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Abstract. Since uncalibrated images permit only projective reconstruc-
tion, metric information requires either camera or scene calibration. We
propose a stratified approach to projective reconstruction, in which grad-
ual increase in domain information for scene calibration leads to gradual
increase in 3D information. Our scheme includes the following steps: (1)
Register the images with respect to a reference plane; this can be done
using limited scene information, e.g., the knowledge that two pairs of
lines on the plane are parallel. We show that this calibration is sufficient
for ordinal reconstruction - sorting the points by their height over the
reference plane. (2) If available, use the relative height of two additional
out-of-plane points to compute the height of the remaining points up to
constant scaling. Our scheme is based on the dual epipolar geometry in
the reference frame, which we develop below. We show good results with
five sequences of real images, using mostly scene calibration that can be
inferred directly from the images themselves.

1 Introduction

Given multiple images, stratified 3D reconstruction can be obtained depending
on the available camera and scene calibration. In general uncalibrated images
permit only projective reconstruction [6], which is of limited use; for example, we
cannot determine from projective structure which part of the object is in front
of the other. Its topological nature makes this representation useful primarily
for verification, e.g., object recognition; for most other applications some scene
or camera calibration is needed.

With calibrated cameras, or if self calibration is possible (when the same
camera with partially fixed internal parameters is used to obtain all the im-
ages), Euclidean reconstruction can be obtained [9, 17]. Alternatively, active vi-
sion techniques, based on imposing constraints on the viewing geometry and/or
the camera motion, can be used. Such externally imposed constraints may sim-
plify the problem enough to permit affine or Euclidean reconstruction, e.g., [21]
(see also [22]). However, active vision techniques cannot be universally applied,
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and in particular they are of little help when the sequence of images is already
given (such as the case with video analysis). Similarly, techniques which obtain
Euclidean reconstruction using self camera calibration cannot be used with just
any sequence unless it is known that some of the internal parameters of the
camera taking the sequence were kept fixed or are known.

The alternative to active vision and self camera calibration is to use scene
calibration. Thus projective reconstruction can be turned into Euclidean recon-
struction if the 3D coordinates of five points are given [14]. Computing Euclidean
reconstruction from affine reconstruction requires that the 3D coordinates of
four points are given. These results were used to formulate a stratified approach
to reconstruction, characterized by invariance to increasingly smaller groups of
transformations in R3: projective, affine and similarity (scaled Euclidean) [7].
The usefulness of techniques using scene calibration is limited to cases when the
needed 3D information is available. Unlike the case with camera calibration and
active vision, there are no results on partial scene calibration which could give
partial metric information.

Our approach fills in this gap (a related approach is independently described
in [5]); we investigate partial scene calibration which can be used to obtain some
metric information from uncalibrated images. Unlike previous approaches using
scene calibration, in which the 3D information had to be given a-priori, we make
use of scene information that can be inferred automatically from images, such
as that lines are parallel. This information only permits ordinal reconstruction
in our scheme. In addition, in order to achieve affine reconstruction we need to
know the relative height of one 3D point; this requirement still seems easier to
meet than the knowledge of the 3D coordinates of five 3D points, as required in
[14].

More specifically, we compute non-invariant reconstruction in a special co-
ordinate system. This coordinate system is defined relative to a physical (real
or virtual) planar surface in the scene. The projection of the scene points onto
an input camera image is decomposed into two stages: (i) the projection of each
scene point through the focal-point of the camera onto the reference plane, and
(ii) the re-projection of the reference plane image onto the camera image plane.
The projection from 3D to the reference plane depends only on the 3D positions
of the scene points and the focal-point of the camera. All effects of the camera’s
internal calibration and the orientation of the image plane are folded into the
re-projection step, which is captured by a homography between the reference
plane and the camera image plane.

The reconstruction of the 3D scene is done relative to the reference plane,
within a Cartesian coordinate system whose X − Y axes span the reference
plane, and whose Z direction is perpendicular to it. Given multiple images of
the same scene, the homography relating each image to the reference plane is de-
termined by specifying a few pieces of geometric information about the reference
plane. This homography is then applied to each camera image to determine the
corresponding reference-plane image. The “Height” (Z) of each scene point is
determined by analyzing the disparity between the positions of each scene point
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on the multiple reference plane images1. The basic relationships associated with
multi-view parallax geometry (with respect to a reference plane) are described
in our recent paper [1]. However, while [1] focuses on the geometric relationships
and elaborated on one application (namely “new view synthesis”), the present
paper focuses on the use of this framework for stratified reconstruction, based
on partial scene calibration.

The specification of the geometric information about the reference plane
amounts to “registering” the reference plane. Such registration, with no 3D
calibration, is sufficient to determine whether points lie on the same side of
the plane [16]. Here we show that ordinal information about the 3D scene can
be obtained even with very little scene calibration data, e.g., we can compute
height ordering with respect to a plane from knowing (or guessing) the existence
of two pairs of parallel lines on the plane; we call this ordinal reconstruction
(cf. [12]). By providing additional domain-information (e.g., heights of one or
two out-of-plane points), we can gradually obtain more metric 3D information,
achieving affine and Euclidean reconstruction.

2 Geometry on the Reference Plane

The perspective projection of a point Pi in space to an image plane can be
written as pit = MtPi, where pit and Pi are the point homogeneous coordinates
in 2D and 3D respectively, and Mt is the 3 × 4 projection matrix describing the
camera t. Mt depends on the orientation of the image plane and the location of
the camera center Pt.

Here we break down the projection into 2 operations: the projection of the
3D world onto a 2D reference plane Π through the focal-point Pt, followed by a
2D projective transformation (homography) which maps the reference plane Π
to the image plane of camera t.

Our purpose in this paper is to use this decomposition for the gradual re-
construction of the 3D scene relative to Π. The key idea in this paper is that
by analyzing the images formed by projecting the scene through each camera
center onto the reference plane Π, we vastly simplify the problem of 3D re-
construction. As explained in Section 3, the reference plane images from each
camera view are obtained by registering each image to a pre-defined (affine or
Cartesian) coordinate system on the reference plane.

2.1 Reference plane coordinate system

Let Π denote a (real or virtual) planar surface in the scene. We call Π the
“reference plane”. We define a 3D Cartesian coordinate system whose X − Y
axes span the reference plane Π, and the Z direction is perpendicular to Π. We
call this system the “reference plane coordinate system”.
1 A related approach called “plane+parallax” was taken in [13, 18], but there 3D re-

construction was relative to the coordinate systems of both the reference plane and
a reference image.
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An object, composed of n points in 3D space, is represented in the reference
plane coordinate system by the shape matrix P, the following 4 × n matrix:

P =




0 a1 a2 a3 a4 Xi Xi+1
0 b1 b2 b3 b4 · · · Yi Yi+1 · · ·
1 0 0 0 0 Zi Zi+1
0 1 1 1 1 Wi Wi+1


 (1)

Columns [ai bi 0 1] are the coordinates of points on the reference plane Π,
[0 0 1 0] is a point at ∞ on the line through the origin which is perpendicular to
the reference plane, and columns [Xi Yi Zi Wi]T are the coordinates of general
points Pi on the object.

Every object can be represented this way; but the representation is not unique
- a transformation from another projective coordinate system to this particular
one is determined only up to an independent scaling of the Z axis. This ambiguity
comes about because the standard projective basis requires that no four points
are co-planar, whereas the basis of our system includes a plane. We need not
worry about this ambiguity in the following derivations, however, because all
quantities of interest involve ratios of Z values.

2.2 Projection on the reference plane

The 3D scene points are first projected onto the reference plane Π through the
focal-point Pt of the camera. This forms a “virtual” image on Π. We refer to
this image as the “reference-plane” image.

Corresponding to the object-shape matrix P defined in (1) and camera t, we
define the following matrix pt of reference-image points:

pt =


αt a1 a2 a3 a4 xit x(i+1)t

βt b1 b2 b3 b4 · · · yit y(i+1)t · · ·
γt 1 1 1 1 wit w(i+1)t




Note that the first two coordinates of the points 1, . . . 4, which are physically
located on the reference plane Π, are the same as the corresponding coordinates
in their 3D representation. This is a direct consequence of our choice of the
coordinate system for the 3D representation.

As explained before, the coordinates of the image points in the “original”
input images are obtained by applying a 2D projective transformation to the
corresponding reference plane images. That is, qt = Htpt, where qt is the “image
matrix” corresponding to the original image t, and Ht is the 2D projective
transformation (3×3 matrix) that relates the reference plane to the image plane
of camera t.

As will become clear later, our stratified approach to 3D reconstruction does
not require that the reference plane image coordinates be completely known.
It is sufficient to specify them up to 2D affine deformation of the reference

plane Π. Thus, it is sufficient to specify p̂t = Gtpt where Gt =


g11 g12 g13

g21 g22 g23
0 0 1
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denotes the (possibly unknown) affine transformation of the reference plane. In
the remainder of this paper, we call pt the “fully normalized” reference plane
image, and p̂t the “affine normalized” reference plane image.

If image pt is fully normalized, it can be shown (or, more easily, verified)
that the projection matrix Mt associated with it is:

Mt =


 δt 0 αt 0

0 δt βt 0
0 0 γt δt




We impose the constraint that the focal point of the camera cannot be pos-
sibly seen in the (reference-plane) image; thus it is the null vector of Mt. We
denote the 3D coordinates of the focal point Pt of the camera t by [Xt Yt Zt Wt],
then


0

0
0


 ∝


 δt 0 αt 0

0 δt βt 0
0 0 γt δt


 ·




Xt

Yt

Zt

Wt


 =⇒




0 = δtXt + αtZt

0 = δtYt + βtZt

0 = δtWt + γtZt

and the solution is:
[δt αt βt γt] ∝ [−Zt Xt Yt Wt]

The normalized reference-plane image pt is therefore obtained by the follow-
ing projection:

pt ∝

−Zt 0 Xt 0

0 −Zt Yt 0
0 0 Wt −Zt


P

Let pit = [xit yit wit]
T denote the reference-plane image position of the object

point Pi projected through the camera focal-point Pt (onto Π). Then:

pit =


 xit

yit

wit


 ∝


−Zt 0 Xt 0

0 −Zt Yt 0
0 0 Wt −Zt







Xi

Yi

Zi

Wi


 (2)

Observe that each point on the reference-plane image imposes 2 constraints
relating to the coordinates of the object point Pi and the camera center Pt,
which follow immediately from (2):

xit

wit
=

−ZtXi + XtZi

−ZtWi + WtZi
,

yit

wit
=

−ZtYi + YtZi

−ZtWi + WtZi
(3)

In this equation, the 3D coordinates of the 3D point Pi and the focal point Pt of
camera t are dual: the focal point of the camera [Xt Yt Zt Wt] is interchangeable
with the 3D point [Xi Yi Zi Wi].

From (3) we get the epipolar and dual-epipolar geometry on the reference
plane.
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2.3 Epipolar Geometry on the Reference Plane:

The epipolar geometry is obtained by the elimination of the 3D point coordinates
from (3). In the following derivation we follow the method described in [8]. First,
we rewrite (3) and note that each camera t imposes 2 constraints on the 3D point
coordinates

(
witZt 0 (xitWt − witXt) −xitZt

0 witZt (yitWt − witYt) −yitZt

) 


Xi

Yi

Zi

Wi


 = 0

Two cameras (e.g., t and s) give 4 constraints. Since they have a non-trivial
solution [Xi Yi Zi Wi], the determinant of their matrix must equal 0. This
yields a relation between the focal points Pt = [Xt Yt Zt Wt] and Ps = [Xs Ys

pit = [xit yit wit] and pis = [xis yis wis] of the point Pi in the two corresponding
reference-plane images. This relation can be rewritten as:

pT
it Fts pis = 0, Fts =


 0 ZsWt − ZtWs −ZsYt + ZtYs

−ZsWt + ZtWs 0 ZsXt − ZtXs

ZsYt − ZtYs −ZsXt + ZtXs 0


 (4)

and Fts is the “fundamental” matrix.
(4) gives the epipolar geometry on the reference plane—a relation

between the coordinates of point Pi in the reference-plane image from camera t
to its coordinates in the reference-plane image from camera s. The “fundamental
matrix” Fts is anti-symmetric, with essentially 3 unknowns: (ZsXt − ZtXs),
(ZsYt−ZtYs) and (ZsWt−ZtWs). We also observe that these are the coordinates
of the point pts, which can be obtained by substituting the object point Pi by
the camera-center Ps in (2). Thus, pts, which determines the fundamental matrix
Fts, is the projection of the focal point Ps through Pt on the reference plane—in
other words, pts is the epipole.

The two epipoles: pst - the projection of the focal point of camera s through
the focal point of camera t, and pts - projection of the focal point of camera t
through the focal point of camera s, are the same on the reference plane; they
are defined by the intersection of the line going through the focal points of the
two cameras and the reference plane. Thus the epipolar geometry on both image
s and image t, when mapped to the reference plane, is the same: it is defined
by the same anti-symmetric matrix Fts, the epipole is the same, and the pencils
of epipolar lines are the same. All this remains true even if the images are not
normalized at all, that is, they are aligned with the reference plane up to some
homography only.

Since each point provides one homogeneous constraint on these unknowns, 2
points (which are not on the reference plane) are sufficient to compute the epipo-
lar geometry in full. However, because of this redundancy of the fundamental
matrix, it is not possible to extract from it the coordinates of the focal points of
cameras t and s.
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2.4 Dual Geometry on Reference Plane

The dual epipolar geometry is obtained by eliminating the coordinates of the
camera’s focal point from (3). Once again, we first rewrite (3) so that each point
Pi imposes 2 constraints on the coordinates of the focal point of the camera t:

(
witZi 0 (xitWi − witXi) −xitZi

0 witZi (yitWi − witYi) −yitZi

) 


Xt

Yt

Zt

Wt


 = 0

Two points give 4 constraints, which have a non-trivial solution. Following
the same reasoning as before for points Pi,Pj , we get a relation between the
3D coordinates of the two points [Xi Yi Zi Wi], [Xj Yj Zj Wj ] , and the image
coordinates pit, pjt of the points in image t. This relation can be rewritten as

pT
it Gij pjt, Gij =


 0 ZjWi − ZiWj −ZjYi + ZiYj

−ZjWi + ZiWj 0 ZjXi − ZiXj

ZjYi − ZiYj −ZjXi + ZiXj 0


 (5)

and Gij is the dual “fundamental” matrix.
Similar to the case of the fundamental matrix F , the dual fundamental Matrix

G is determined by the coordinates of the dual epipole pij [10], which is obtained
by projecting the scene point Pi through Pj onto the reference plane. These dual
relations are similar to those previously described in [3, 20, 4], where they were
derived with respect to the quantities from the actual image points; here the
dual relations are derived in the context of the reference-plane images.

2.5 Using affine normalization

When the homography Ht between the actual observed image qt and the cor-
responding virtual image pt on the reference plane is completely determined by
the given scene calibration data, then for each point in the observed image¡ we
can compute the corresponding reference-image point coordinates pit = H−1

t qit.
These quantities can then be used in the constraints derived above. However, if
the homography is known only up to a 2D affine transformation Gt of Π, then
we can use the affine normalized coordinates p̂it = Gtpit.

If we replace pit by p̂it in all the derivations above, everything remains true
but with respect to a different 3D coordinate system: the 3D point coordinates
are now taken with respect to a 3D coordinate system where the X −Y plane is
transformed by the same affine transformation Gt. The coordinates of point Pi

in this new coordinate system are [X ′
i, Y

′
i , αZi, Wi], where X ′

i, Y
′
i are obtained

from Xi, Yi by Gt, and α is some scale factor. Thus when using image coordinates
from p̂t, we can still use all the expressions developed in Section 2.2, noting to
replace (Xi, Yi) by (X ′

i, Y
′
i ).
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3 Stratified Reconstruction

In this section we show how the relations established in Section 2 between the
image positions of scene points on the reference plane can be used to recover
3D information about the scene with very little scene information. We will de-
scribe an approach in which gradual increase in domain information for scene
calibration leads to gradually increasing 3D information.

Registering the Input Images to the Reference Plane Π: As mentioned in
Section 1 our approach is based on registering each input image to a pre-specified
affine or Cartesian coordinate system on the reference plane. For practical rea-
sons, we do this in three stages: (i) determine the homography Hst between each
image “s” in the sequence and an arbitrarily selected reference image “t” from
the same sequence, (ii) specify or infer the domain information needed to reg-
ister the reference image t to the reference plane Π; based on this specification
determine the 2D transformation Htπ that aligns image t with Π, and (iii) con-
catenate Hst and Htπ to determine the transformation Hsπ that registers s with
Π. We refer to this process of registering the images to the reference plane as
“registering the reference plane”.

Affine vs. Euclidean Normalization: As noted in Section 2.5, if the positions
of the image points on the reference plane Π are known only up to a 2D affine
transformation of Π, it only affects the X and Y coordinates of the 3D scene
points. The Z component is not affected by the unknown 2D affine transfor-
mation Gt. Here the minimal scene calibration required for some 3D inference
should be sufficient for the registration of the reference plane up to an affine
transformation.

3D Reconstruction From the Dual Epipolar Geometry: (5) establishes
the relationship between reference-plane image positions of two points in one
view and the dual Fundamental matrix G, which in turn depends on the coordi-
nates of the dual-epipole. Since this equation is homogeneous, it can be divided
by an arbitrary scale factor. In particular, we can divide (5) by ZiZj and obtain
a new form for G, which depends on the scaled homogeneous coordinates of the
dual-epipole

pij
def= [

Xj

Zj
− Xi

Zi
,

Yj

Zj
− Yi

Zi
,

Wj

Zj
− Wi

Zi
]. (6)

(5) provides one constraint on these 3 variables. Looking separately at the pairs
of 3D points {Pi, Pj}, {Pi, Pk}, {Pj , Pk}, we get from each image 3 constraints
on the 9 homogeneous coordinates of the three dual-epipoles pij , pjk and pki.
Thus, 2 images t = 1, 2 give 6 homogeneous constraints on these 9 variables. In
addition, it can be easily verified from (6) that pij + pjk + pki = 0 which gives 3
more constraints. Taken together these 9 homogeneous constraints are sufficient
to compute the coordinates of the three dual-epipoles up to a single scale factor.

Note that each additional image provides 3 more homogeneous constraints
on the same 9 variables. Thus, if given more than 2 images, the computation
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of the dual epipoles requires the solution of an over-determined linear system
of equations; such system can be solved in a least-squares sense using standard
tools such as SVD.

Of particular interest is the third coordinate of the dual-epipoles. Assum-
ing, w.l.o.g, Wi = 1, the third coordinate of the three dual-epipoles are: ( 1

Zi
−

1
Zj

), ( 1
Zj

− 1
Zk

), ( 1
Zk

− 1
Zi

). Since we can compute these quantities only up to a
scale factor, we can only determine their ratios. We arbitrarily select two out-
of-plane points as “reference points” and denote them by indices 1 and 2. Then
for any other point i we can compute

ui = (
1
Zi

− 1
Z1

)/(
1
Z2

− 1
Z1

) =⇒ Zi =
Z1

1 + αui
(7)

where α = Z1
Z2

− 1.

Stratified Reconstruction: (7) can be used to compute the height of points
relative to the reference plane Π. With increasing amount of scene information
we get increasing specificity:

Ordinal reconstruction: from (7) it follows that ui is monotonically related
to the height Zi. Hence, given only the knowledge whether α is positive
or negative, the ordering of the height of all other points relative to Π
can be determined without any additional information. This type of 3D
information is useful in a number of visual reasoning tasks such as navigation
and grasping, in order to determine potential obstructions or provide micro-
management control commands.

Affine reconstruction: if the ratio (Z2/Z1) is given, α can be determined, and
the height of all other scene points relative to Π can be determined up to
an unknown scale factor.

Absolute depth: if, in addition, the height of Z1 is known, then the absolute
height of all points relative to Π can be determined.

Euclidean reconstruction: the remaining elements of the dual epipoles can
be used to compute the X and Y coordinates of the object points. Given
the height of Z1, Z2, the X, Y coordinates can be determined up to image
translation. Given (X1, Y1), (Xi, Yi) can be determined absolutely.

4 Experiments

We compute the stratified reconstruction using four sequences of real images.
In the first three cases, corners were automatically extracted (see Fig 1b) and
then automatically tracked over the sequence; for comparison we were given all
the 3D coordinates of the points. In the last two sequences, a reference plane
in the scene was stabilized first, then a dense parallax flow field was recovered
[10, 13]. The reconstruction was then based on this parallax data. In this case,
the images were obtained using a hand-held video camera in a casual manner,
without making controled measurements of the camera or scene parameters.
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Fig. 1. a) one frame from the medium depth sequence; b) corners extracted from a);
c) one frame from the large depth sequence; d) one frame from the lab sequence.

4.1 Medium depth sequence

An object (box) 15cm wide at about 60cm from the camera (Fig 1a) was pho-
tographed from 5 different points of view. First, we affine-normalized all the
images: using two identified pairs of parallel lines (e.g., the sides on one of the
faces of the box), we applied a 2D homography which made the two lines parallel
in the image and confined to the same image position in all the frames. We then
arbitrarily selected two out-of-plane points as reference points, and computed
the dual-epipole between them, as well as the dual-epipole between each of the
other data points and the two reference points. The dual-epipoles were com-
puted by using all the 5 frames and a least-squares solution to (5). Using these
dual-epipoles, we computed ordinal reconstruction as described in Section 3. The
results - each computed ui value vs. the real ui value - are shown in Table 1.

ui est. ui act.
12.9521 12.6736*
8.5741 6.4453
7.7989 6.2027
2.5462 3.1829
2.4668 2.4414*
2.0456 2.3201
2.2506 1.9965
1.4493 1.9965
0.9668 0.9498*
0.9641 0.8550
0.6754 0.6091

ui est. ui act.
0.5658 0.5729
0.3900 0.4712*
0.0666 0.3356
0.1853 0.2679
0.0527 0.2170
0.1875 0.1458*
0.0972 0.0096
0.0341 -0.0188
-0.1484 -0.1468
-0.0954 -0.1622*
-0.4950 -0.5036

ui est. ui act.
-0.5205 -0.5166
-0.4302 -0.5292
-0.5136 -0.5456*
-0.1878 -0.5576
-0.5954 -0.5844
-0.6176 -0.6407
-0.6576 -0.6473*
-0.7028 -0.7083
-0.7537 -0.7083
-0.8160 -0.7083

Zi est. Zi act.
0.8827 0.9
3.1798 3.2
5.0657 5.1
6.5621 6.3
7.3215 7.5
8.7334 9.15
12.2156 12.6
14.1592 14

Table 1. The estimated vs. actual reconstructed 3D data, ordinal (ui) and Euclidean
(Zi), for the Medium Depth Sequence. For conciseness, the height Zi is only shown for
every fourth point, and the corresponding ordinal values are marked by *.

Given the heights of the two reference points, we can continue further and
transform the ordinal reconstruction into Euclidean reconstruction by computing
the actual height Zi at each point. The results - some of the computed Zi vs.
the actual Zi - are shown in Table 1.
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Looking closely at these results, clearly the ordinal reconstruction by ui is
accurate at most of the points, with only a few points close in height switched
around. The heights are also quite accurate for most points, as the few repre-
sentative heights in Table 1 show.

4.2 Large depth sequence

Objects spanning 60cm at about 60cm from the camera (Fig 1c) were pho-
tographed from 5 different points of view. Unlike the previous sequence, there is
much larger depth of field in this sequence, and thus there are larger projective
distortions. Such distortions make metric reconstruction difficult. Once again,
we first affine-normalized all the images and followed a procedure similar to the
previous experiment to recover ordinal height (ui) for 24 tracked points. The
estimated vs. the actual 3D data are shown in Table 2.

ui est. ui act.
0.0077 0*
-0.1529 -0.3068
-0.167 -0.3068
-2.4833 -3.079
-32.2960 ∞*
15.8281 ∞
10.8487 8.2697
8.4828 6.3750

ui est. ui act.
3.8829 3.7841*
2.4482 2.5179
2.4848 2.402
2.6841 2.25
2.1878 2.0795*
1.7263 1.6045
1.6723 1.6045
1.4574 1.4024

ui est. ui act.
1.4512 1.3885*
1.3658 1.3817
1.1322 1.1103
1.1175 1.1103
1.2088 1.0893*
1.072 1.0568
1.0901 1
1.089 1

Zi est. Zi act.
-20.4185 -20
-0.2296 0
2.138 2.2
4.1373 4.4
6.9691 7.4
8.9946 10.5

Table 2. Estimated vs. Actual 3D Data, ordinal (ui) and Euclidean (Zi), for the Large
Depth Sequence. For conciseness, the height Zi is only shown for every fourth point,
and the corresponding ordinal values are marked by *.

Given the heights of the 2 reference points, we can continue further and
transform the ordinal reconstruction into Euclidean reconstruction by computing
the actual height Zi at each point. The results - the computed Zi vs. the actual
Zi - are shown in Table 2.

Here, too, the ordinal reconstruction by ui is almost always accurate. Of the
30 features, only 3 pairs of neighbors in height were swapped with each other
(their height was 4 vs. 3.5, 11 vs. 12 and 10.2 vs. 10.5). The Z values are still
good, but less accurate when compared with the previous experiment.

4.3 Lab sequence

This sequence includes 16 images of a robotic laboratory, obtained by rotating
a robot arm 120o (one frame is shown in Fig. 1d). 32 corner-like points were
tracked. This sequence has the largest depth of field - the depth values of the
points in the first frame (relative to the camera) ranged from 13 to 33 feet.
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Moreover, a wide-lens camera was used, causing distortions at the periphery
which were not compensated for. This is therefore the most difficult sequence so
far. Once again, following the same procedure as in the other two experiments,
we estimated ordinal and Euclidean reconstruction in 25 points. The estimated
Zi vs. actual Zi for these points are shown in Table 3.

Zi est. Zi act.
0.2045 -0.3386
-0.2048 0.3409
2.2095 1.1965
8.5974 1.5249
8.1943 2.8690

Zi est. Zi act.
9.4100 5.6942
7.1877 6.4347
9.4263 9.3823
9.1724 9.4161
9.9265 9.4161

Zi est. Zi act.
8.3978 10.0444
9.0416 10.0446
9.1713 10.9708
9.5846 10.9993
9.9490 11.2723

Zi est. Zi act.
9.2478 11.4074
9.3495 12.1890
9.2442 13.6701
13.2664 13.9289
16.5506 14.6616

Zi est. Zi act.
15.3879 15.8765
16.1396 16.5352
17.4406 16.6093
13.6005 16.6761
16.5688 17.5328

Table 3. Estimated vs. Actual Heights for the Lab Sequence.

Note that although there are gross errors for some points, the computed
height in most points is fairly close to their true height.

4.4 Dense Height Maps

The previous three examples gave quantitative illustrations of stratified recon-
struction at a sparse set of points in the scene. Here we include two examples of
dense reconstruction of ordinal heights. In both cases, the images were acquired
using a hand-held video camera. No quantitative information about the scene
structure, the camera imaging parameters, or its motion were available.

Given two input images, we used the method described in [19] to first estimate
the homography that aligns a dominant planar surface in the scene between the
two images. The residual parallax displacements between the points were then
computed using the method described in [13]. These displacements were used as
input for the stratified reconstruction of the scene.

The first example uses the “Toys” image sequence previously used in [11],
see Figure 2a. The scene consists of a few toys standing on a rug.

In order to register the images to the reference plane (upto 2D affine trans-
formation), we used the following approach. Using commonly available image
manipulations tools on a PC, we drew two sets of lines on the reference image,
that were visually judged to be parallel to the “grooves” of the rug. These are
shown in red and blue in Figure 2a. Note that the red lines in particular are
not parallel in the image itself, although they represent parallel lines on the rug.
We then interactively warped the images (using homographies) until the lines
appeared parallel in the image. Any of a family of homographies that are equiva-
lent upto a 2D affine transformation is sufficient for this purpose. We arbitrarily
picked one to achieve the intended effect. The result of this process is shown in
Figure 2b.

We then computed the ordinal height ui (see (7)) using the parallax displace-
ments (also appropriately warped to reflect the projection onto the reference
plane). However, since ui = ∞ for points on the reference plane itself (i.e., when
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a) b) c)

Fig. 2. a) one frame from the toys sequence, b) same image as (a) but with lines drawn
on it (see text); c) the result of projecting (b) onto the reference plane (the rug); d)
ordinal height.

a) b) c)

Fig. 3. a) one frame from the doll sequence; b) the result of projecting (a) onto the
reference plane (the rug); c) ordinal height.

Zi = 0 in (7)), we display 1
ui

in Figure 2c. As evident from this image, the points
on the rug are dark (corresponding to an ordinal height of 0); also, a gradual
increase in height along the two dominant objects is noticeable. Since we did not
have the actual heights of any of the objects in the scene, we stopped at this
stage of our stratified reconstruction.

The second example uses a new sequence, which we will refer to as the “Doll”
sequence (see Figure 3a). In this case, the carpet and the floor constituted the
reference plane. The grid lines on the carpet and the floor served as the basis
for registering the images to the reference plane. As in the case of the “Toys”
example, we interactively warped the images until these lines appeared parallel
in the image, and arbitrarily picked one homography that achieved this effect.
Once again, we display 1

ui
in Figure 3c.

Note that in both these examples, even with the minimal calibration (two sets
of parallel lines) we obtain a reconstruction that looks qualitatively consistent
with the actual structure of the scene. As noted earlier, this would be useful in
a number of visual reasoning tasks, such as navigation and grasping.
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4.5 Discussion

The computation of height (a metric quantity) relative to the reference plane
consistently gave good results while using noisy sequences with large perspective
distortions. The algorithm is fast, robust and easy to implement since it only
solves a linear system of equations. Height was computed with minimal scene
calibration: (i) ordinal reconstruction required knowledge of the reference
frame up to affine transformation - 2 degrees of freedom2, and (ii) exact height
required knowledge of the height of two points not on the reference plane - 2
additional d.o.f. Thus we used 2-4 d.o.f. of scene calibration information, much
less than required by other reconstruction algorithms which use scene calibration.

For example, the scene calibration needed by the reconstruction algorithm
described in [14] includes the specification of the 3D coordinates of 5 reference
points (supplied by an oracle) - 15 d.o.f. We used this method in [2] to accom-
plish reconstruction with the first two sequences described above. Although this
computation relied on 15, rather than 4, pre-determined pieces of calibration
data, and involved a complex non-linear algorithm, the reconstruction results in
[2] are no better than our results here (e.g., a relative error of about 5% − 10%
per datapoint using the second sequence).

5 Summary

Since uncalibrated images only permit projective reconstruction, no metric in-
formation (such as relative depth) can be deduced without some calibration,
either camera calibration (external and internal parameters of the camera) or
scene calibration (the 3D affine or Euclidean coordinates of some 3D landmarks).
Camera calibration, however, is not always possible: it requires a partially fixed
camera (unsuitable, e.g., if the images are taken by many cameras) or some con-
trol over the camera motion (unsuitable, e.g., with video data). Scene calibration
requires a priori knowledge of known 3D points, and is typically employed after
the projective reconstruction; therefore it is typically ill-advised to use directly
a least squares linear reconstruction algorithm as we do here, since there is no
suitable least squares error in 3D projective space.

Our contribution in this paper is three fold: (1) We use partial scene cali-
bration, as little as two parallel lines on a plane; this information need not be
given a priori, and can be inferred from the images directly. (2) We perform
the calibration prior to the reconstruction; this allows the use of a robust least
squares structure computation from many frames. (3) We obtain a hierarchy
of intermediate representations, from ordinal to Euclidean, which increasingly
depend on the amount of scene calibration available.

2 The 2D affine transformation Gt has 6 degrees of freedom, whereas a general 2D
projective transformation (homography) has 8 d.o.f.; thus 2D affine plane calibration
requires the specification of 2 d.o.f.
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