changed
gradually from S1 to S2. These notations and the two terms
are schematically shown in Fig. 2. In this work we build
upon the Bidirectional Similarity (BDS) method [16] that is
based on similar concepts. Therefore we briefly review this
method.



2.1. Bidirectional Similarity

The BDS method [16] was originally designed for image
and video summarization (retargeting) and was shown to be
useful for a variety of other image editing applications. It
is based on a bidirectional distance measure between pairs
of images - the source image S and a target image T .
The measure consists of two terms: (1) The completeness
term ensures that the output image contains as much visual
information from the input as possible, making it a good
summary. (2) The coherence term ensures that the output
is coherent with respect to the input and that new visual
structures (artifacts) are penalized. Formally, the distance
measure is defined simply as the sum of the average distance
of all image patches (e.g., 7x7 pixels) in S to their most
similar (nearest-neighbor) patches in T and vice versa:

dBDS(S, T ) =

dComplete(S,T )︷ ︸︸ ︷
1

NS

∑
s⊂S

min
t⊂T

D(s, t)+

dCoher(S,T )︷ ︸︸ ︷
1

NT

∑
t⊂T

min
s⊂S

D(t, s)

(2)
where the distance D is the SSD (sum of squared differ-
ences) of patch pixel values in L*a*b* color space. This
distance measure is minimized by an iterative algorithm to
solve for T under various constraints. Starting with some
initial guess for the output image, nearest neighbor (NN)
correspondences are computed for all overlapping patches
in S to all the patches in T (the completeness term), and for
all patches in T to all the patches in S for (the coherence
term). Next, “color-voting” is performed to accumulate the
pixel colors in T from all overlapping neighbor patches in
T and all the patches in S that have their NN overlapping
that pixel. Next, the color “votes” are averaged to minimize
the sum of square color differences, to generate a new im-
age. These steps are repeated until convergence. See more
details in [16].

2.2. Relative similarity with multiple sources

For the Source Similarity term we want the target be α-
similar to the first source and (1−α)-similar to the sec-

Figure 3. The Temporal Coherency and Source Fidelity terms.
The first is a simple average of the BDS of Tn with its neighbor
to the right, and the BDS with its neighbor to the left. The
later is a sum of the α − BlendedCompletness and the α −
DisjointCoherence of Tn with the two sources.

ond. We explore next a few possible generalizations of
BDS to two sources, and then apply these generalizations
to construct an objective function for the task of generating
a morph sequence. It turns out that the coherence and com-
pleteness terms can have different generalizations to multi-
ple sources, so we first present the α-blended generalization
of both and then another useful generalization of the coher-
ence term.

α-Blended Bidirectional Similarity - One straight for-
ward way to compute the bidirectional distance between a
target and two sources with an α-similarity parameter, is by
a simple convex summation of the two BDS terms. We call
this α-Blended Bidirectional Similarity:

dαBlendBDS(T, S1, S2, α) =
α · dBDS(T, S1) + (1−α) · dBDS(T, S2) (3)

Equivalently we can rewrite this as a sum of an α-Blended
Completeness and an α-Blended Coherence terms, where
both are interpolated linearly:

dαBlendCohere(T, S1, S2, α) =
α · dCoher(T, S1) + (1−α) · dCoher(T, S2)

dαBlendComplete(T, S1, S2, α) =
α · dComplete(T, S1) + (1−α) · dComplete(T, S2). (4)

The α-Blended Completeness term, can be rewritten as
follows from Eqs. (4), (2):

dαBlendComplete(T, S1, S2, α) =
α

NS1

∑
s1⊂S1

min
t⊂T

D(s1, t) +
1−α

NS2

∑
s2⊂S2

min
t⊂T

D(s2, t) (5)

This term contains two separate summations over patches in
S1 and S2, therefore it can be minimized by having disjoint
regions in T , where each such region is similar to S1 or S2

but not necessarily to both. These disjoint regions in T tend
to retain the original sharpness of each of the sources. α
gives control over the relative importance of patches from
S1 over patches from S2 and implicitly controls over the
relative size of regions in T that are similar to S1 over those
that are similar S2.

The α-Blended Coherence term can be rewritten using
Eqs. (4), (2) as:

dαBlendCoher(T, S1, S2, α) =

1
NT

∑
t⊂T

(
α min

s1⊂S1
D(s1, t) + (1−α) min

s2⊂S2
D(s2, t)

)

(6)
This term contains a single summation of a weighted sum
of two SSD terms for each pixel in T , thus the minimum
is obtained by a weighed average of the color “votes” from
S1 and S2. Specifically, for each image pixel t in T and a



patch that overlaps it, we find a similar patch in S1 and a
similar patch in S2 and do a weighted average of their pixel
colors at corresponding locations with α and 1−α weights.
When the sources are different, this blending tends to cause
blur (even if all three images T , S1 and S2 are sharp), due
to inherent geometric and color misalignments. To avoid
this undesired artifact, we replace the α-Blended Coherence
with a non-blurry coherence term - α-Disjoint Coherence.

α-Disjoint Coherence - A simple way to obtain dis-
jointedness in the coherence term is by choosing for
each patch in T the best patch in either S1 or S2, i.e.,
mins⊂{S1∪S2} D(s, t). However it does not provide any
control over the relative similarity to S1 vs. S2. We ob-
tain this control using the following α-Disjoint Coherence
term:

dαDisjCoher(T, S1, S2, α) =
1

NT

∑
t⊂T

min
(

min
s1⊂S1

D(s1, t), min
s2⊂S2

D(s2, t) + Dbias(α)
)

,

(7)
where Dbias(α) is an bias (positive or negative) that allows
us to favor selecting patches from one source than from the
other. One useful control we can get through Dbias(α) is
over the relative area size in T of “votes” from S1 over the
area of “votes” from S2. Thus, we set Dbias(α) to be such
that the portion of patches taken from S1 will be α times
the area of T 1. By changing α gradually from 0 to 1 we can
enforce larger and larger regions in T to be similar to S1.

Next we will show how to combine these completeness
and coherence terms into a single objective function.

2.3. The morphing objective function

Recall the morphing objective function from Eq. (1):
EMorph = ETempCoher + βESourceSim. The Temporal
Coherence term makes each target frame bidirectionally
similar to its neighboring frames. Since consecutive frames
are expected to be visually similar, we use the α-Blended
Bidirectional Similarity (Eq. (3)) with α = 0.5 over the
sequence for this term, i.e. -

ETempCoher({Tn}N−1
1 ) =∑N−1

n=1 dαBlendBDS(Tn, Tn−1, Tn+1, 0.5) (8)

where we define T0 := S1 and TN+1 := S2. We found that
using only two adjacent neighbors was adequate for the re-
sults shown in the paper, but larger temporal neighborhoods
can be used as well. For the Source Similarity term, since
the two source images could be substantially different, we
use α-Disjoint Coherence (Eq. (7)) and α-Blended Com-
pleteness term (Eq. (5)), both have the disjointness property

1For this term we first compute Dbias(α) as the α percentile of the
per-pixel differences between distances between T to S1 and T to S2.
Then for each patch in T we choose the best patch from either S1 or S2,
after adding the Dbias threshold to the S2 distances.

Figure 4. Squaring the circle - morphing the input square into
a circle (blue frames). (a) Simple intensity blending generates
a “ghosting” effect; (b) Optimizing only temporal coherence
blurs regions with different structures; (c) Optimizing only source
similarity gives a sharp but incoherent sequence; (d) Optimizing
both terms gives a temporally smooth and sharp sequence.

that retains sharpness, while decreasing linearly α across
the sequence (from 1− 1

N to 1
N ):

ESourceSim({Tn}N−1
1 ) =∑N−1

n=1 dαBlendComplete(Tn, S1, S2,
n
N ) +

dαDisjCoher(Tn, S1, S2,
n
N ) (9)

These terms are illustrated in Fig. 3 and the effect of each of
the terms alone on the output is shown on a toy example in
Fig. 4 and on a couple real examples in the supplementary
video.

We next describe how to minimize the morphing objec-
tive function to get the output morph sequence.

3. The optimization algorithm
All terms of the objective function we defined in Eq. (1),

are based on the sum of square differences between color
values of patches. Therefore the objective can be optimized
using an iterative algorithm, similar to [17, 16]. We
present here briefly the main steps of the derivation. We
start by initializing the morph sequence {Tn(0)}N−1

1 .
A simple “cross-dissolve” of the two sources is usually
good enough, but we found that linearly interpolating
the nearest neighbor offsets from one source to the other,
and doing “color-voting” using patches at the interpolated
locations usually works better. We then build spatial
Gaussian pyramids for the initial sequence, with scale
gaps of ×1.2 and start the optimization at the coarsest
scale (between 0.2 for very different images to 0.6 for
view interpolation). The optimization is done by i global
iterations i of looping over all frames n (typically i was
6 at the coarsest scale and decreased gradually to 2). For
each frame Tn(i) the minimization of Eq. (1) computes five



Figure 5. Morphing iteration: at each iteration i, Tn(i) is com-
bined through the various BDS, coherence and completeness
terms, with its neighboring frames (yellow, cyan) as well as with
the two sources (blue, green). These combinations yield five inter-
mediate images T 1...T 5 (where the colors of their dashed frames
correspond to the colors of the sequence frames that participate in
their computation). The output of the iteration Tn(i + 1) is com-
puted as a weighted average of the intermediate images. Zoom
into the PDF to see details.

intermediate images and does a weighted average of them.
The first two T 1, T 2 result from computing a BDS between
Tn(i) with its neighboring frames Tn−1(i) and Tn+1(i)
correspondingly (Eq. (2)). The other two images T 3, T 4

are computed with only the completeness term between
Tn(i) and the two sources S1 and S2. Finally, image T 5 is
computed similarly using the α-Disjoint Coherence term
between Tn(i) and the pair S1 and S2. The algorithm is
summarized next and the five terms are illustrated in Fig. 5:
Initialize: {Tn(0)}N−1

1

For each scale s = 1 : S,
For each iteration i = 1 : K ,
For each frame n = 1 : N − 1
T 1 ← min dBDS(Tn(i), Tn−1(i))
T 2 ← min dBDS(Tn(i), Tn+1(i))
T 3 ← min dComplete(Tn(i), S1)
T 4 ← min dComplete(Tn(i), S2)
T 5 ← min dαDisjCohere(Tn(i), S1, S2, α)

Tn(i + 1) =
∑5

j=1 wjT j∑5
j=1 wj

Upscale s→ s + 1
Output: {Tn(i)}N−1

1

where α = n
N , w1 = w2 = 0.5, w3 = βα, w4 = β − w3

and w5 = β. β controls the relative weight of the Temporal
Coherence and Source Similarity terms and we typically set
it to 1.0− 1.5.

Motion constraints The original BDS method [16]
allowed patches to search their nearest neighbor at any
location in the second image. In order to obtain small
motion, as required by Temporal Coherence we constrain
the search space per pixel in the above terms. In all our
image morphing examples for different images, we limited
the patch searches in consecutive frames to a window of size
0.01-0.03 times the image size around the patch location
in the input image, and to a window of size 0.1-0.3 for

searches in the source images (where larger offsets are
expected). In typical view interpolation scenarios such
as in Fig. 7, we expect much more “physically correct”
correspondences and interpolation. We thus add reliable
feature correspondences as constraints to the objective. We
extract SIFT features [13] in both images, and aggressively
prune the matches to ensure only the most reliable matches
. We use the resulting point correspondences in two ways
- first, to do standard morphing (warping+blending) as
initialization, and second, to constrain the offsets in a small
radius around those locations. For the rest of the pixels we
linearly interpolate their offsets and use the search window
as mentioned above, around the interpolated locations. In
hard cases of wide-baseline views and/or highly non-rigid
motions we add also a few manual point correspondences
(see more details in Sec. 4).
Run-time We use PatchMatch [2] for the inner loop dense
patch searches. Our current Matlab implementation takes
several tens of minutes for a 400 × 400 pair of images on
a 2.4GHz single core, 2GB RAM. According to [2], re-
targeting such a small image using BDS can take a frac-
tion of a second. Our computations per frame are equiva-
lent to computing 4 times the standard BDS for each of the
20 frames with a similar number of synthesis iterations per
frame. Therefore, a more optimized implementation should
take around a minute for that image size.

4. Results

We strongly recommend viewing the video ver-
sions of these results at the project webpage -
http://grail.cs.washington.edu/projects/regenmorph/.

Morphing between different images The most unique
capability of Regenerative Morphing is its ability to auto-
matically generate transitions between totally different im-
ages that have no clear correspondences. We picked 5 pairs
of images - two different street views, two pairs of castles
and two pairs of totally different images of a face with a
cloud and a lion with flowers. The image size was reduced
such that the largest dimension was 400, and the sequence
length was 20 frames in total. Fig. 9 shows the source im-
ages along with a few in-between frames. Our method gen-
erates interesting transitions where local structures evolve
into similar near-by structures, with minimal “ghosting”.

There is no other method that we are aware of that can
automatically morph the above pairs. Sparse feature match-
ing methods (e.g., [13]) will fail to find meaningful matches
while standard optical flow algorithms (e.g., [4]) fail here
due to the large differences in appearance. Although not
designed for morphing, SIFT-flow [12] could be applied for
morphing different images. Fig. 6 shows a comparison of
the flowers sequence to simple blending (top) and SIFT-
flow based morphing (middle). Our result is much sharper

http://grail.cs.washington.edu/projects/regenmorph/


Figure 6. A comparison of automatic morphing of different images (two pairs from Fig. 9) - simple blending, SIFT-flow [12]+blending,
and our method (right).

and does not suffer from the “ghosting” artifacts seen in the
other two.
View and temporal interpolation Fig. 7 shows a
comparison of our method to MovingGradients [14] on the
“winking girl” example as well as our results on the other
two. Our results are comparable.
Challenging non-rigid interpolation Here we show
how Regenerative Morphing can handle even wider baseline
views and larger non-rigid motions between the two source
images. One such example is shown in Fig. 8 and a few
more are shown in the video. In these examples SIFT
matches often don’t find enough reliable matches on the
moving objects and people. Therefore we added a few
manual correspondences (such as a few fiducial points on
faces, and rough locations of human joints). We show a
comparison to a professional morphing software [1] with
the same correspondences (second row). One nice property
of our view interpolation approach is that by relaxing a bit
the accuracy of these correspondences we allow different
parts of the sequences to move in a slightly unsynchronized
and non-linear way, resulting in more “natural” looking
motions (such as independent motions of people, or of
different limbs).
Discussion Some of our results may look somewhat
jittery in the video. Our method has an inherent tradeoff
between motion smoothness and spatial sharpness. The
video demonstrates that temporal coherence alone leads to
temporally smooth but blurry result, while source similarity
alone leads to a sharp but temporally incoherent video.
Intuitively, this is because of the fundamental requirement
in our method that every patch in the sequence will look like
a patch in the input images. If the two inputs look different,
it is likely that some patches will initially look like a patch
from the first input and eventually look like a patch from the
second input, so some amount of jitteriness (abruptness in
motion or appearance or both) is inevitable in order to get

sharp frames.
One limitation of our current implementation is in the

way we handle color. We use simple color patches which
could be insufficient for different images or even in case of
view interpolation with changes in illumination and shad-
ows. This could be improved by working in the gradient
domain and/or separating intensity from color. Another lim-
itation is the current need for manual correspondences for
complex view+time interpolation, such as in the presence
of moving people (Fig. 8). One could use computer vision
tools (such as a face fiducial points detector [7]) or a human
poslet detector [5]) to automate this process.

5. Conclusions
We introduced a new method for image morphing where

the traditional warp and blend approach was replaced with a
regenerative approach. Following this approach, the morph
sequence is directly synthesized from local regions from
the two sources, such that it is temporally coherent and
locally similar to the sources. The latter directly minimizes
common morph artifacts (such as “ghosting” and blurring).
This approach is unique in its capability to automatically
generate interesting morphs from visually unrelated pairs of
images. Good results are also shown for related tasks such
as view and temporal interpolation.
Acknowledgements This research was supported in part
by the Israeli Ministry of Science.

References
[1] Abrosoft FantaMorph. http://www.fantamorph.com/. 6, 7
[2] C. Barnes, E. Shechtman, A. Finkelstein, and D. Goldman.

PatchMatch: A Randomized Correspondence Algorithm for
Structural Image Editing. ACM SIGGRAPH, 2009. 2, 5

[3] T. Beier and S. Neely. Feature-based image metamorphosis.
SIGGRAPH Comput. Graph., 26(2):35–42, 1992. 1

http://www.fantamorph.com/


Figure 7. Comparison to MovingGradients [14] - we applied our method on three examples from [14] (one of them shown here and the
other in the video). Top row: the two still photos of a winking girl and three frames from our result out of 30 (red frame). Bottom row:
result from [14] (blue frame). Both interpolation results are comparable in terms of quality.

Figure 8. Non-rigid view interpolation and comparison to standard morphing - First row: our result on a boy rolling a basketball. Note the
non-rigid motion of the boy’s face, limbs and jacket. In this example automatic SIFT correspondence and 17 manual ones were used to
improve the result. Second row: the SIFT points (circles) and the manual (triangles) that were used, an output mid frame of a professional
morphing software [1] with the same (SIFT+manual) point correspondences, and our result (right). Due to sparsity of points, standard
morphing suffers from “ghosting” effects. In our result such effects are minimized.

[4] M. J. Black and P. Anandan. The robust estimation of
multiple motions: parametric and piecewise-smooth flow
fields. CVIU, 63(1), 1996. 5

[5] L. Bourdev and J. Malik. Poselets: Body part detectors
trained using 3d human pose annotations. In ICCV, 2009.
6

[6] S. E. Chen and L. Williams. View interpolation for image
synthesis. In ACM SIGGRAPH, 1993. 1, 2

[7] M. Everingham, J. Sivic, and A. Zisserman. “Hello! My
name is... Buffy” – automatic naming of characters in TV
video. In BMVC, 2006. 6

[8] A. Fitzgibbon, Y. Wexler, and A. Zisserman. Image-based
rendering using image-based priors. In ICCV’03, page 1176,
Washington, DC, USA, 2003. IEEE Computer Society. 2

[9] M. Irani, T. Hassner, and P. Anandan. What does the scene
look like from a scene point? In ECCV, pages 883–897,
London, UK, 2002. Springer-Verlag. 2

[10] V. Kwatra, I. Essa, A. Bobick, and N. Kwatra. Texture op-
timization for example-based synthesis. ACM SIGGRAPH,
24, 2005. 2

[11] S. Lee, G. Woberg, K.-Y. Chwa, and S. Y. Shin. Image
metamorphosis with scattered feature constraints. IEEE



Figure 9. Morphing different images.

TVCG, 2(4):337–354, 1996. 1

[12] C. Liu, J. Yuen, A. Torralba, J. Sivic, and W. T. Freeman.
Sift flow: Dense correspondence across different scenes. In
ECCV’08, pages 28–42. Springer-Verlag, 2008. 5, 6

[13] D. G. Lowe. Distinctive image features from scale-invariant
keypoints. IJCV, 60(2), 2004. 5

[14] D. Mahajan, F.-C. Huang, W. Matusik, R. Ramamoorthi, and
P. Belhumeur. Moving gradients: a path-based method for
plausible image interpolation. ACM Trans. Graphics, 28(3),
2009. 2, 6, 7

[15] S. M. Seitz and C. R. Dyer. View morphing. In ACM
SIGGRAPH, pages 21–30, New York, 1996. 1, 2

[16] D. Simakov, Y. Caspi, E. Shechtman, and M. Irani. Sum-
marizing visual data using bidirectional similarity. In CVPR,
Anchorage, AK, USA, 2008. 2, 3, 4, 5

[17] Y. Wexler, E. Shechtman, and M. Irani. Space-time comple-
tion of video. IEEE Trans. PAMI, 29(3), 2007. 2, 4

[18] G. Wolberg. Digital Image Warping. IEEE Computer
Society Press, Los Alamitos, CA, 1990. 1


