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Abstract

Given very few images containing a common object of
interest under severe variations in appearance, we detect
the common object and provide a compact visual repre-
sentation of that object, depicted by a binary sketch. Our
algorithm is composed of two stages: (i) Detect a mutu-
ally common (yet non-trivial) ensemble of ‘self-similarity
descriptors’ shared by all the input images. (ii) Having
found such a mutually common ensemble, ‘invert’ it to gen-
erate a compact sketch which best represents this ensemble.

This provides a simple and compact visual representation of (5 ; : | (b)

the common object, while eliminating the background clut- Figure T Detectlng and sketching the common(a) The 4 input

ter of the query images. It can be obtained froary few images provided to the algorithm. (b) The least trivial common

query images. Such clean sketches may be useful for detegart (the heart) is detected and sketched by the algorithm.

tion, retrieval, recognition, co-segmentation, and for artis-

tic graphical purposes. Our method is based on densely computedal Self-
Similarity Descriptord14]. Our algorithm is composed of
two main steps: (i) Identify the common object by detect-

1. Introduction ing a similar (yet “non-trivial”yensemble of self-similarity
descriptors that is shared by all the input images. Corre-

Given very few imagege.g., 3-5) containing a com- sponding descriptors of the common object across the dif-
mon object of interest, possibly under severe appearancderent images should be similar in their descriptor values,
changes, we detect the common object and provide a sim-as well as in their relative positions within the ensemble.
ple and compact visual representation of that object, de-(ii) Having found such a mutually common ensemble of
picted by a binary sketch (see Fit). The input images  descriptors, our method “inverts” it to generate a compact
may contain additional distracting objects and clutter, the binary sketch which best represents this ensemble.
object of interest is at unknown image locations, and its ap- It was shown in [4] that given asingle query imagef
pearance may significantly vary across the images (differ-an object of interest (with very little background clutter), it
ent colors, different textures, and small non-rigid deforma- is possible to detect other instances of that object in other
tions). We do assume, however, that the different instancesmages by densely computing and matching their local self-
of the object share @ery roughcommon geometric shape, similarity descriptors. The query image can be a real or
of roughly the same scale-@0%) and orientation£15°). synthetic image, or eventand-drawn sketchf the object.
Our output sketch captures this rough common shape. In this paper we extend the method of] to handlemul-

The need to extract the commonwdry fewimages oc-  tiple query imagesMoreover, in our case those images are
curs in various application areas, including: (i) object de- not centered around the object of interest (its position is un-
tection in large digital libraries. For example, a user may known), and may contain also other objects and significant
provide very few (e.g., 3) example images containing an background clutter. Our goal is to detect theast triv-
object of interest with varying appearances, and wants toial” common partin those query images, and generate as
retrieve new images containing this object from a databaseclean as possible (region-based) sketch of it, while elimi-
or from the web. (i) Co-segmentation of a few images. nating the background clutter of the query images. Such
(iii) Artistic graphical uses. clean sketches can be obtained freeny fewquery images,




and may be useful for detection, retrieval, recognition, and
for artistic graphical purposes. Some of these applications
are illustrated in our experiments.

Moreover, while [4] received as an inpw clean hand-
drawn sketch of the object of interest (and used it for detect-
ing other instances of that object), weoducea sketch as R
one of our outputs, thereby also solving the “inverse” prob- ?’ P W)
lem, namely: Given several images of an object, we can 31\\ MK
generate its sketch using the self-similarity descriptor. —

A closely related research area to the problem we ad-Figure 2.The Local Self Similarity Descriptor: (Figure taken
dress is that of "learning appearance models’ of an objectfrom [14].) The self-similarity descriptor for any given point (e.g.,
category, an area which has recently received growing at-the green point in the left image), is computed by measuring the
tention (e.g., 4, 3, 5, 15, 8, 9, 12, 16, 1¢], to name just a  similarity of a5 x 5 patch around the point with the surrounding
few). The goal of these methods is to discover common ob-60 x 60 image region. This results in a ‘correlation’ surface (mid-
ject shapes within collections of images. Some methods as#le image). The correlation surface is quantized into a compact
sume a single object category (e.g.,, 8, 15, 12, 16, 1)), Iog-po_lar re_presgntatlon o_f 45 bins (15 anglt_es, 3 radial mt_ervals)
while others assume mulple object categories (egill. o SEEE et SO SO 008 8 e T e e
These methqu, WhICh. rely on Wgakly super'V|Sed Iefirnlng at the corresponding descriptor entry (right most image).

(WSL) techniques, typically require tens of images in or-

der to learn, detect and represent an object category. Whap . Problem Formulation

is unique to the problem we pose and to our method is the

ability to depict the common object fromery few images Let I,...,Ix be K input images containing a com-
despite the large variability in its appearance. This is a sce-mon object under widely different appearances. The ob-
nario no WSL method (nor any other method, to our best ject may appear in different colors, different textures, and
knowledge) is able to address. Such a small number ofunder small non-rigid deformations. The backgrounds are
images (e.g.3) does not provide enough ’statistical sam- arbitrary and contain distracting clutter. The images may be
ples’ for WSL methods. While our method cannot compete of different sizes, and the image locations of the common
with the performance of WSL methods when many (e.g., object are unknown. We do assume, however, that the dif-
tens) of example images are provided, it outperforms ex- ferent instances of the object shar@ery roughcommon
isting methods when only few images with large variabil- geometric shape, of roughly the same scale and orientation.
ity are available. We attribute the strength of our method to Our output sketch captures this rough common shape.

the use oflensely computed region-based informatjcap- Our approach is thus based on detectiogmmon re-
tured by the local self-similarity descriptors), as opposed to gions’(as opposed to 'common edges’), using densely com-
commonly usedsparse and spurious edge-based informa- putedLocal Self-Similarity Descriptorfl4]. This descrip-
tion (e.g., gradient-based features, SIFT descriptors, etc.)tor (illustrated in Fig.2) captures local shape information
Moreover, the sketching step in our algorithm provides an in the image vicinity where it is computed, while being in-
additional global constraint variant to its photometric properties (color, texture, etc.) Its

Another closely related research area to the problem ad-og-polar representation makes this descrifiieensitive to
dressed here is ‘co-segmentation’ (e.d.3,[1, 11]). The small affine and non-rigid deformations (up #20% in
aim of co-segmentation is to segment out an object com-scale, andt15°). It was further shown by7] that the lo-
mon to a few images2(or more), by seeking segments in cal self-similarity descriptor has a strong descriptive power
the different images that share common properties (colors,(outperforming SIFT). The use of local self-similarity de-
textures, etc.) These common properties are not shared bcriptors allows our method to handle much stronger varia-
the remaining backgrounds in the different images. While tions in appearance (and in much fewer images) than those
co-segmentation methods extract the common object fromhandled by previous methods. We densely compute the
very few imageghey usually assume a much higher degree Self-Similarity descriptor inimages, ..., Ik (at everys-th
of similarity in appearance between the different instancespixel). ‘Common’ image parts across the images will have
of the object than that assumed here (e.g., they usually assimilar arrangements of self similarity descriptors.
sume similar color distributions, similar textures, etc.) Letcy, ..., cx denote the unknown locations of the com-

The rest of the paper is organized as follows: S€or- mon object in thek images. Letl,* denote av x h subim-
mulates the problem and gives an overview of our approach.age of I;, centered aty, containing the common object
Sec.3 describes the component of our algorithm which de- (k = 1, ..., K) (need not be tight). For short, we will denote
tects the ‘least trivial' common part in a collection of im- it by I;;. The sketch we seek is a binary ima§eof size
ages, whereas Setdescribes the sketching component of w x h which best captures the rough characteristic shape
our algorithm. Experimental results are presented inSec. of the common object shared By, ..., Ix. More formally,

Image
descriptor




(b) (©)
Figure 4.Regions vs. Edges:(a) a single input image. (b) The
(@ : (b edge map generated by the methodiaf] (c) The binary sketch
Figure 3.Sketching: (a) Five inputimages. (b) Theirjointsketch. generated by our method when applied to the single input image
(using all the self-similarity descriptors densely computed in that
we seek a binary imag8 whose local self-similarity de-  image). This illustrates the concept that region-based information
scriptors match as best as possible the local self-similarityis much richer than sparse edge-based information, and therefore
descriptors off, ..., Ix. The descriptors should match in appears to be more powerful for detection and for sketching.
their descriptor valuesas well as in theirelative positions
with respect to the centefgy }:

In the general case, however, the locations.., cx of
the object within the input images, ..., Ik, are unknown.

K We seek a binary imag#& which sketches théeast triv-
Score(S|Iy,...Ix) = > match(S, Iy) (1) ial'’ object (or image part) that isnost common'to all
k=1 those images. Thenost commonconstraint is obvious:
K w-h in each imagel;, there should be a locatior, for which
= Z sim (df,df’) match (S, I;*) is high (wherel;, = I;* is the subimage
k=1i=1 centered at;). However, there are many image regions

that aretrivially shared by many natural images. For exam-
ple, uniform regions(of uniform color or uniform texture)
occur abundantly in natural images. Such regions share
similar self-similarity descriptors, even if the underlying
textures or colors are different (due to the invariance proper-
ties of the self-similarity descriptor). Similarly, strong ver-
tical or horizontal edges (e.g., at boundaries between two
different uniformly colored/textured regions) occur abun-
[ argmaz{Score(S|I1, .. Ix)} s.t. S() € {~1,1} d.an.tly _in images. We do not W_ish to .identify such trivial
) (|nS|gn|f_|car’1t) common regions in the images as the ‘com-
whereS(1) is the value of at pixell. This process is de- MOon object’. _ _ _
scribed in detail in Seel, and results in a sketch of the type  Luckily, since such regions have good image matches in
shown in Fig3. lots of locations, thestatistical significanceof their good
While edge-based detection and/or sketchiagl[, 5] matches tends to be low (when measured by how many
requires many input images, our region-based detection andtandard deV|at|on§ its peak mqtch vglues are away from its
sketching can be recovered from very few images. EdgesMean _m_atch value inthe co.IIectlon of |.mages). In contrast, a
tend to be very spurious, and are very prone to clutter (evennon-trlwal common part (with nqn-tnwal _structl_Jre) should
sophisticated edge detectors like]] - see Fig4.b). Edge- ~ have at least one good match in each input image (could
based approaches thus require a considerable number of in/S0 have a few matches in an image), but these matches
ages, to allow for the consistent edge/gradient features ofVould be“statlst|call}/_5|gn|f|cant’ (i-e., this part would not
the object to stand out from the inconsistent background e found ‘at random’in the collection of images).
clutter. In contrast, region-based information is much less ~ Thus, in the general case, we seek a binary skétahd
sparse (area vs. line-contour), less affected by clutter or bylocationscy, ..., cx inimagesly, ..., I, such that:
misalignments, and is not as sensitive to the existence of() 5 is ‘most common;, in the sense that it maximizes
strong clear boundaries. Much larger image offsets are re-Score(S|I1*, .., I3X) = 37— match(S, I;*) of Eq. (1).
quired to push two corresponding regions out of alignment (i) S is ‘least trivial’, in the sense that its matches at
than to misalign two thin edges. Thus, region-based cuesci; -, cx are statistically significant i.e., it maximizes
require fewer images to detect and represent the commonz:f:1 StatSigni ficance (match(S, I,*)), where the sig-
object. Indeed, our method can provide good sketches fromnificance of a match of' is measured by how many stan-
as few as3 images. In fact, in some cases our method pro- dard deviations it is away from the mean match valug of
duces a meaningful sketch even frorsiagleimage, where Our optimization algorithm may iterate between these
edge-based sketching is impossible to interpret — see examtwo constraints: (i) Detect the locationg }X , of
ple in Fig.4. the least trivial common image part {7}, (Sec.3).

whered? is thei-th self-similarity descriptor computed at
image locationl; in the sketch images, d¥ is the self-
similarity descriptor computedt the same relative posi-
tion I; (up to small shifts) in thev x h subimagel}, and
sim(dy,ds2) = — || di — da ||, measures how similar two
descriptor vectors are (we experimented withnorms for

p = 1,2). Thus, thebinary sketctwe seek is:



(i) Sketch the common object given those image locations __ The inpul images: First ileration:
(Sec.4). The overall process results in a sketch image,
which provides a simple compact visual representation of
the common object of interest in a set of query images,
while eliminating any distracting background clutter found

in those images.

3. Detecting the Common

We wish to detect image locationsy,...,cx in
Iy, ..., Ik, such that corresponding subimages centered at
those locations];*, share as many self-similarity descrip-
tors with each other as possible, yet their matches to eact
other are non-trivial (significant). The final sketShwill
then be obtained from those subimages (8gc.

Let us first assume that the dimensianx h of the

bi . We will lat lax thi fi Let Figure 5.lterations of Detection & Sketching: Left: The4 in-
subimages Is given. Vve will fater relax this assumption. Le put images. Right: The first iteration of the detection algorithm

I'be aw x h image segment (this could be the final sketch oqits in4 detected image regions, of whighare correct and

S, or a subimage extracted from one of theinputimages  gne is an outlier (marked by red). The resulting sketch produced
in the iterative process). We wish to checkihas a good  from these regions is reasonably good (due to the robustness of
match in each of the inputimagés ..., I, and also check  the sketching to outliers — see Se¢sind5), and is used for re-

the statistical significance of its matches. We ‘correldte’ fining the detection in the input images. This resultd icorrect
against all the input images (by measuring the similarity of detections in the second iteration, and an improved sketch.

its underlying self-similarity descripto’r)s In each image

I, we find the highest match value bfmaxMatch(I, I},).

The higher the value, the stronger the match. However,
not every high match value is statistically significant. The
statistical significanceof maxzMatch(I, I;) is measured
by how many standard deviations it is away from the mean
match value off in the entire collection of images, i.e.,:
<maxMatch(f, Ii) — angatch(f)) /stdMatch(I),

where avgMatch(I) is the mean of all match values of
I in the collectiony, ..., Ik, and stdMatch(I) is their
standard deviation. We thus define the ‘Significance’
of a subimagel as: Significance(I|l1,...,Ix) =
% 25:1 StatSignificance (maxMatch(f, Ik)) .

Initially, we have no candidate sketch However, we
can measure how ‘significantly common’ is eachx h
subimage offy, ..., [k, when matched against all locations

in all the otherK — 1 images. We can assign a signifi-
cance score to eagixelp € I, (k = 1, .., K), according

?, th? .Slgnlflcgynﬁe Ofllts surrounding x h subimage: Figure 6.Detecting and sketching the common(Left) The input
ignificance(Ip|h, ..., Ik). . ) ) images. (Upper-Right) The detected image regions of the common
~We set ¢, to be the pixel location with the qpject, including one outlier. (Lower-Right) The resulting sketch.

highest significance score in imagdy, i.e., ¢, = _ _
argmazyer, {Significance(IL|I1, ..., Ixk)}. (using the algorithm of Sed). L

The resultingK” points (one per image), ..., cx, pro- We repeat the above process, this time for= 5, to
vide the centers fok candidates of ‘non-trivia’ common  detect its best matches i, ..., Ix. This should lead to
image parts. We generate a skeftiiom these image parts  improved detection and localization of the common object
(c1, ..., cx), and accordingly to an improved sketghThis

‘We use the same algorithm employed hy][to match ensembles of  glgorithm can be iterated several times. In practice, in all
self-similarity (_ies::rlptor_s, which is e}modlflgd version of the'eff|C|ent “en- our experiments a gOOd sketéhwas recovered already in
semble matching” algorithm of]. This algorithm employs a simple prob- . . . . . . .
abilistic “star graph” model to capture the relative geometric relations of a the first iteration. An additional iteration was sometimes
large number of local descriptors, up to small non-rigid deformations. useful for improving the detection. Fi§.shows two itera-




tions of this process, applied4dnput images. More results dy(l) dql,)
of the detection can be seen in Fg.

Handling unknownw x h: In principle, whenw x h is un-
known, we can run the above algorittiexhaustively”for a
variety ofw = wpin, ., Wmaz 8NAA = hpin, -y Pnae, and Figure 7.Computing attraction repulsion matrix W: The log-
choose “the besti x h (with maximal significance score). polar self-similarity descriptord; is located atl; (red cross).

In practice, this is implemented more efficiently using “inte- White bins signify image areas of high similarity to the central
gral images”, by integrating the contributions of individual patch, dark bins signify image areas of_dis_similarity to the cen-
self-similarity descriptors into varying window sizesx h. tral patch. The point; (blue cross), which is the center of de-
Computational Complexity: The detection algorithm is ~ SCiPtor d; (not drawn), falls in a white bin of descriptaf; i.e.,
implemented coarse-to-fine. The first step of the algorithm 0 < di(l;) < 1). The entryw;; in the matrixIV’ is determined

. - . . . - accordingly: w;; = ;5 (di(l;) + d; (1)) /2, wherea;; (the cer-
described above is quadratic in the size of the input Irnages“[ainty assigned to this entry), is inversely proportional to the dis-

However, since the number of images is typically small ance|| 1, — 1; || (the distance between the red and blue crosses).

(e.9.,3 — 5), and since the quadratic step occurs only in similarly, the point;, (green cross), which is the center of another
the coarsest/smallest resolutions of the images, this resultgiescriptord; (also not drawn), falls in a dark bin of descriptdt,

in a computationally efficient algorithm. ie., —1 < d;i(lx) < 0, andair < as; (because the green cross
falls farther away from the center @f, hence lower certainty).

d.

1

4. Sketching the Common

Letly,...,Ix be thew x h subimages centered around
the common object (detected and extracted from the input
images using the algorithm of Se8). The goal of the
sketching process is to produce a binary ima&gevhich
best captures the rough characteristic shape of the object
shared byly, ..., Ik, as posed by Eq2}. Namely, findS
whose ensemble of self-similarity descriptors is as similar
as possible to the ensembles of descriptors extracted from

(bE

I,...,Ig. If we were to neglect the binary constraint @ '
S(Z) € {-1,1} in Eq. (_2), and the requirement fo.r CON-  Figure 8.Detecting and sketching the common;(a) Five input
sistency between descriptors of an image, therofstenal images. (b) The resulting sketch.
solutionfor the collection of self-similarity descriptors of ] ) o )
S, {d;}2", could be explicitly computed as: in the .cor_respondmg log-polar bin, Whl(h|nd|cates.h|gh
. _ dissimilarity of the central patch to the corresponding log-
d; = median{d}} if Ly-norm ©)) polar bin. For our purposes, we stretch the descriptor values
d;= mean{d"} if Lo-norm to the rangg—1, 1], wherel signifies “attraction” and-1

signifies “repulsion” between two image locations.
We use thel;-norm to generate these ‘combined’ descrip- | et W be awh x wh matrix capturing the attrac-
tors {d; }{}, because of the inherent robustness of the me-tjon/repulsion between every two image locations, as in-
dian operator to outliers in the descriptors (also confirmed gyced by the collection of the ‘combined’ self-similarity
by our empiripal evaluati(_)ns in S&). Having recovered descriptors{d; }*/* of Eq. (3). Entryw;; in the matrix is
such a collection of descriptors f6r we proceed and solve  the degree of attraction/repulsion between image locations
the “inverse” problem — i.e., to generate the imaj&om I; andl;, determined by the self-similarity descriptats
which these descriptors emanated. However, the collectiongng d; centered at those pointsl; (,) is the value of the
of descriptors{d; }}} generated via a ‘median’ or ‘aver-  pin containing locatior; in descriptord; (see Fig7). Sim-
age’ operations is no longer guaranteed to be a valid collec-jarly, ¢, (1,) is the value of the bin containing locatiéin

tion of self-similarity descriptors of any real image (binary descriptord;. The entryw;; gets the following value:
or not). We thus proceed to recover the simplest possible

imagesS whose self-similarity descriptors best approximate wij = ayj (di(1;) +dj(l;)) /2 (4)
the ‘combined’ descriptor§d; }» obtained by Eq.J).

Self-similarity descriptors cover large image regions, wherew;; = «; ; is inversely proportional to the distance
with high overlaps. As such, the similarity and dissimilar- || I; —; || between the two image locations (we give higher
ity between two image locations (pixels) Sfareimplicitly weight to bins that are closer to the center of the descriptor,
captured by multiple self-similarity descriptors and in dif- since they contain more accurate/reliable information).
ferent descriptor entries. The self-similarity descriptor as  Note that a ‘pure’ attraction/repulsion matri¥” of a
defined in [L4] has values in the rand8, 1], wherel indi- true binary imageS contains only3 types of valueswy;;:
cates high resemblance of the central patch to the patches-1,0,1. If ; andl; belong to the same region i$i (i.e.,



both in foreground or both in background), theyy = 1; if

l; andl; belong to different regions i¥, thenw;; = —1,

and if the points are distant (out of descriptor range), then
w;; = 0. In the general case, however, the entries span
the range[—1, 1], where1 stands for “strong” attraction,
—1 for “strong” repulsion and) means “don’t care”. The
closer the value oi;; to 0, the lower its attraction/repulsion
confidence; the closer it is ta&-1, the higher the attrac-
tion/repulsion confidence.

Note thatlV is different from the classical affinity ma-
trix used in spectral clustering or in min-cut, which use
non-negative affinities, and their valdds ambiguous- it
signifies bothhigh-dissimilarityas well adow-confidence
The distinction between ‘attraction’, ‘repulsion’, and ‘low-
confidence’ are critical in our case, thus we cannot resort
to the max-flow algorithm or to spectral clustering in or-
der to solve our problem. An affinity matrix with positive
and negative values was used by][in the context of the
normalized-cut functional. However, their functional is not
appropriate for our problem (and indeed did not yield good
results forS when applied to oulV’). We therefore define a
different functional and optimization algorithm in order to
solve for the binary sketch.

The binary images which bestapproximates the attrac-
tion/repulsion relations captured BY, will minimize the
following functional:

mgnZwij(S(li) —S(1;))* subjecttoS(l) € {—1,1}
X
(5)

whereS(l) is the value ofS at pixell. Note that for a bi-
nary image, the termiS(l;) — S(l;))? can obtain only one
of two values: 0 (if both pixels belong to foreground, or
both belong to backgroundyr 4 (if one belongs to the
foreground, and one to the background). Thus, whgns
positive (attraction),S(l;) andS(l;) should have the same
value (bothl or both—1), in order to minimize that term
w;;(S(l;) — S(1;))?. The largerw;; (stronger confidence),
the stronger the incentive fé(/;) and.S(l;) to be the same.
Similarly, a negativev;; (repulsion) pusheapartthe values
S(l;) andS(l;). Thus,S(l;) andS(l;) should have opposite
signs in order to minimize that terma;; (S(l;) — S(1;))2.
Whenw;; ~ 0 (low confidence), the value of the func-
tional will not be affected by the valueg(;) andS(l;) (i.e.,
“don’t care”). It can be shown that in the ‘ideal’ case, i.e.,
when W is generated from a binary imag® the global
minimum of Eq. f) is obtained afs.

Solving the constrained optimization problem: The min-
cut problem where only non-negative valuesugj are al-
lowed can be solved by the max-flow algorithm in polyno-
mial time. However, the weights;; in the functional of
Eq. (6) can obtain both positive and negative values, turn-
ing our ‘cut’ problem as posed above into an NP-hard prob-
lem. We therefor@approximateEq. () by reposing it as a
quadratic programming problem, while relaxing the binary

(a

(b)
Figure 9.Detecting and sketching the common:(a) The input
images. (b) The resulting sketch.

constraints.

Let D be a diagonal matrix withD;; = Zj w;;, and
let L = D — W be the graph Laplacian dfV. Then
32 wij(S(Li) — S(1;))*> = STLS. Thus, our objec-
tive function is a quadratic expression in termsSof The
set of binary constrains are relaxed to the following set of
linear constraints-1 < S(I) < 1, resulting in the following
guadratic programming problem:

§=argmin STLS st —1<S()<1  (6)
SinceL is not necessarily positive semi-definite, we do not
have a guarantee regarding the approximation quality (i.e.,
how far is the achieved numerical solution from the optimal
solution). Still, our empirical tests demonstrate good per-
formance of this approximation. We use Matlab’s optimiza-
tion toolbox (quadprog) to solve this optimization problem
and obtain a sketcls. In principle, this does not yield a
binary image. However, in practise, the resulting sketches
look very close to binary images, and capture well the rough
geometric shape of the common objects.

The above sketching algorithm is quite robust to out-
liers (see Secb), and obtains good sketches from very
few images. Moreover, if when constructing the attrac-
tion/repulsion matri¥?” we replace the ‘combined’ descrip-
tors of Eq. B) with the self-similarity descriptors of sin-
gle image our algorithm will produce ‘binary’ sketches of
a single image (although these may not always be visually
meaningful). An example of a sketch obtained from a single
image (using all its self-similarity descriptors) can be found
in Fig. 4.

5. Experimental Results

Figs.1,3,6,8,9,10 show qualitative results on various im-
age sets. In all of these examples the number of input im-
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Figure 10.Sample results on ETHZ shapesf{] dataset: Detection and sketching using only 3 images (left), and using 6 images (right).

ages was very smalB(— 7), with large variability in ap- places where the sketches disagree, the product is negative.
pearance and background clutter. Our algorithm was ableThis produces a sketch quality score with values ranging
to detect and produce a compact representation (a sketchpetween—1 (lowest quality) to+1 (highest quality). Note

of the common content. that even if our sketch displays a perfect shape, its quality

We further conducted empirical evaluations of the algo- Will be smaller thari, because itis not a perfect binary im-

rithm using ETHZ shape dataséfl[ This dataset consists 29€- From our experience, sketch quality).8 are usually

of five object categories with large variability in appearance: €xcellent-looking sketches.

Applelogos, Bottles, Giraffes, Mugs and Swans (example  We first assessed the quality of our algorithm to iden-
images can be seen in Fi§j0). There are around0 im- tify and sketch the common object correctly, as a function
ages in each set, with ground-truth information regarding of the number of input image& (K = 2,3,..,10). We

the location of the object in each image, along with a single randomly sampled< images out of an object category set,
hand-drawn ground truth shape for each category. In orderapplied our detection and sketching algorithm to that sub-
to assess the quality of our algorithm (which is currently set, and compared the resulting skefcto the ground-truth
not scale invariant, although it can handle up20% scale Scr. We repeated this experimeh$ times for eachk,
variation, andt15° rotations), we scaled the images in each and computed mean sketch quality scores. Figlisplays
dataset to haveoughly the same object size (but we have plots of the mean quality score for thecategories. It can
not rotated the images, nor changed their aspect ratios). be seen that from relatively few imagek (= 3) we al-
Sketch quality score: Because our sketcl is contin- ready achieve sket_ches of good quality, even_for challenging
uous in the rangd—1, 1], we stretch the values of the sets such as thg glraffes'(although, with the increased num-
ground-truth sketchScr also to this range, and multi- ber of example images, its legs tend to disappear from the

ply the two sketches pixel-wise. Our sketch quality score sketch because of their non-rigid deformations). Examples
is: Quality(S) — < S, S > /(4 of pizels). In places  Tor sketching results for some of these experiments can be

where both sketches agree in their sign (either white re-S€€n in Figl10.
gions or black) the pixel-wise product is positive, while in We next evaluated the robustness of the sketching com-



1 (for as few ask’ = 3 example images; a scenario no WSL

s J method can handle to the best of our knowledge). However,
= , Figure 11.Evaluating sketch our dgtection rates are not as googl i_n the Giraffg set, since
?:f' — guality:  Mean values of the giraffes undergo strong non-rigid deformations (they
gos oo Quality(S) as a function of ~ sometimes tilt their necks down, and their legs change po-
% 02 —mugs the number of input images sitions). Our current algorithm cannot handle such strong
e (K = 2,..,10) randomly  non-rigid deformations.
% 4 & s w sampled from each set of Acknowledgement:This work was partially funded by the
#ofimages ETHZ shape datasef]. Israel Science Foundation.
! Figure 12.Sketching in pres-
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