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Abstract
Spatial Super Resolution (SR) aims to recover fine im-

age details, smaller than a pixel size. Temporal SR aims
to recover rapid dynamic events that occur faster than the
video frame-rate, and are therefore invisible or seen incor-
rectly in the video sequence. Previous methods for Space-
Time SR combined information from multiple video record-
ings of the same dynamic scene. In this paper we show how
this can be done from a single video recording. Our ap-
proach is based on the observation that small space-time
patches (‘ST-patches’, e.g., 5×5×3) of a single ‘natural
video’, recur many times inside the same video sequence
at multiple spatio-temporal scales. We statistically explore
the degree of these ST-patch recurrences inside ‘natural
videos’, and show that this is a very strong statistical phe-
nomenon. Space-time SR is obtained by combining infor-
mation from multiple ST-patches at sub-frame accuracy. We
show how finding similar ST-patches can be done both ef-
ficiently (with a randomized-based search in space-time),
and at sub-frame accuracy (despite severe motion aliasing).
Our approach is particularly useful for temporal SR, resolv-
ing both severe motion aliasing and severe motion blur in
complex ‘natural videos’.

1. Introduction
A video camera has limited spatial and temporal reso-

lutions. The spatial resolution is determined by the spatial
pixel density in each frame and by the camera Point Spread
Function. These factors limit the minimal size of spatial
features that can be visible in an image. The temporal reso-
lution is determined by the frame-rate and by the exposure-
time of the camera. These limit the maximal speed of dy-
namic events that can be observed in a video sequence.

Increasing the spatial resolution in video sequences was
obtained by combining information from multiple frames
at sub-pixel accuracy (e.g., [5, 10]). More recent methods
have extended these ideas to increase both the spatial and
the temporal resolution, by combining information from
multiple video recordings of a dynamic scene, at sub-pixel
and sub-frame accuracy [14]. Such multiple recordings can
be obtained either from multiple video cameras recording
simultaneously the same dynamic scene, or else from a sin-
gle video camera recording multiple repetitions of a cyclic
motion [12, 16] (thus acquiring the multiple recordings se-
quentially). These requirements restrict the applicability of

Figure 1. Temporal SR vs. Frame-Interpolation: A fast run-
ner induces large and complex motions. Temporal SR increases
the frame-rate of a video sequence, providing ‘true slow motion’,
while resolving motion aliasing and motion blur. In contrast, even
sophisticated flow-based frame-interpolation fails to handle such
complex motions. See video on the project website.

space-time Super-Resolution (SR).
In this paper we show that space-time SR can be

achieved from a single video recording of general dynamic
scenes. Our approach extends the recent image-based SR
method of Glasner et al. [9] into space-time. We observe
that small space-time patches (ST-patches, e.g., 5×5×3)
of any ‘natural video’ tend to recur repeatedly inside the
same video at multiple spatio-temporal scales. We show
that this is a strong property of ‘natural videos’, even if
we do not visually perceive any repetitive behavior. This
is statistically verified on a large dataset of ‘natural videos’.
Recurrence of small ST-patches within the input scale of
the video sequence induce ‘Classical’ Space-Time SR con-
straints (a la [14], but from a single video recording). Re-
currence of ST-patches across coarser spatio-temporal video
scales provide low-res/high-res pairs of ST-patches. Such
‘example’ pairs suggest how the space-time resolution of
the input ST-patch might possibly be increased, thus induc-
ing “Example-Based” Space-Time SR constraints.

We further show how these similar ST-patches can be
found. This is done both efficiently (with a randomized-
based search in space-time over the huge search space), and
at sub-frame accuracy (despite severe motion aliasing). Our
approach is particularly powerful for increasing the tempo-
ral resolution in video. It allows recovery of very fast dy-
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Figure 2. ST-Patch recurrence within and across temporal
scales of a single video: (a) “Across scales”: A ST-patch in the
input video L (small green) is found elsewhere in a coarser tem-
poral scale (small pink). The high-res corresponding parent ST-
patch (large pink) indicates how the slow motion version of the
input ST-patch might look like (large green). (b) “Within scale”:
A ST-patch in L (red) is found elsewhere in the same scale (blue)
at sub-frame misalignment. This can be exploited to obtain finer
sampling rate of the continuous dynamic event (red+blue).

namic events (beyond the temporal Nyquist frequency of
the video), that were otherwise invisible or else induced
false apparent visual motions in the video. Unlike frame-
interpolation, temporal SR provides “true slow-motion”, re-
solving both severe motion aliasing and severe motion blur
in videos of very complex dynamic scenes (see Fig. 1).

A related work [15] used a simplified notion of infor-
mation repetition across video scales by matching 2D im-
age patches (as opposed to 3D ST-patches). 2D spatial
image patches cannot account for sub-frame temporal mis-
alignments, cannot resolve temporal (motion) aliasing, and
cannot represent complex non-linear motions. ST-patches
from multiple space-time video scales were used in [7] for
various applications. However, the Epitomic representa-
tion does not account for sub-frame misalignments of ST-
patches, nor can it undo severe motion blur and motion
aliasing. In [17], a method is presented for sophisticated
upscaling of intensities in space and in time, by paramet-
rically modeling local intensity variations using their 3D
Taylor expansion. This yields smooth upscaling of local in-
tensities, but cannot undo motion aliasing.

The rest of this paper is organized as follows: In Sec. 2
we statistically examine the observation of small ST-patch
recurrences in a single ‘natural video’. Sec. 3 presents
our space-time SR framework. Sec. 4 discusses strong vi-
sual phenomena in videos, that are unique to the added
temporal dimension. Sec. 5 explains how ‘similar’ ST-
patches can be found at sub-frame accuracy, despite se-
vere motion aliasing. Results are provided in Sec. 6, and
in www.wisdom.weizmann.ac.il/~vision/SingleVideoSR.html.

2. Recurrence of ST-Patches in a Single Video
Similarly to the observation made by Glasner et al. [9]

regarding natural images, we observe that ‘natural videos’

(a) KTH dataset (b) HOHA dataset
Figure 3. Average ST-Patch recurrence within and across tem-
poral scales of a single video: (averaged over dozens of videos -
see text for more details). The graphs show for each of the datasets
(KTH and HOHA) the percent of ST-patches for which there exist
n or more similar patches, measured at several temporal scales.

contain repetitive dynamic visual content. In particular,
small ST-patches (e.g. 5x5x3) tend to recur within the se-
quence itself, both within the input scale (“within scale”),
as well as across coarser scales in space and time (“across
scales”). This observation is crucial for the success of our
space-time SR framework. While repetition of ST-patches
across coarser spatial scales may not be surprising (a nat-
ural extension of the observation in [9] regarding spatial
patches), what is less intuitive, and to some degree more
powerful, is the observation that ST-patches recur across
coarser temporal scales. In this section we try to empiri-
cally quantify this notion of ST-patch recurrence “within”
and “across” temporal scales of a single video, and show
that it is indeed a strong property present in a wide variety
of ‘natural videos’, even if no repetitive behavior is per-
ceived. Intuitively, small ST-patches have very simple local
structures (space-time corners, moving edges, etc.) Thus,
ST-patches from totally different global motions can locally
resemble each other.

Fig. 2 schematically illustrates what we mean by “ST-
patch recurrence” within and across scales of a single video
sequence. An input ST-patch “recurs” in another scale if
it appears “as is” (without downscale) in a coarser tempo-
ral scale of the sequence. Having found a similar ST-patch
in a coarser temporal scale, we can extract its parent ST-
patch from the higher temporal scale (Fig. 2.a). This pro-
vides an indication of how the slow motion version of the
input ST-patch might look like. When an input ST-patch
“recurs” in the same scale, the corresponding ST-patch will
inevitably have a sub-frame misalignment with the input
ST-patch (Fig. 2.b). This can be exploited to obtain finer
sampling rate of the continuous dynamic event.

We statistically tested this observation on a large
dataset of close to 100 video clips containing a wide
variety of ‘natural videos’ taken from the KTH Hu-
man Actions dataset (www.nada.kth.se/cvap/actions/)
and the Hollywood Human Actions dataset (HOHA
www.irisa.fr/vista/Equipe/People/Laptev/download.html). The
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Figure 4. Multi-video vs. Single-video SR: (a) Pixels in multiple
low-res video sequences impose multiple linear constraints on the
high-res unknowns within the support of their space-time blur ker-
nels. (b) Similar ST-patches within a single low-res video L can
be regarded as if extracted from multiple different low-res videos
of the same high-res dynamic scene, thus inducing multiple linear
constraints on the high-res unknowns in H . (c) The space-time
blur function B(x, y, t) is determined by the spatial Point Spread
Function and the temporal exposure time.

KTH dataset contains repetitive human behaviors like
walking, hand waving, etc. with static background. Though
repetitive, the motions are quite complex and non-rigid.
The HOHA dataset includes a wider variety of complex
foreground and background dynamics, with no visually
obvious repetition, as well as camera motion. The hypoth-
esis was tested on 5x5x3 overlapping ST-patches, after
removing their DC (mean intensity value). Each sequence
was blurred and subsampled in time, generating a cascade
of temporal scales of 0.85l compared to the input scale,
where l = 0, 1, . . . , 8. The size of the smallest scale
was 0.27 (i.e., things move 4 times faster than the input
video). For each ST-patch in each sequence separately, we
computed how many “similar” ST-patches it has in each
of the temporal scales of the same sequence, including the
input scale. In order to get reliable statistics, we excluded
all static ST-patches (which obviously recur repeatedly),
performing the test only on the dynamical ST-patches.

For the purpose of the statistics, we used a simple SSD-
based distances between ST-patches. Note that dynamical
ST-patches (with strong temporal derivatives) tend to have
much larger SSD errors than static ones, when compared to
very similar looking ST-patches. Thus, for each ST-patch
we compute a patch-specific “good distance”, which is the
SSD normalized by the mean temporal derivative of the ST-
patch. When this normalized SSD is below the threshold
then this ST-patch will be considered similar. In Sec. 5 we
present a more sophisticated distance, which also accounts
for sub-frame misalignments and handles motion aliasing.

The statistics was averaged over all the 107 ST-patches
in the dataset, resulting in Fig. 3. Almost all the dynamical
ST-patches (90% in KTH, 86% in HOHA) have 9 or more
similar ST-patches in the input scale. 85% KTH ST-patches
and 77% HOHA ST-patches have 9 or more similar ST-

patches in 0.52 temporal scale, and 70% and 61% in tempo-
ral scale 0.27, respectively. As expected, KTH shows higher
recurrence since it contains repetitive behaviors. However,
HOHA also exhibits a high degree of ST-patch recurrence,
although no repetitive dynamics is observed.

3. Single Video SR – Overview of the Approach
We extend the 2D image-based framework and al-

gorithm of single-image SR [9], into the 3D space-time
volume: Recurrence of small ST-patches within the
input scale of the video forms the basis for ‘Classical’
Space-Time SR [14] (but from a single video recording).
Recurrence of ST-patches across coarser spatio-temporal
video scales gives rise to “Example-Based” Space-Time SR
(but learned internally from a single video). We emphasize
the issues that go beyond a simple extension of [9] from
2D to 3D, and are unique to the added temporal dimension.
We further elaborate on increasing the temporal resolution
(turning low frame-rate videos into high frame-rate ones).
Unlike frame-interpolation, temporal SR provides “true
slow-motion”, resolving both severe motion aliasing and
severe motion blur in videos of complex dynamic scenes.

3.1. ‘Classical’ space-time SR: In multi-sequence space-
time SR [14], a set of low-resolution video sequences
{L1, ..., Ln} recording the same dynamic scene is given,
and the goal is to recover a video sequenceH of higher spa-
tial resolution (higher pixel-density, with higher spatial fre-
quencies) and of higher temporal resolution (higher frame-
rate, with higher temporal frequencies). Each low-res se-
quence Lj (j = 1, .., n) is assumed to have been generated
from H by convolution with a space-time blur function Bj ,
followed by subsampling in space and in time (see Fig. 4.a):
Lj =

(
H ∗ Bj

)
↓sspatialj ↓stemporalj , where ↓ denotes a

subsampling operation and sspatialj ,stemporalj are the spa-
tial and temporal subsampling rates. The space-time blur
kernel Bj is composed of a spatial blur Bspatialj (x, y) =
PSFj(x, y) (the camera Point Spread Function), con-
volved with a temporal blur Btemporalj (t) = rectτj (t)
(which is a temporal rectangular function whose support is
the camera Exposure-Time1 τj). Thus, each low-res pixel
p = (x, y, t) in each low-res video Lj induces one linear
constraint on the unknown high-res intensity values within
a local space-time neighborhood around its corresponding
high-res pixel q ∈ H (the size of the neighborhood is de-
termined by the support of the space-time blur kernel Bj):

Lj
(
p
)
=
(
H∗Bj

)
(q)=

∑
qi∈Support(Bj)H(qi)Bj(qi−q) (1)

where {H(qi)} are the unknown high-res intensity values.

1 The exposure time τ ranges between instantaneous exposure time
(τ ≈ 0, in which case the temporal blur function reduces to a delta
function: Btemporal(t) ≈ δ(t)), to full exposure time (in which
case τ equals the temporal distance between 2 consecutive frames:
τ = 1

(InputFrameRate)
sec).
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Blurring and sub-sampling a video in space causes objects to 
appear smaller and slower (in pixels/frame). Blurring  
and sub-sampling a video in time keeps the  same sizes but 
increases speed, blur, and motion aliasing. Different   
combinations of spatio-temporal scales provide a variety  
of speeds, sizes, different degrees of blur and  aliasing. 

(b) 

(a) 

Figure 5. The space-time pyramid: Blurring and sub-sampling the input video L (dark blue) in space and in time, generates a cascade of
spatio-temporal resolutions (light blue). Each input ST-patch (yellow) searches for a similar ST-patches (Nearest Neighbors - NN) in lower
pyramid levels. Each matching ST-patch may have a spatial parent (blue), a temporal parent (red), or a spatio-temporal parent (green).
These low-res/high-res pairs of ST-patches induce “Example-based” spatial-SR / temporal-SR / space-time SR. These result in constrains
relating the input video L to the 3 different possible high-res outputs H (the pink volumes). In addition, “Classical” SR constraints (spatial,
temporal, or space-time) induce additional linear constraints relating the input L to the unknown high-res outputs.

If enough low-res videos are available (at sub-pixel spatial
shifts and sub-frame temporal shifts), then the number of
independent equations exceeds the number of unknowns.

The space-time SR equations can be written separably:
Lj =

(
(H ∗ PSFj(x, y)) ↓sspatialj ∗ rectτj (t)

)
↓stemporalj

This leads to two interesting special sub-cases:
(i) Temporal SR only: Lj =

(
H ∗ rectτj (t)

)
↓stemporalj .

(ii) Spatial SR only: Lj =
(
H ∗ PSFj(x, y)

)
↓sspatialj .

3.2. Employing in-scale patch recurrence: When there is
only a single low-resolution video sequence L, the ‘clas-
sical’ SR problem of recovering a high-resolution video
H becomes under-determined. However, as observed in
Sec. 2, ST-patches recur many times within a single video
L. Let p = (x, y, t) be a pixel inL, andP be its surrounding
ST-patch (e.g., 5×5×3), then it has multiple ST-patches re-
currences P1, ...Pk in L (inevitably, at subpixel shifts, and
– more importantly – at subframe shifts). These patches can
be treated as if taken from k different low-res videos of the
same high-res “dynamic scene”, thus inducing k times more
linear constraints (Eq. 1) on the high-res intensities of pixels
within the space-time neighborhood of q ∈ H (see Fig. 4.b).
For increased numerical stability, each equation induced by
a similar ST-patch Pi is weighted by the degree of its match
to its source ST-patch P . Thus, ST-patches with a better
match to P will have a stronger influence on the recovered
high-res pixel values than ST-patches of lower match.

3.3. Employing cross-scale patch recurrence: As ob-
served in Sec. 2, ST-patches recur not only within the input
scale, but also across other spatio-temporal scales of a sin-

gle videoL. As in [9], the low-res/high-res patch correspon-
dences can be employed to obtain ‘hypotheses’ on what the
high-res space-time parent of the input ST-patch might look
like, thus providing additional linear constraints on the un-
known pixel intensities in the high-res output video (see [9]
for more details). However, unlike [9], here each ST-patch
can have 3 different types of high-res ‘parents’: (i) a tempo-
ral parent, (ii) a spatial parent, and (iii) a spatio-temporal
parent (see Fig. 5.a). Thus, a single match between an in-
put ST-patch and a ST-patch in a different spatio-temporal
scale, provides information for any of the following 3 dif-
ferent SR schemes: (i) Spatial SR only, (ii) Temporal SR
only, and (iii) combined Spatio-Temporal SR. Of particular
interest and applicability are the first two schemes:
(i) Spatial SR only: The purpose here is to increase the
spatial resolution in each video frame. However, there are
two major differences between the spatial SR scheme of [9]
and that proposed here: (a) The scheme of [9] employs 2D
image patches. Even if their Nearest-Neighbor (NN) patch
search is allowed to use information from the entire video
(all frames), the patches are still only 2D image patches,
thus the SR reconstruction is solved independently for each
frame. This does not enforce consistency between consec-
utive frames, and may therefore lead to flickering effects
in time. In contrast, searching for NN of volumetric ST-
patches enforces consistency of the spatial SR between con-
secutive frames. (b) The scheme of [9] searches for NN
only across different spatial scales. Here we extend the NN
search also across different temporal scales of each spatial
scale, even when the goal is only to increase the spatial res-

4



olution. Matches across different scales (both in space and
in time) can provide information for increasing the spatial
resolution (see Fig. 5.b). This provides a larger and more
expressive variety of low-res/high-res ST-patch pairs.

(ii) Temporal SR only: The purpose here is to increase the
temporal resolution (frame-rate) in each video frame, while
resolving both motion aliasing and motion blur. While
“Example-Based” spatial SR using an external database of
‘natural images’ may be feasible (and was done before [8]),
“Example-Based” temporal SR using an external database
of ‘natural videos’ is NOT practically realistic (and to our
best knowledge, was never done). This is because a ‘repre-
sentative’ databases of ‘natural video sequences’ is bound to
be unrealistically large if required to provide enough vari-
ety of all natural ST-patches (covering the huge diversity of
Appearance × Dynamics). This is where internal video
redundancies are particularly useful, especially in light of
the strong internal recurrence of ST-patches across mul-
tiple temporal scales of a single ‘natural video’ (Sec. 2),
which gives rise to “Example-Based” temporal SR using
internal examples. Once again, the NN search for similar
ST-patches is not restricted to temporal scales of the input
video, but is also done across different spatial scales of each
temporal scale, even when the goal is only to increase the
temporal resolution. Matches across different scales (both
in space and in time) provide a larger and more expressive
variety of low-res/high-res ST-patch pairs (see Fig. 5.b).

3.4. Combining ‘Classical’ and “Example-Based” con-
straints: Similarly to Glasner et al. [9], the above two
types of SR constraints can be combined into a single com-
putational framework: Let P denote a ST-patch in the input
video. We can search for similar ST-patches (NN) within
the entire space-time pyramid. Let P ′ be a good match-
ing ST-patch found somewhere in a lower-res pyramid level.
Then its higher-res ‘parent’ ST-patch, Q′, provides a ‘sug-
gestion’ (constraints) on what the unknown high-res parent
ST-patch Q of the input ST-patch P might possibly look
like. Note that the parent ST-patch Q′ of P ′ can be a spa-
tial parent, a temporal parent, or a spatio-temporal parent.
It will accordingly induce constraints on the corresponding
space-time pyramid level which is spatially higher, tem-
porally higher, or spatio-temporally higher than the input
level (see Fig. 5.a). If this higher pyramid level coincides
with the target high-res level (the output resolution level
of H), then it provides explicit constraints on the unknown
high-res intensities of H . If, however, the parent pyramid
level does not coincide with the target (output) level, the
ST-parent patchQ′ can still induce linear constraints on the
target-level intensities, indirectly. This is done by bridging
the ‘residual gap’ between those two pyramid levels using
the ‘Classical’ SR equations (Eq. (1)). When the gap be-
tween the levels is a spatial gap, it is bridged using equa-
tions induced by a scaled version of the PSF (usually with

a smaller support), according to the residual spatial gap be-
tween the two levels (see [9] for more details). Similarly,
when the gap between the levels is temporal, it is bridged
using equations induced by a scaled version of the temporal
blur rectτ (usually with a smaller exposure-time τ ), accord-
ing to the residual temporal gap between the two levels. The
closer the ‘learned’ parent patches are to the target resolu-
tionH , the better conditioned the resulting set of equations.

The above ideas can be translated to the following algo-
rithm: For each pixel (x, y, t) in the input video L, extract
its surrounding ST-patch, and find its k nearest ST-patch
neighbors (e.g., k = 5) in the spatio-temporal pyramid con-
structed fromL (Fig. 5a). Each such ‘learned’ low-res/high-
res pair of ST-patches induces linear constraints (directly or
indirectly) on the unknown intensities of the high-res output
video H . Each such linear constraint is globally weighted
by its reliability (determined by its ST-patch similarity score
– see Sec. 5). Repeating the above for all pixels inL leads to
a very large, yet sparse, set of linear equations on H , which
can be efficiently solved using conjugate gradient.

4. Handling Motion-Blur and Motion-Aliasing
Rapid dynamic events that occur faster than the video

frame-rate are not visible (or else observed incorrectly)
in the recorded video. This problem is evident in sports
videos (tennis, baseball, hockey), where it is often impossi-
ble to see the fast moving ball/puck in any individual frame.
There are two well-known visual artifacts caused when fast
motions are recorded by slow cameras: motion-blur and
motion-aliasing. Both of these can be treated (partially re-
duced, and sometimes fully resolved) by temporal SR.
(i) Motion Blur: Fast moving objects produce a notable
blur along their trajectory, often resulting in distorted or
even unrecognizable object shapes. The faster the object
moves, the stronger this effect is, especially if the trajectory
of the moving object is not linear. Motion blur is thus a spa-
tial manifestation of a temporal phenomenon. It is caused
by temporal blurring, not by spatial blurring, and should
therefore be treated temporally. Yet, most motion deblur-
ring algorithms address the problem spatially (e.g., [3]).
Spatial deblurring is complicated – it requires using differ-
ent spatial blur kernels for differently moving parts of the
image. This in turn requires segmentation of the moving
objects and the estimation of their motions for obtaining
these spatial blur kernels. Motion estimation may be im-
possible in the presence of severe motion blur and shape
distortions (as in Fig. 6). A combined spatial and temporal
treatment for handling motion blur (using specialized cam-
era/acquisition design) was further suggested in [11, 13].
However, the objects were restricted to simple motions.

In contrast, when the video sequence is available, mo-
tion deblurring becomes simple by pure temporal treatment
– simple temporal deblurring with the camera exposure
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Figure 6. Handling motion blur: A fast rotating fan induces se-
vere motion blur. Temporal-SR reduces motion blur while frame
interpolations cannot resolve this issue. See video on website.

rectτ (t). No special camera design, no restrictions on mo-
tions, regardless of the type, speeds, or complexity of the
motions. The observation that motion blur is a purely tem-
poral artifact is not intuitive. After all, the blur is visible in a
single image frame. However, the blur results from integra-
tion over time during the frame exposure. All pixels (static
or dynamic) experience the same amount of temporal blur
(a convolution with rectτ (t)). Naturally, the temporal blur
is visible only in image locations where there are tempo-
ral changes (moving objects, camera motion, illumination
changes, etc.) Our algorithm addresses temporal blur di-
rectly by reducing the exposure time via temporal SR. This
does not require any motion estimation or segmentation.
As such, it is able to significantly reduce motion blur in
very complex dynamic scenes (e.g., Fig. 6). The reduction
in exposure time is obtained in two ways: (i) “Example-
Based” temporal SR constraints: Low-res/high-res pairs
of ST patches, extracted from different temporal scales in
the space-time pyramid, provide examples of how to lo-
cally reduce exposure time when increasing the temporal
resolution (see illustrations in Figs. 2 and 5.a). (ii) ‘Classi-
cal’ temporal SR constraints: The linear equations relating
the input video sequence L to its higher temporal resolu-
tion output H , are expressed in terms of the temporal blur:
Lj =

(
H ∗ rectτj (t)

)
↓stemporalj . Solving these equations

when increasing the temporal resolution implicitly performs
temporal deblurring, thus reducing the exposure time in H .
(ii) Motion Aliasing (Temporal Aliasing): Tempo-
ral/motion aliasing occurs when a very fast moving object
induces temporal frequencies higher than the temporal sam-
pling rate of the camera (the camera frame-rate). High tem-
poral frequencies are then “folded” into the low temporal
frequencies, generating temporal aliasing effects. The ob-
servable result is a distorted or even false trajectory of the
moving object (such as in the “Turbine” video). Playing the
video in ‘slow-motion’ or applying sophisticated temporal
interpolation cannot recover the information lost in the tem-
poral sampling process. A well-known example of motion
aliasing is the “wagon wheel effect”, where a very fast spin-
ning wheel appears to be rotating in the “wrong” direction
beyond a certain speed (see video on the project website).

‘Classical’ SR (from multiple images/videos) is all about
‘unfolding’ the ‘folded’ (aliased) high frequencies. ‘Classi-
cal’ spatial SR was shown to provide small (≤ 2) SR in-
creases [2]. This is because the spatial blur (the PSF ) is a

pretty-good low-pass filter, reducing most high-frequencies
to zero prior to sampling. In contrast, the temporal blur is
a bad low-pass filter – a very narrow-support rect function.
The temporal sampling thus preserves many high temporal
frequencies, in aliased form. ‘Classical’ temporal SR was
indeed shown to provide much higher increases in tempo-
ral resolution [14]. In general, videos are characterized by
much higher temporal aliasing than spatial aliasing.

Unfolding (recovering) the aliased high temporal fre-
quencies was done in [14] by combining information from
multiple video recordings. Here we show that this can be
done from a single video recording L, as follows: (i) ‘Clas-
sical’ temporal SR constraints: Due to the repetitive na-
ture of ST-patches in L (inevitably, at sub-frame offsets),
the very high temporal frequencies are scattered across
multiple ST-patches, but in aliased form. Detecting these
repetitive ST-patches in L and combining their information
at sub-frame accuracy, provides a denser sampling-rate in
time. This allows recovery of the ’lost’ high temporal fre-
quencies (the correct motions of very fast moving objects)
that are beyond the theoretical temporal Nyquist limit of
the input video. An illustrative example of combining in-
formation from two ST-patches from the same temporal
scale at sub-frame accuracy is shown in Fig. 2. This, of
course, requires finding ‘similar’ ST-patches at sub-frame
shifts (preferably, at sub-frame shifts of {n/s}s−1

n=1, if the
resolution is to be increased by a factor of s). A method
for finding ‘similar’ patches at the desired sub-frame shifts
(despite the severe temporal aliasing) is described next, in
Sec. 5. (ii) “Example-Based” temporal SR constraints:
Low-res/high-res pairs of ST-patches extracted from differ-
ent temporal scales in the space-time pyramid provide ex-
amples of how to locally reduce motion aliasing when in-
creasing the temporal resolution (see illustration in Fig. 5.a).

This yields a high-res video H from a single low-res
video L, displaying more correctly the motions of the fast
moving objects (see videos on the project website).

5. Find Similar ST-Patches at Sub-Frame Shifts
We saw that temporal aliasing is good for temporal SR

as it preserves many of the high temporal frequencies (in
aliased form). This, however, complicates the task of find-
ing matching ST-patches at accurate sub-frame alignment.
Interpolation-based SSD (which is adequate for matching
spatial patches at sub-pixel shifts [9]), cannot be used here.
Due to temporal aliasing, temporal interpolation at sub-
frame shifts will generate false visual artifacts. Moreover,
we cannot use the sequence-to-sequence alignment method
of [6] (which was used for finding the global temporal off-
sets between videos in [14]), since it relies on coarsening
and subsampling the videos in time (thus eliminating the
aliased high temporal frequencies). But tiny ST-patches
cannot be further coarsened and subsampled in time.
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Inspired by the image-alignment method of [18], we de-
velop a method for alignment of small ST-patches at sub-
frame accuracy. We further show how this can be used for
finding ‘similar’ ST-patches at desired sub-frame offsets,
despite severe temporal aliasing.

Let P0 and P1 be two ST-patches which we wish to
align. For simplicity, let us first assume that these ST-
patches are 1-D discrete signals (vectors) in the tempo-
ral direction with length N (the number of frames in the
video). Obviously, the temporal length of a ST-patch is
much shorter, as will be addressed later. Following the foot-
steps of [18], assume that P0 and P1 were sampled from
the same time-continuous signal u(t) (the high-res dynam-
ics we wish to recover), with an offset dt between them:
P0[n] = u

(
n
N

)
, P1[n] = u

(
n+dt
N

)
. Finally, assume that

u(t) is band-limited with maximal temporal frequency Ω,
and was sampled in a frequency smaller than Nyquist to
generate P0 and P1 (N ≤ 2Ω, i.e., P0 and P1 exhibit alias-
ing). P0 and P1 can be written as a function of the Fourier
coefficients U [ω] of u(t) : P0[n] =

∑
ω∈[−Ω,..,Ω]

U [ω]e
i2πωn
N

P1[n] =
∑

ω∈[−Ω,..,Ω]

U [ω]e
i2πω(n+dt)

N =
∑

ω∈[−Ω,..,Ω]

U [ω]e
i2πωn
N e

i2πωdt
N

e
i2πωdt
N is the phase shift resulting from the offset dt.
Writing this in matrix notation: P0 = F0U , P1 = FdtU

where U =
(
U [−Ω], . . . , U [Ω]

)T
and F0 and Fdt are the

appropriate matrices (Note that Fdt contains the informa-
tion regarding the unknown sub-frame dt). Combining this
into a single set of linear equations in U : P = FU (2)
where P = [P0,P1]T is a 2N × 1 vector and F =
[F0, Fdt]T is a 2N × (2Ω + 1) matrix.

From Eq.( 2), we get that the sample vector P belongs
to the subspace spanned by the columns of F . Note that
F is determined by dt. We shall therefore seek an offset
dt which minimizes the deviation of P from the subspace
spanned by the columns of F :
dt = argmindt′err(P0,P1, dt

′) = argmindt′‖P − P̂‖2 (3)
where P̂ is the projection of P onto that subspace, obtained
using the pseudo-inverse of F (assuming 2N ≥ 2Ω + 1):
P̂ = F (FTF )−1FTP , GP . G is a matrix of size

2N × 2N . A small error means high alignment quality.
Eq.( 3) is not simple to solve in closed form. However, one
can try a small range of sub-frame shifts (e.g. 0, 0.1, .., 0.9),
and choose the one which minimizes Eq.( 3). This provides
alignment up to some sub-frame accuracy.

However, we wish to deal with small ST-patches and
relax the assumption of temporal length N . Let PM0 and
PM1 be short ST-patches (with only few frames M � N ).
We can regard them as long extended temporal patches (of
length of the entire sequence - N ), P̃0 and P̃1, multiplied
by a Gaussian window g[n], which has only M significant
values in its center. We obtain: P̃0[n] = g[n]P0[n] and

P̃1[n] = g[n]P1[n]. Then the same derivations from be-
fore hold, only that now we use the Fourier coefficients
Ũ(ω) = U(ω) ∗ G(ω), where G(ω) is the Fourier trans-
form of g[n]. So we remain with same error err(P̃0, P̃1, dt)
as before and the same formula for P̂ .

Since most of the elements in P̃ are now zero, we can
neglect them and compute err(P̃0, P̃1, dt) by taking into
consideration only the central non-zero parts of P0 and P1,
PM0 and PM1 . We will show that Eq.( 3) can be written such
that it depends only on PM0 and PM1 and a small 2M× 2M
(e.g. 6× 6) matrix G̃. Lets define F̃ as the matrix obtained
from F after removing from it the rows corresponding to
the zero elements in P̃ (i.e. if the i-th element in P̃ is zero
then we remove the i-th row in F). It is easy to show that:
F (FTF )−1FT P̃ = F̃ (FTF )−1F̃TPM , G̃PM . So it
holds that: ‖P̃ −GP̃‖2 = ‖PM − G̃PM‖2. Thus, we get
a new measure distance for short ST-patches:

err(PM0 ,PM1 , dt) = ‖PM − G̃PM‖2 (4)
For ST-patches with a spatial size bigger than 1 × 1,

the vectors PM0 ,PM1 can be replaced by matrices whose
columns are the 1D temporal vectors extracted from the ST-
patch at each of its spatial locations.

Now, given a ST-patch PM0 , we would like to search for
its NN patches at a desired sub-frame shift dt (e.g., dt = 0.5
is ideal for increasing the temporal resolution by x2). For
every ST-patch PM1 , we can use the above distance measure
(Eq. 4) as an indication of the quality of its match to PM0 at
the desired sub-frame misalignment dt. However, this may
not be the optimal sub-frame alignment between these two
ST-patches. For example, a ST-patch may have a reasonable
match with itself at half a frame shift, but will have a better
match with itself at zero shift. We would like to discard such
candidate ST-patches. To guarantee that a match is not only
good, but also reliable (i.e. provides a local optimum at dt),
we use the following distance measure, which combines a
quality term err(dt) and a local optimality term Opt(dt):

D(PM0 ,PM1 ) = err(PM0 ,PM1 , dt) ·Opt(PM0 ,PM1 , dt)λ (5)

where Opt(PM0 ,PM1 , dt) = err(PM0 ,PM1 ,dt)

mindtj 6=dt err(PM0 ,PM1 ,dtj)

and 0 ≤ dtj ≤ 1 are a few discrete sub-frame shifts.
For example, when searching for ‘similar’ ST-patches
at half-frame offset (dt = 0.5), our optimality term is:
Opt(PM0 ,PM1 , 0.5) = (err(PM0 ,PM1 ,0.5))

min{err(PM0 ,PM1 ,0),err(PM0 ,PM1 ,1)} .

The err(dt) term prefers solutions with high absolute
quality and the Opt(dt) term prefers solutions for which
the misalignment dt is superior over all other possible local
misalignments. The parameter λ > 0 determines which
term is more dominant (for high values the optimality term
is more dominant). In our experiments we used λ = 2.

5.1. Efficient ANN Search in Space-Time: Using tradi-
tional ANN (Approximate Nearest Neighbor) Search algo-
rithms, such as kd-tree [1], is not feasible in our application.

7



Figure 7. Space-Time SR of Natural Video: Strong wind causes
the flag to wave in complex non-rigid motions, inducing motion
blur. Space-time SR provides both an increase in Spatial resolu-
tion (e.g., the electricity wire), and increase in Temporal resolution
(reducing motion blur). See video on the project website.

This is due to the large memory requirements (a huge num-
ber of ST-patches in every video, each producing a long 1D
vector in the kd-tree), and the long running time (which in-
creases significantly with the length of the vectors). More-
over, kd-tree is limited to vector similarity based on the L2

norm. However, our similarity measure (Eq. 5) is not L2.
In order to search for matching ST-patches we extended the
randomized algorithm of [4] from 2D images to 3D space-
time volumes. The algorithm in [4] finds ANN matches
between image patches, by choosing randomly neighbors,
and then exploiting the natural coherence in the imagery
to propagate good patch matches to surrounding areas. Our
extension allows us to find patch matches for 3D ST-patches
across multiple videos using any distance function we de-
sire. This is done by choosing randomly neighbors across
the videos, and then propagating the good matches in both
the temporal and the spatial dimensions. In addition, we can
search for matches for a variety of different ST-patch sizes
around each pixel, and compare their match quality by nor-
malizing the similarity measure by the ST-patch size. Using
this randomized search algorithm we can find NN at a rea-
sonable time, low memory cost, and more importantly, we
can use complex distance functions such as Eq. 5.

6. Results
We tested our framework on a variety of videos, illustrat-

ing that it can handle severe motion blur, motion aliasing, as
well as general ‘natural videos’ with complex motions. In
our experiments we built the spatio-temporal pyramid using
a cascade of blurring and subsampling in space (at 0.9l spa-
tial scales, l = 1, .., 6). Each video in the spatial pyramid
was then blurred and subsampled in time (by 1/n temporal
factors, n = 1, .., 6). Due to the temporal aliasing induced
by the temporal blur (the estimated camera exposure time)
and subsampling, we kept all the temporally subsampled
versions, enriching the temporal pyramid. Increase of tem-
poral resolution by large factors was performed gradually,
each time adding the intermediate result to the pyramid.

The “Fan” and “Flag” videos (Figs. 6 and 7) demon-
strate how our temporal SR reduces motion blur. The
“Treadmill” (Fig. 1.a), “Fan” and “Turbine” videos demon-

strate how our temporal SR handles severe motion alias-
ing. Note that the “Treadmill” video is not truly repet-
itive. The runner changes his speed, changes his body
tilt, etc. Only when working with ST-patches can small
consistent segments from different cycles be combined.
The “Flag” video further demonstrates space-time SR (×2
in space and ×2 in time) of a complex ‘natural video’.
The flow-based frame interpolation compared against in
some of the figures and videos, was generated using MV-
Tools (www.avisynth.org.ru). Please see full videos on:
www.wisdom.weizmann.ac.il/~vision/SingleVideoSR.html. When
there are no severe temporal artifacts, (i.e., no severe mo-
tion aliasing or motion blur, as is typical of most feature
movies), our temporal-SR algorithm gracefully reduces to
good temporal interpolation. See examples on website.
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